Система tncs: TN-С, TN-C-S, TN-S, ТТ, IT

Содержание

Система заземления TN-C-S, схема, особенности, достоинства и недостатки

Организация системы TN-C-S состоит в том, что нулевой провод N и защитный PEN совмещены и разделяются в какой-то определенной точке электросети, приходя к потребителям по отдельности.

Для примера рассмотрим схему электроснабжения жилого многоэтажного дома.

При такой системе заземление электроснабжение квартиры осуществляется:

— при 3-фазном питании: 5-ти-жильным кабелем с жилами — А,В,С,N,PE;

— при 1-фазном: 3-х-жильной кабельной линией – фаза, N, PE.

Данная система заземления предполагает установку розеток с выводом для подключения заземления, ее в народе называют евророзеткой.

При такой системе к защитному проводнику подключается корпус электроприборов (электрическая плита, кондиционер, стиральная машина и др.). Нулевой проводник при этом выполняет роль рабочего, основное назначение которого — передача электроэнергии.

Точка раздела PEN проводника

В большинстве случаев разделение осуществляют на вводе в многоэтажный дом — в РЩ (распределительном щите). Для этого следует PEN проводник вводной кабельной линии подключить к шине заземления РЕ. Сечение PEN до места раздела должно иметь не менее 10 кв. мм – при медном соединении и 16кв.мм – при алюминиевом. При этом нулевую шину N, шину РЕ соединяют с помощью перемычки. Шину заземления повторно заземляют, подключают к контуру заземления здания.

Преимущества системы TN-C-S

Данная система на сегодняшний день считается наиболее перспективной, поскольку она обеспечивает высокий уровень электробезопасности может использоваться совместно с устройствами защитного отключения.

Недостатки

Несовершенство системы TN-C-S объясняется опасностью поражения электротоком при обрыве PEN проводника. При неисправности изоляции корпус электроприборов может оказаться под опасным для человеческого организма напряжением.

Поэтому сегодня при обустройстве электропроводки для нового жилья и модернизации старой в соответствии с ПУЭ необходимо использовать TN-C-S систему (а лучше TN-S), поскольку от этого напрямую зависит безопасность Вас и близким Вам людей.

Система заземления TN-C-S: схема подключения ПУЭ

В электроустановках, спроектированных до 30-х годов ХХ века, устанавливалась система заземления TN-C. Позже она применялась в основном в жилом фонде СССР. Недостаток этой конструкции в том, что нулевой проводник N и заземляющий PE объединены в одном проводе PEN. Фактически, при соединении корпуса электроприбора с этим проводником вместо заземления получается защитное зануление.

Более совершенной является заземление типа TN-S, но оно дороже, чем TN-C. При реконструкции электроснабжения зданий и монтаже этого вида защиты необходимо менять линии электропередач от трансформаторной подстанции до розетки.

Для решения этой проблемы была создана система заземления TN-C-S, являющаяся компромиссным вариантом между этими типами защиты. Её особенностью является наличие объединённого проводника PEN, который в месте, определяемом ПУЭ, разделяется на два провода — заземляющий PE и нейтральный N.

В системе TN-C-S оба этих провода подключаются к розеткам или к клеммникам к соответствующим контактам.

Провод РЕ не имеет разрывов и выключателей на всём протяжении и соединяется с корпусом электрооборудования, а N подключается к питающим выводам розеток.

В этой статье подробно рассматривается устройство этой системы, а так же достоинства и недостатки схемы заземления TN-C-S.

Что собой представляет система TN-C-S

Модернизация схем электроснабжения всех жилых зданий страны и приведение их в соответствие с требованием ПУЭ для системы TN-S, обеспечивающей максимальную защиту, потребует полной замены всех линий электропередач 0,4кВ и будет стоить очень дорого. Поэтому вместо схемы TN-S в жилых домах при подключении к электросети применяется система заземления TN-C-S.

Особенность этой схемы в том, что на участке от трансформаторной подстанции до ввода в здание сохраняется существующая линия электропередач с проводником PEN, а все работы по модернизации производятся в здании:

  1. 1. В водном щите происходит разделение провода PEN на два проводника — заземление PE и нейтраль N;
  2. 2. Место разделения подключается к контуру заземления здания;
  3. 3. В подъезде ко всем квартирам подводится заземляющие провода РЕ;
  4. 4. Производится модернизация или замена внутриквартирной электропроводки с двухпроводной (L,N) на трёхпроводную (L,N,PE) или, при трёхфазном питании, с четырёхпроводной (A,B,C,N) на пятипроводную (A,B,C,N,PE).

Совет! При модернизации внутриквартирной электропроводки допускается подводить заземление только к тем розеткам, которые имеют заземляющий контакт и к оборудованию, которое подключается к сети через автоматический выключатель — электроплита или бойлер.

Схема подключения по системе TN-C-S

В связи с тем, что система TN-C не обеспечивает необходимый уровень безопасности в жилых зданиях, особенно в частных домах, к которым подключёно однофазное напряжение 220В, её необходимо модернизировать и превратить в систему заземления TN-C-S. Эта работа может быть выполнена с минимальными затратами, поэтому такая схема получила широкое распространение, несмотря на имеющиеся недостатки конструкции.

Само название TN-C-S указывает на то, что заземляющий и нейтральный проводники соединены только в начале линии, а на некотором расстоянии от трансформаторной подстанции разделяются на два отдельных провода. Питающие трансформаторы в таких схемах используются с глухозаземлённой, неотключаемой, нейтралью.

Согласно ПУЭ п.1.7.132 использовать объединённый проводник PEN в однофазных сетях запрещается (не относится к ответвлениям от воздушных линий). Поэтому при реконструкции схемы электроснабжения в домах, к которым подводится 220В, разделение этого провода на PE и N производится в месте подключения здания к трёхфазной линии. В многоквартирных домах это делается во вводном щите в здание, а НЕ НА ПЛОЩАДКЕ в щитке возле электросчётчика.

При подключении здания не к подземному кабелю, а к воздушной линии электропередач, то, согласно ПУЭ п.1.7.102, место разделения проводов подлежит обязательному заземлению.

Как указано в ПУЭ п. 1.7.135, соединять после разделения PE и N ЗАПРЕЩАЕТСЯ! Это автоматически превращает схему TN-C-S в TN-C.

Описание системы TN-C-S со всеми техническими требованиями к ней указано в ПУЭ п.1.7.3, 1.7.13, и рис.1.7.3

Зачем нужно разделение PEN проводника

Основной причиной для разделения провода PEN являются требования ПУЭ п.7.1.13, в котором указано, что все электроустановки, кроме низковольтных (12 В, 36 В и т.п.), должны иметь заземление TN-S с отдельными проводами PE и N либо более дешёвого типа TN-C-S с разделением PEN-провода. При несоблюдении этих условий возможно отключение здания от электроснабжения контролирующими организациями.

Кроме того, этого требуют здравый смысл и законы электротехники:

  • При использовании системы TN-C корпус электроприбора фактически не заземляется, а зануляется. Поэтому обрыв провода PEN приводит к тому, что на нейтральном контакте розетки, заземляющем выводе и корпусе электрооборудования оказывается напряжение сети 220В.
  • Самое частое место этого обрыва — внутридомовые сети. Обычно они выполняются более тонким проводом, чем кабель, подходящий к зданию.
  • На вводном квартирном щитке устанавливается два предохранителя или автоматический выключатель, разрывающий цепь PEN. Даже если используется спаренный автомат, нельзя исключить возможность «залипания» фазного контакта. Это отключение приводит к эффекту, аналогичному обрыву провода PEN.

Поэтому разделение PEN проводника обеспечивает бОльшую безопасность людей, живущих в доме.

Разделение PEN проводника

Правила, по которым производится разделение, описаны в ПУЭ п.п.1.7 и 7.1:

  • самым удобным местом для разделения является вводной электрощит, до вводного автоматического выключателя, рубильника или общедомового электросчётчика;
  • схема должна быть смонтирована так, чтобы исключить отключение, в том числе аварийное, цепей PEN и PE;
  • автоматические выключатели и рубильники, согласно ПУЭ п. 1.7.145, допускается устанавливать только в цепи нейтрали N;
  • проводник PEN подключается к шине РЕ, или главной заземляющей шине ГЗШ, которая должна соединяться с нейтральной планкой;
  • проводники РЕ и N после разделения не соединяются;
  • нельзя использовать общую шину для нейтрали и заземления.

Исходя из этих правил, во вводном щите монтируются две шинки — нейтральная N и заземляющая ГЗШ. Вводной проводник PEN и заземляющий провод внутренней проводки РЕ подключаются к заземляющей шине. К ней же присоединяется контур заземления здания. Эта планка соединяется с нейтральной шиной N перемычкой.

Важно! Сечение проводника PEN вводного кабеля быть не менее 10мм² при использовании медного провода и 16мм², если кабель алюминиевый.

Расшифровка TN-C-S системы

Как и у многих других схем и электротехнических элементов у системы заземления TN-C-S расшифровка названия показывает на её основные особенности:

  1. 1. Т (лат. terra) — нейтраль питающего трансформатора соединена с контуром заземления подстанции;
  2. 2. N — нейтраль источника питания соединена с воздушной или кабельной линией электропередач;
  3. 3. С (англ. combined) — в одном проводе PEN совмещаются проводники PE и N;
  4. 4. S (англ. separated) — наличие разделённых нулевого N и заземляющего PE проводов.

Присутствие в названии букв С и S указывает на то, что в линии есть как общие, так и разделённые участки.

Достоинства и недостатки

Система заземления TN-C-S имеет преимущество перед другими типами защитных заземлений. Она имеет простую конструкцию, которую легко смонтировать в любом здании. Эта работа имеет намного меньшую стоимость, чем монтаж схемы TN-S. Она обеспечивает достаточно высокую степень защиты от поражения электрическим током, особенно при дополнительном использовании УЗО.

Недостатком этой системы является попадание высокого напряжения на корпус оборудования при повреждении провода PEN на участке между зданием и трансформатором. Для предотвращения таких ситуаций ПУЭ требует устанавливать прокладывать питающие кабеля в лотках, трубах или использовать бронированный кабель. В воздушных линиях электропередач провод PEN периодически заземляется. Расстояние между заземлителями зависит от количества грозовых часов в год.

При соблюдении всех требований система TN-C-S является самой распространённой. Если же какие либо условия выполнить невозможно, то ПУЭ рекомендует использовать заземление типа ТТ.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Система TN-S — самая безопасная система заземления

Система TN-S — самая безопасная система заземления

В этой статье мы расскажем вам, почему система TN-S считается самой безопасной.

По сравнению с такими системами заземления как TN-C и TN-C-S, система заземления TN-S отличается особой надежностью и безопасностью. Данная система появилась и начала набирать популярность еще в 40-е годы, получив первое широкое распространение на территории Европы, где по сей день продолжает оставаться заслуженно востребованной.

В России система заземления TN-S также все чаще используется, и год за годом все сильнее конкурирует с остальными, менее надежными, системами заземления, поскольку считается на сегодняшний день наиболее безопасной и качественной из всех известных подходов к устройству заземления в потребительских электросетях, особенно в жилых домах.

Несмотря на то, что стоимость монтажа системы TN-S дороже остальных (просто в силу необходимости прокладывать более дорогостоящие многожильные кабеля), тем не менее именно ее выбирают исходя из требования обеспечить наибольшую безопасность для людей, о чем будет подробно разъяснено далее.

Суть в том, что однофазные и трехфазные электрические сети на самом деле всегда нуждаются в трехжильных и пятижильных питающих кабелях, поскольку в идеале в однофазной сети от источника к потребителю необходимо проложить три проводника (фазный, нейтральный N и защитный проводник PE), а для трехфазной сети это будет уже пять проводников (три фазных — A, B, C, нейтральный N и защитный проводник PE).

Так вот, в системе TN-S главный заземлитель расположен на трансформаторной подстанции, а отделенные друг от друга в кабеле проводники N и PE тянутся от него, от самой подстанции, — к потребителю, и дополнительного заземления на стороне потребителя монтировать уже не нужно.

Таким образом, с системой заземления TN-S оборудование у потребителя всегда будет максимально защищено, а самого человека от поражения электрическим током защитят дифавтоматы и устройства защитного отключения, для монтажа и подключения которых оказываются доступны сразу все необходимые проводники в одном кабеле. Причем регулярно контролировать состояние контура заземления у себя дома обывателю уже не придется. Кстати, высокочастотные помехи от работающих пылесосов и дрелей будут не страшны силовым линиям в такой системой заземления.

Напомним, что та же устаревшая система заземления TN-C имеет совмещенные проводники PE и N в одном проводнике — PEN, что ставит людей под угрозу поражения электрическим током. Так или иначе, в целях обеспечения безопасности систему заземления TN-C все равно приходится дорабатывать, хотя изначально к системе TN-C прибегают из соображений экономии.

В итоге система заземления TN-C принципиально уступает по качеству и надежности системе TN-S. Не даром ПУЭ (пункт 1.7.132) склоняет потребителей к необходимости категорически отказаться от использования системы заземления TN-C в пользу более безопасной и надежной TN-S (или в крайнем случае TN-C-S).

Система заземления TN-C-S немного лучше чем TN-C, поскольку в ней присутствует разделение нулевого, заземленного на подстанции, проводника PEN — на нулевой и защитный (N и PE) проводники, однако точка данного разделения обычно находится на вводно-распределительном устройстве самого здания.

Таким образом, очевидный и ключевой недостаток системы TN-C-S заключается в том, что в случае обрыва PEN проводника при нарушении изоляции может случиться пробой на корпус электрического прибора, что опять же поставит человека под угрозу поражения электрическим током. Вот почему наиболее безопасной считается система заземления TN-S, где защитный проводник надежно заземлен и идет сразу в кабеле вместе со всеми остальными проводниками.

Ранее ЭлектроВести писали, что Киевский городской совет поддержал выделение в бюджете средств в сумме 40 млн гривен на систему мониторинга качества атмосферного воздуха в столице. Система будет включать 27 стационарных постов и мобильную лабораторию.

По материалам: electrik.info.

Правильные системы заземления: TN-C, TN-S, TN-C-S, TT и IT. | Заметки Электрика!

Доброго утра друзья! Давайте начнём день с темы, которая будет базой для дальнейших, интереснейших статей. Сильно теорией мучить не буду и расскажу так как я это понимаю.

Начну с определения.

Заземление — преднамеренное, электрическое соединение токопроводящих частей с заземляющим устройством, в простонародье «землей».

Заземление нужно, в первую очередь предназначено для предотвращения поражения человека электрическим током, а так же для стабильной работы всего электрооборудования.

На сегодняшний день есть 5 систем заземления, такие как: TN-C, TN-S, TN-C-S, TT, IT.

Каждая буква имеет своё обозначение:

T — земля;
N — нейтраль;
I — изолированная;
C — объединенный рабочий и защитные нулевой проводник;
S — разделенный рабочий и защитный нулевой проводник.

Ну не буду отъезжать от темы статьи и начну разбор имеющихся систем заземления.

Система заземления №1. TN-C

Система с глухозаземленной нейтралью и объединенным рабочим и защитным нулевым проводником. Это самая распространенная система, которую можно увидеть в большинстве домов нашей страны, еще со времен советского союза. Система 4-х проводная, имеющая 3 фазы (L) и общий провод (PEN), который играет роль рабочего нуля (N) и защитного (PE). Так как система у нас с глухозаемленной нейтралью, то все токопроводящие части электроприборов должны быть соединенны с PEN проводником, иными словами нужно делать Зануление. Для этого нулевой проводник (PEN) должен разделяться на N и PE, тогда в квартиры будет заходить 3 провода: L, N и PE. Но на деле, можем видеть что в старых домах, в квартиры заходит лишь 2 провода, фаза и ноль. Возможно разделение забыли сделать, либо есть еще какие причины, но даже у меня в доме, разводка 2-х проводная. И вот в этом случае, система имеет очень большой недостаток, в плане электробезопасности. А именно, при пробое фазы на корпус, на нём появляется опасное напряжение. Чтобы этого избежать, требуется применить специальные защитные меры. Так же возможно отгорание PEN на подстанции, это так же приведет к появления потенциала на корпусе.

Система заземления №2. TN-S

Это уже модернизированная система предыдущей. Она имеет высокий уровень электробезопасности, а именно из-за отдельных рабочего и защитного нулевых проводников. Которые разделяются на самой подстанции, и к домам тянется 5-ти проводной. Но в этом же и заключается основной минус, это высокая стоимость. Ведь приходится тянуть лишний провод на приличные расстояния. К сожалению, такая система встречается редко.

Система заземления №3. TN-C-S

В дальнейшем пришли к компромиссу, и решили что до зданий будет тянуться 4-х проводная, а при входе в здание происходит разделение на 5-ти проводную. Тем самым решили проблему с финансовой стороны, но проблема с отгоранием PEN на подстанции все так же осталась, которая решается применением специальных мер защиты (об этом в отдельной статье). Именно по такой системе происходит реконструкция электроснабжения.

Система заземления №4. TT

Такую систему применяют для временного электроснабжения, а также в загородной местности, где невозможно обеспечить необходимые защитные меры для PEN проводника, как в системах выше. Тут дела обстоять проще, с подстанции тянется 4-х проводная сеть (3 фазы и 1 рабочий ноль), а для защитного проводника выполняют местное заземляющее устройство (ЗУ). В этом случае, все элементы, требующие заземления, подключаются к этому устройству.

Система заземления №5. IT

Система заземления с изолированной нейтралью. Как можно видеть, нейтраль в этой системе отсутствует. Питание передается по 3 проводам что лишает недостатков которые имеются у предыдущих систем. Обязательным условием должно быть прочное соединение корпусов оборудования с местным ЗУ. Такие системы, в основном, используется в промышленности, где необходима стабильная и бесперебойная работа.

Помните, что заземление нужно для защиты и пренебрегать им не стоит.

Статью писал ориентируясь на свой опыт и знания, если что не так то пишите в комментарии.
Интересно знать ваше мнение в столь спорной теме.
Далее планирую разобрать подключение каждой схемы по отдельности.

Кому понравился этот материал ставьте лайк и подписывайтесь на канал!
Следите за новыми новостями! Все добра!

Системы заземления для чайников: TN-S, TN-C, TN-C-S и ТТ. Чем они отличаются и какую лучше выбрать? | Электрика для всех

Системы заземления для чайников: TN-S, TN-C, TN-C-S и ТТ. Чем они отличаются и какую лучше выбрать?

Заземление, то есть специальное присоединение нулевого провода к земле, это основная защитная мера, призванная оградить нас от опасного действия тока.

Вкратце, она работает так: как только на заземлённой железке появляется опасное напряжение, оно мгновенно превращается в ток, текущий через землю обратно к источнику тока — трансформатору на подстанции. В итоге, каким бы опасным не было повреждение, мы в любом случае окажемся защищены.

Но даже такая простая система может быть выполнена по-разному. Чем отличаются системы заземления и какую лучше применять, мы расскажем в нашей важной для каждого статье. Знание сила — так давайте станем сильнее!

TN-S: британская система с «запасом прочности»

Системы заземления для чайников: TN-S, TN-C, TN-C-S и ТТ. Чем они отличаются и какую лучше выбрать?

Примем, что от трансформатора идёт только одна фаза — это упростит понимание и не нанесёт ущерба точности. Минимальное число проводов для питания приборов — два: приходящий и уходящий. Но если рассматривать не только работу устройств, но и нашу защиту, нужно будет прибавить ещё один провод, который, как канализация будет утилизировать токи утечки. То есть получается 2 + 1 = 3 провода.

В системе TN-S, принятой в Великобритании, третий провод идёт прямо от подстанции, где он, вместе с нулём заземляется. Что это даёт? Вспомните, куда присоединяется третья жила — к корпусам бытовой техники и металлическим предметам. Полностью отдельная жила гарантирует, что на этих железках никогда не появится напряжения, так как ток, порождающий напряжение, течёт через две другие жилы.

Ну а в случае неисправности весь ток утечки беспрепятственно вернётся обратно в трансформатор. Просто, надёжно и с полной «защитой от дурака». Теперь, от реалий Туманного Альбиона перейдём к российским — рассмотрим системы, где экономия порождает риски.

TN-C: советская экономия и в каких случаях она работает правильно

Системы заземления для чайников: TN-S, TN-C, TN-C-S и ТТ. Чем они отличаются и какую лучше выбрать?

В данной системе и защита и питание производятся по двум проводам. Нулевой провод, который именуется «совмещённым нулевым и защитным», обеспечивает защиту потому, что соединён с землёй. Очевидный минус такого решения — необходимость тщательно и многократно заземлять ноль — начиная с подстанции и заканчивая ближайшим к розеткам щитком и следить, чтобы это заземление было выполнено правильно и надёжно.

Если где-то ноль «отвалится» от заземления, на нём сразу же появится напряжение, равное произведению силы тока на сопротивление жилы до ближайшего соединения с землёй. Оно может достигать 100 Вольт и больше, что нередко можно встретить в старых домах, где «ноль» бьётся током почти так же сильно, как и «фаза». Последствия могут быть весьма неприятными.

В наше время эта система, как потенциально ненадёжная, полностью запрещена, а вместо неё применяется компромиссное между TN-S и TN-C решение, о котором мы расскажем дальше.

TN-C-S: российская система заземления «по умолчанию»

Системы заземления для чайников: TN-S, TN-C, TN-C-S и ТТ. Чем они отличаются и какую лучше выбрать?

Чтобы и волки были сыты, и овцы не померли раньше времени, придумали «компромисс». В линиях электропередачи напряжение подаётся с совмещённым нулём-землёй (TN-C), при этом ноль на каждом столбе и, конечно, каждой подстанции, тщательно заземляется. А при вводе в дом, до общего выключателя (автомата), ноль разделяется на рабочий и защитный и дальше вся проводка тянется трёхжильным кабелем, с отдельной заземляющей жилой.

Эта система делает интересный «финт ушами». Та часть проводки, которая находится вне доступности электриков-профессионалов — в наших домах, имеет «защиту от дурака» в виде отдельной жилы заземления. А там, где работают профессионалы — на столбах, подстанциях и линиях ЛЭП, ноль объединён с землёй, что даёт серьёзную экономию с минимальным риском.

Главное, что нужно понять об этой системе — в вашем доме и квартире должна быть трёхжильная проводка, с качественно заземлённой третьей жилой — не на корпус щитка, не на ведро под окном, а на главную заземляющую шину (ГЗШ) — прямо там, где вводной кабель переходит в проводку здания.

Система ТТ: там, где «нулю веры нет»

Системы заземления для чайников: TN-S, TN-C, TN-C-S и ТТ. Чем они отличаются и какую лучше выбрать?

В местах, где ноль не способен выполнять защитные функции — в старых деревенских линиях, в местах, сильно удалённых от подстанции, особенно если подстанция маломощная, приходится полностью отказываться от использования нуля для защиты. Система ТТ использует отдельное и никак не соединенное с нулем заземление. При этом третья жила в проводке, через шину в щитке, соединяется с контуром заземления и больше ни с чем.

От того, что сопротивление местного заземления достаточно большое, ток утечки может порождать высокое напряжение прикосновения на корпусах приборов, поэтому данная система в обязательном порядке применяется совместно с УЗОглавное УЗО на ток 100 или 300 мА ставится на вводе в здание, на отдельные линии защищаются УЗО с утечкой 30 мА. Только такая двухступенчатая и довольно дорогая система позволяет полностью отказаться от соединения нуля и земли, поэтому применять систему ТТ нужно лишь в крайних случаях.

Краткое содержание: выводы

Системы заземления для чайников: TN-S, TN-C, TN-C-S и ТТ. Чем они отличаются и какую лучше выбрать?

Статья получилась достаточно объёмной, поэтому перечислим главное по пунктам:

TN-S: система с полностью отделённым от землю нулём — в России не применяется;

TN-C: система, где отдельной земли нет (зануление) — защиту выполняет рабочий ноль — в настоящее время запрещена из-за опасности появления напряжения;

TN-C-S: система, в которой линии электропередачи используют зануление, а в домах и других зданиях, ноль разделяется на рабочий и защитный что даёт и экономию и достаточную безопасность — основная система в России;

TT: система для старых и далёких от подстанций сетей — земля полностью отделяется от нуля, а безопасность обеспечивается двухступенчатой системой УЗО.

Теперь вы знаете весь «ассортимент» защитных систем в электросетях и сможете осознанно, учитывая их плюсы и минусы, спроектировать собственную проводку и своё заземление.

Спасибо за просмотр и удачного монтажа!

Особенности систем TN-C, TN-C-S, TN-S | Безопасность

Система TN (защитное заземление нейтрали)

Система TN используется для заземления оборудования с целью защиты от косвенного прикосновения к токоведущим частям при повреждении изоляции. PEN-проводник или РЕ-проводник присоединяется к заземляющему устройству питающей системы и частям, доступным прикосновению: открытым проводящим частям питаемого электрооборудования (ОПЧ) и сторонним проводящим частям (СПЧ).
В случае повреждения изоляции ток повреждения вызывает срабатывание устройства защиты от сверхтока, которое обесточивает цепь. Кроме того, низкое сопротивление цепи обратного тока на участке от доступных проводящих частей (ОПЧ и СПЧ) до заземляющего устройства источника питания ограничивает напряжение прикосновения, которое может появиться на поврежденном оборудовании. Следовательно, это позволяет снизить вероятность поражения электрическим током.
Система TN может иметь одну из следующих возможных разновидностей: Система TN-C, система TN-S или система TN-C-S. Разновидность системы выбирается в зависимости от конкретных условий.

Система TN-C

Распределительная система TN-C имеет PEN-проводник, который выполняет одновременно функции нулевого рабочего проводника и нулевого защитного проводника на всем протяжении системы (рис. 1).
Заметим, что устройство защитного отключения УЗО-Д на рис. 1. зачеркнуто. УЗО-Д не может надлежащим образом функционировать в такой цепи. Применение УЗО-Д в такой цепи не разрешается по двум причинам.
Во-первых, ток повреждения, который протекает от доступных проводящих частей поврежденного электрооборудования через человека и возвращается в PEN-проводник, не воздействует на защитно-отключающее устройство как дифференциальный (разностный) ток. Ток повреждения не будет различим. Значительная часть тока повреждения будет возвращаться к источнику питания через устройство защитного отключения.
Ток может возвращаться также через другое оборудование, корпуса которого (ОПЧ или СПЧ) имеют случайное или преднамеренное соединение с PEN-проводником. В этом случае УЗО-Д бесполезны.
Во-вторых, если корпуса электрооборудования заземлены (занулены) посредством PEN-проводника и корпуса имеют контакт с землей, часть тока нагрузки может возвращаться к источнику питания через землю при нормальных условиях. Эта часть тока будет восприниматься защитно-отключающим устройством как дифференциальный (разностный) ток и устройство будет срабатывать, если эта часть тока, проходящая через землю, будет больше то кг) уставки защитно-отключающего устройства. Величина тока уставки, как правило, не превышает 0,5 А.

Система TN-S

Если в системе TN отдельный защитный заземляющий проводник не связан с нулевым рабочим проводником, то такая система называется системой TN-S (см. рис. 3).
В системе TN-S возможно и целесообразно в качестве дополнительной защиты применить устройство защитного отключения (УЗО-Д). В этой системе цепь нагрузочного тока отделена от земли и, следовательно, устройство


Рис. 1. Система TN-C (однофазная сеть)


Рис. 2. Система TN-S (однофазная сеть)

защитного отключения будет нормально функционировать, обеспечивая защиту от замыкания на землю.
В ряде стран системы TN-C и TN-S используются для электроустановок в производственных зданиях, в высотных зданиях с их собственными понизительными трансформаторами и других подобных помещениях. Когда важно обеспечить защиту систем передачи информации и линий связи от помех, как правило, используется система TN-S (отдельный защитный проводник  —  РЕ-проводник).

Система TN-C-S

Наиболее часто в сетях общего пользования используется система TN-C-S, которая является комбинацией систем TN-C и TN-S.
PEN-проводник в системе TN-C-S используется только в распределительной системе общего пользования, а затем «расщепляется» на отдельный нулевой рабочий проводник и нулевой защитный проводник в зданиях потребителей (рис. 3.).
В США металлические кабелепроводы и распределительные щитки присоединяются к заземленному PEN-проводнику.
В ряде стран Европы PEN-проводник «расщепляется» на нулевой рабочий проводник и РЕ-проводник при площади поперечного сечения ниже 10 кв. мм (по меди). В США PEN-проводник расщепляется на отдельные нулевой рабочий и РЕ-проводники на вводе электрической сети в здание. В США отсутствует критерий расщепления PEN-проводника по площади поперечного сечения.
Во всех заземленных распределительных системах (системы TN-) заземленный PEN-проводник часто соединяется с зазем лиге лями в нескольких точках сети. Требования, относящиеся к условиям заземления этого типа систем, рассмотрены далее.
Устройства защитного отключения УЗО-Д (RCD, GFCI) не могут удовлетворительно функционировать в той части сети, где используется PEN-проводник по тем же причинам, по которым эти устройства не могут удовлетворительно функционировать в системе TN-C.
Однако, на участке, где PEN-проводник расщеплен на отдельные РЕ- и N-проводники, применение УЗО не только возможно, но и желательно также как и в системе TN-S.
В США N-проводник не разрешается присоединять к земле (заземлять) со стороны нагрузки после расщепления. Исключением из этого правила являются линии для приготовления пищи (кухни предприятий питания), предприятия типа прачечных, химчистки и электрические сети, идущие от одного здания или сооружения к другим зданиям или сооружениям, являющимся частями одного владения (например, сети, идущие от здания к гаражу или к сараю). В этом случае питающую линию второго здания или сооружения разрешается рассматривать также как основную питающую линию. Это означает, что заземленный в начале линии N-проводник повторно заземляется, превращаясь в PEN-проводник.


Рис. 3. Система TN-C-S (однофазная сеть)

При этом отпадает надобность в РЕ-проводнике в сетях между зданиями или конструкциями. В каждом конкретном случае имеется возможность выбора между системами TN-C, TN-S или TN-C-S, или, другими словами,  —  возможность решения вопроса о необходимости изоляции от земли N-проводника со стороны нагрузки после расщепления PEN-проводника. Использование PEN-проводника в питающей сети и недопущение дополнительных соединений с землей N-проводника во всех точках сети со стороны нагрузки в здании рекомендуется во всех случаях. Систему TN-S необходимо использовать там, где в сетях потребителя требуется УЗО-Д (GFCI  —  в США). В США защита с помощью GFC1 (УЗО-Д) требуется для штепсельных розеток в подвальных помещениях домов, гаражах, кухнях, ванных комнатах, наружных установках.
Практика использования заземленного нейтрального проводника питающей сети для заземления металлических корпусов кухонного оборудования (электрических плит) предприятий по приготовлению пищи и корпусов электрооборудования для сушки одежды ведет начало со времен второй мировой войны как следствие экономии меди за счет отказа от РЕ-проводника. За время эксплуатации системы TN-C на этих предприятиях было зарегистрировано сравнительно небольшое число случаев поражения электрическим током.
Можно считать, что в этих производствах, характеризуемых наличием симметричной трехфазной нагрузки, система TN-C выдержала испытание временем и потому ее применение разрешено.
На рис. 3. символом UK обозначено напряжение PEN-проводника, обусловленное падением напряжения в PEN-проводнике распределительной системы при протекании тока короткого замыкания. Во всех случаях система TN обеспечивает определенную степень защиты от поражения электрическим током, вызванным пробоем изоляции фазных проводников на заземленные доступные проводящие части, посредством ограничения напряжения UK во время короткого замыкания и за счет ограничения длительности короткого замыкания посредством его отключения устройством защиты от сверхтоков. Амперсекундныс характеристики устройства защиты от сверхтоков выбираются с учетом опасности перегрева проводников сети, вызываемого сверхтоками, а также с учетом пусковых токов двигателей. Амперсекундные характеристики устройств защиты от сверхтоков, как правило, выбираются без учета условий электробезопасности, но, практически, заземление оборудования в сочетании с устройством защиты от сверхтока может обеспечить приемлемый уровень защиты от поражения электрическим током во многих случаях.

Напряжения в системе TN при повреждении изоляции

Ампер-секундные характеристики устройств защиты от сверхтоков выбираются для защиты от перегрева проводников. Значение тока, обычно, порядка 10 А и более. Малое сопротивление цепи обратного тока (ЦОТ), обусловленное использованием РЕ- и PEN-проводников, ограничивает значение напряжения PEN-проводника и способствует быстрому срабатыванию устройства защиты от сверхтока, делая в большинстве случаев серьезное поражение электрическим током маловероятным. В отдельных случаях, когда человек может быть особенно чувствителен к воздействию электрического тока, что может быть обусловлено, например, малым сопротивлением тела (большая или влажная площадь контакта), задача решается применением дополнительной защиты в форме защитно-отключающих устройств. Высокая чувствительность и быстродействие этих устройств снижают вероятность поражения электрическим током до очень низких значений.
В сельских районах высокое значение сопротивления петли «фаза —  нуль» в конце протяженных распределительных сетей обусловлено значительным расстоянием между питающим трансформатором и потребителями. В этом случае высокое значение сопротивления петли «фаза  —  нуль» приводит к низкому значению тока короткого замыкания и к увеличенному времени срабатывания устройства защиты от сверхтока у потребителей. Основная часть сопротивления цепи «фаза  —  нуль» приходится на «сетевую сторону» распределительной системы. Падение напряжения в PEN-проводнике распределительной системы при повреждении изоляции фазного проводника проявляется в виде потенциала на доступных проводящих частях электрооборудования и всех других проводящих частях установок, связанных с PEN-проводником.
Заметим, что при замыкании «фаза  —  фаза» или «фаза  —  PEN» в распределительной сети при системе TN-C-S (рис. 3) до момента отключения тока короткого замыкания устройством защиты от сверхтока т.кз. преодолевает сопротивление PEN-проводника и фазного L-проводника. Сопротивление PEN-проводников протеканию т.кз. вызывает падение напряжения между заземляющим устройством нейтрали питающего трансформатора и РЕ-проводником, который присоединен к ОПЧ и СПЧ. Это падение напряжения вызывает напряжение прикосновения между ОПЧ, СПЧ и землей. В США нагрузочный конец PEN-проводника требуется соединять с землей, но сопротивление заземляющего устройства обычно составляет несколько Ом и иногда может быть и выше в зависимости от сопротивления земли.
Сельская сеть системы TN-C-S, выполненная в виде BJT, характеризуется сравнительно высоким сопротивлением петли «фаза — нуль», обусловленным относительно большой протяженностью линий. В этой системе повторное заземление PEN-проводника вызывает значительное снижение его потенциала при коротком замыкании фазного проводника (L-проводника) на PEN-проводник. Это показано на упрощенной схеме (рис. 3).
PEN-проводники в системе TN заземлены во многих точках системы. В результате этого сопротивление между PEN-проводником и землей обычно невелико. Кроме того, из-за того, что сопротивление PEN-проводника по сравнению с шунтирующими его сопротивлениями заземлителей относительно мало, часть тока к.з., протекающая по PEN-проводнику значительно превосходит часть тока к.з., протекающего через землю.


Рис. 4. Распределение потенциала в PEN-проводнике при ОКЗ

Следовательно, градиент потенциала земли вдоль трассы линии от питающего трансформатора до места к.з. сравнительно невелик и становится более пологим из-за влияния PEN-проводника.
Потенциал PEN-проводника при к.з. не превышает 100 В при напряжении системы 380/220 В. Распределение напряжения в короткозамкнутой цепи, определяющее напряжение на ОПЧ и СПЧ при о.к.з., зависит от соотношения сопротивлений отдельных ветвей ЦОТ, включающих сопротивления заземляющего устройства и сопротивлений L1 (или L2, или L3) и PEN-проводников).
Если сопротивление заземлителей на каждом конце PEN-проводника были равны между собой, напряжение ОПЧ и СПЧ, соединенных с РЕ-проводником, не более 50 В, т. е. потенциал заземлителя равен половине падения напряжения в PEN-проводнике.

Как преобразовать систему TN-C в систему TN-C-S

В большинстве старых домов и квартир используется двухпроводная электрическая сеть (система TN-C). В такой системе нулевой рабочий и нулевой защитный проводники объединены в один по всей сети. Система TN-C не соответствует современным нормам и требованиям по электробезопасности. Эксплуатация электрических сетей, построенных по системе TN-C, связана с повышенным риском как для человека, так и для строения. Понятно, что полностью заменить все компоненты сети не всегда возможно. Как же обеспечить безопасную эксплуатацию электрических сетей с наименьшими потерями? Самым простым и практичным вариантом является преобразование системы TN-C в систему TN-C-S.

Система TN-C-S позволяет безопасно эксплуатировать современные приборы с трехконтактными вилками (евровилками), а также использовать современные средства защиты, такие как УЗО.

Общие понятия

Для более чёткого понимания и восприятия материала рассмотрим два типа электрических сетей. Внешняя питающая электросеть — линии электропередач (ЛЭП), по которым электроэнергия поступает к нам в дом.

На фото ниже показан фрагмент городской воздушной линии электропередачи, питающей жилые дома по моей улице. В типовом случае используют четыре изолятора (ролика) закреплённых на опоре. Три верхних изолятора используют для фазных проводников (обозначены L1, L2, L3) и нижний изолятор используют для нулевого рабочего проводника (обозначен буквой N). При однофазном питании в жилой дом электроэнергия поступает по двум проводам (на фото показана отходящая линия (L1 — N), при трёхфазном электроснабжении в жилой дом электроэнергия поступает по 4 проводам, т. е. используются все четыре провода.

Таким образом, городская воздушная линия (ВЛ) представляет собой четырёхпроводную систему (обозначаемую комбинацией букв TN-C), в которой проводник N (в современной терминологии PEN) совмещает в себе функции рабочего и защитного проводника. Данная система (TN-C), несмотря на её существенные недостатки, для внешних питающих сетей разрешена к применению. Но вот использовать её внутри жилых помещений согласно действующим нормативным документам нельзя.

Внутренняя (внутридомовая) электрическая сеть — лектрическая сеть, проложенная внутри дома, посредством которой обеспечиваются электроэнергией потребители в жилом доме и в хозяйственных постройках, а также освещение помещений дома и хозяйственных построек.

Как отмечалось выше, использовать систему TN-C внутри жилых строений запрещено. К использованию разрешена лишь система TN-C-S. Причин достаточно:

  • Невозможность системы TN-C обеспечить требуемую электробезопасность для жильцов дома и безопасность самого строения.
  • Невозможность использования (по крайней мере, полноценного) современных устройств защитного отключения.
  • Невозможность правильного и безопасного подключения современных бытовых приборов (телевизор, стиральная машина, холодильник и т. д.).

Для наглядности рассмотрим подключение к внутридомовой электросети современной бытовой техники, имеющей трёхконтактную вилку (в обиходе называют евровилкой). При однофазном питании жилого дома в дом приходит два провода (фазный и нулевой), как показано на фото выше. Для правильного и безопасного подключения бытовой техники, оборудованной евровилкой, требуется три провода, фазный (L), нулевой рабочий (N) и защитный (PE). Что и показано на фото ниже слева.

Таким образом, в случае подключения бытовой техники к двухпроводной электропроводке оборудование работать будет. Такое подключение современной бытовой техники характерно для старых многоквартирных домов. Но в этом случае возникает реальная угроза поражения электрическим током. Почему? Если посмотреть на схему подключения внутри самого устройства (стиральная машина, холодильник и т. д.), то мы увидим, что третий защитный провод (PE), идущий от вилки, подключён к корпусу оборудования. На фото справа показано подключение защитного проводника внутри сварочного аппарата (обведено белым кругом). Аналогично подключаются и прочее электрооборудование (стиральная машина, холодильник и т. д.). За счет такого подключения корпус электроприбора всегда защищён от появления на нём высокого (фазного) напряжения. Так как в случае повреждения (пробоя) изоляции и появления фазного напряжения на корпусе прибора, сработает защитный автомат (либо по току короткого замыкания, либо по току утечки) и отключит неисправный прибор. Тем самым исключается возможность поражения человека электрическим током при неисправном оборудовании.

К сожалению, на практике ситуация такова:

  • Люди мирятся (либо вынуждены мириться) с возможной опасностью поражения электрическим током при использовании в доме устаревшей (двухпроводной) электрической сети.
  • Начинают пытаться «решать проблему» народными методами.

Так, например, в сети Интернет высказывается идея объединить (соединить между собой) контакты проводников N и PE в розетке. Тем самым, якобы, корпус электроприборов будет занулён, и будет обеспечена безопасность жильцов. Делать этого категорически нельзя, так как вероятность поражения электрическим током существенно возрастает. Чтобы понять почему, рекомендую посмотреть мою статью «Электромонтажные работы в доме — по британскому стандарту».

Таким образом, для правильного безопасного подключения электрооборудования в доме с возможностью использования современных защитных устройств (УЗО), требуется модернизация (реконструкция) электрической сети в жилом доме.

Преобразование системы TN-C в систему TN-C-S

Основные моменты по модернизации внутридомовой электросети представим следующим образом:

  • При однофазном питании жилого дома (квартиры) необходимо перейти от двухпроводной внешней сети (проводники L, PEN) к трёхпроводной сети внутри дома (проводники L, N, PE).
  • При трёхфазном питании и наличии в доме однофазных потребителей (что практически всегда имеет место) необходимо перейти от четырёхпроводной внешней сети (L1, L2, L3, PEN) к пятипроводной сети внутри жилого строения (L1, L2, L3, N, PE).

Для наглядности рассмотрим процесс разделения PEN проводника в виде следующей условной картинки:

Как видно из рисунка, процесс разделения проводника PEN на два раздельных проводника (PE и N), как при однофазном вводе, так и при трехфазном, по сути, одинаков. Хотя, нужно отметить, что при трёхфазном вводе в дом, подключение трёхфазных потребителей (например, циркулярной пилы или бетономешалки) будет отличаться от подключения однофазных потребителей (телевизор, холодильник и т. д.)

Возвращаясь к нашему рисунку, отметим следующее:

Для того чтобы правильно выполнить преобразование системы TN-C в систему TN-C-S, необходимо выполнить и учесть ряд требований:

1. Правильно выбрать место разделения PEN проводника в электроустановке.
2. Не допускать присоединения проводников N и PE (в точке разделения) под один болт.
3. После разделения проводника PEN на проводники PE и N в электроустановке, последние не должны иметь электрического контакта между собой.
4. Защитный проводник PE ни при каких обстоятельствах не должен иметь разрывов в цепи или установленных в этой цепи коммутационных аппаратов.

Важно также понимать и учитывать, что система TN-C-S является комбинацией систем TN-C и TN-S.

Т. е. на участке до точки разделения в электроустановке (на рисунке точка разделения обозначена шинкой) она сохраняет все недостатки, присущие системе TN-C.

Практическое выполнение работ

Выбор места разделения PEN проводника в электроустановке

Наиболее оптимальным местом разделения PEN проводника являются:

1. Во вводном шкафу на фасаде дома.
2. В учётно-распределительном шкафу внутри жилого дома.

Кроме того, при выполнении работ нужно учитывать тот факт, что в зависимости от материала, из которого сделан шкаф (токопроводящий или диэлектрический), выполнение работ будет несколько отличаться. Поэтому мы рассмотрим выполнение работ для обоих случаев (в металлическом шкафу и в пластиковом боксе).

Разделение PEN проводника в учетно-распределительном металлическом шкафу

С учётом удобства выполнения работ, экономии материалов (четырёхжильный кабель был в наличии, пятижильный кабель необходимо было покупать), я разделение PEN проводника делал в учётно-распределительном шкафу внутри дома.

Основные фрагменты выполнения работ представлены на фото ниже, как и краткие к ним пояснения.

Основание, на котором выполнен монтаж оборудования, представляет собой металлическую (стальную, токопроводящую) конструкцию, которая крепится в стальном шкафу посредством четырёх (токопроводящих) шпилек.

Пояснение к фото:

1. — место присоединения проводника PEN, который заводится в дом в составе силового медного кабеля (4×10 мм2) и крепится к стальному основанию учетно-распределительного шкафа.

2. — медный монтажный провод (сечением 10 мм2), который обеспечивает электрическое присоединение проводника PEN к шинке (4).

3. — присоединение монтажного провода 2 должно быть надёжным и тщательно выполненным. В данном случае в точке 3 оно выполнено винтом, а в точке 1 присоединяется посредством опресованного наконечника, закреплённого на шпильке стального основания шкафа под гайку.

4. — главная заземляющая шинка (4). Из особенностей отмечу следующее. К стальному основанию шинка прикреплена двумя винтами. Основание в месте присоединения шинки должно быть зачищено от заводской краски (для лучшего контакта). Количество свободных винтов (мест) у главной заземляющей шинки для подключения защитных PE проводников групповых потребителей лучше взять с запасом (на фото ниже показаны места 1-11 для подключения).

Кроме того, для надёжного присоединения стального корпуса учетно-распределительного шкафа к заземляющему контуру, я использовал отдельный дополнительный проводник (заводится в шкаф снизу и крепится к нижней шпильке основания шкафа) от основной системы уравнивания потенциала, что более детально показано на фото ниже.

Присоединение дополнительного PE проводника в нижней части шкафа выполнено аналогично вышеописанному.

Момент разделения общего PEN проводника на два раздельных самостоятельных проводника N и PE показан в фотоподборке ниже. На что важно обратить внимание?

Стальное токопроводящее основание соединено с проводником PEN. Для разделения мы использовали:

  • правую верхнюю шпильку шкафа — для защитного проводника PE (фото слева)
  • левую верхнюю шпильку шкафа — для нулевого (рабочего) проводника N (фото справа)

Таким образом, соблюдено требование о недопустимости использования в месте разделения общего болта

5. — шинка нулевого (рабочего) проводника.

Как мы знаем, после разделения проводники PE и N не должны пересекаться (иметь электрический контакт) между собой. Чтобы обеспечить выполнение данного условия, использовалась шинка нулевого проводника, выполненная на диэлектрическом основании, с креплением на динрейку.

После разделения PEN проводника, для подключения потребителей мы будем использовать:

Для подключения однофазных потребителей — три проводника:

  • Фазный проводник (L), который берём с отходящего группового автомата.
  • Нулевой (рабочий) проводник (N), который берём с нулевой шинки.
  • Защитный проводник (PE) берём с главной заземляющей шинки.

Особенности подключения трёхфазных потребителей

При трёхфазном вводе, после выполнения разделения мы получили 5-проводную систему. Но, в отличие от однофазных потребителей, мы используем не все проводники из возможных, а только четыре проводника из пяти: три фазных проводника (L1, L2, L3) и защитный проводник PE.

Ниже на фото наглядно показано, откуда и как можно запитать однофазные и трёхфазные потребители.

Разделение PEN проводника в пластиковом боксе

Ниже на фото показан пример разделения PEN проводника в пластиковом боксе. Из особенностей отмечу следующее. Шинка 1 и шинка 2 предустановленны в боксе заводом изготовителем. В принципе, их достаточно для того, чтобы выполнить разделение. Дополнительная шинка 3 использована с целью удобства выполнения работ при распределении нагрузок по групповым потребителям.

Перечень основного оборудования, установленного на динрейку (слева — направо):

  • 1 — двухполюсный автомат
  • 2 — однофазный счётчик
  • 3 — устройство защиты многофункциональное (УЗМ-50) для защиты от перенапряжений
  • 4 — групповое УЗО в количестве 2 единиц. Первое УЗО и два отходящих автомата (4, 6) используются для защиты потребителей в жилом доме. Второе УЗО и отходящий автомат (7) используются для защиты потребителей в хозяйственных постройках

Для подключения групповых потребителей, например в жилом доме, будем использовать:

  • С отходящего автомата 5 (или 6) берём фазу (L).
  • С шинки 1 получим рабочий (нулевой) проводник (N).
  • С шинки 3 возьмём защитный проводник (PE).

Важный момент: для подключения потребителей, расположенных вне дома, будем использовать следующее подключение:

  • С отходящего автомата 7 берём фазу (L).
  • С шинки 1, как и выше, получим рабочий (нулевой) проводник (N).
  • А вот защитный проводник (PE) будем брать со второго УЗО (4), крайний справа на фото.

Т. е. использовать в качестве защитного проводника подключение с шинки 3, как в предыдущем случае, для потребителей расположенных вне дома — недопустимо, так как данные потребители защищены своим УЗО и своим автоматом.

Выводы

После выполнения работ по преобразованию системы TN-C в систему TN-C-S в частном доме, домовладелец получает следующие преимущества:

  1. Можно правильно и безопасно подключить все современные электробытовые приборы в доме.
  2. При правильном применении и использовании устройств защитного отключения (УЗО), в частности:
  • Использования пожарного УЗО на вводе в дом.
  • Использование отдельных УЗО для групповых и отдельных потребителей и розеточных групп.

Мы можем получить почти идеальную с точки зрения безопасности систему электроснабжения жилого дома.

  1. Последний, очень важный момент, на который мало кто обращает внимание. Только после преобразования системы TN-C в систему TN-C-S, возможно использование системы уравнивания потенциалов в электроустановке жилого дома в целях безопасности жильцов дома и самого строения. При этом отметим следующий момент. Защитный проводник PE, который мы использовали для безопасного подключения бытовой техники, помимо своей основной функции в случае использования системы уравнивания потенциалов внутри дома, дополнительно выполняет функцию уравнивания потенциалов между естественными токопроводящими частями дома (строительными конструкциями, инженерными коммуникациями) и токопроводящими частями электроприборов (корпус стиральной машины, холодильника и т. д.).
Система заземления

TNCS: схема, преимущества, особенности

Заземление — это соединение нейтральной точки системы электроснабжения с землей. Основная цель заземления состоит в том, чтобы избежать или минимизировать опасность поражения электрическим током, пожара из-за утечки тока на землю по нежелательному пути и гарантировать, что потенциал токоведущего проводника не поднимется относительно земли, чем его проектная изоляция. Как вы знаете, существует пять типов систем заземления. В этой статье мы обсудим систему заземления TNCS.Прочтите этот новый блог в Linquip, чтобы узнать больше.

Характеристики системы заземления TNCS

Для временного источника питания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что строительная площадка должна использовать систему питания TN-S, общая распределительная коробка может быть разделенным в задней части системы. Помимо линейки PE, система TNC-S имеет следующие особенности.

  • Рабочая нулевая линия N соединена со специальной защитной линией PE.Когда несимметричный ток линии велик, на нулевую защиту электрооборудования влияет нулевой потенциал линии. Система TN-C-S может снизить напряжение корпуса двигателя на землю, но не может устранить это напряжение. Величина этого напряжения зависит от дисбаланса нагрузки проводки и длины этой линии. Чем больше несимметрична нагрузка и чем длиннее проводка, тем больше смещение напряжения корпуса устройства относительно земли. Следовательно, требуется, чтобы ток дисбаланса нагрузки не был слишком большим и чтобы линия защитного заземления заземлялась повторно.
  • Линия PE не может войти в устройство защиты от утечки ни при каких обстоятельствах, поскольку устройство защиты от утечки на конце линии вызовет срабатывание переднего устройства защиты от утечки и вызовет крупномасштабный сбой питания.
  • Кроме того, линия PE должна быть подключена к линии N в общей коробке, линия N и линия PE не должны подключаться в других отсеках. На линии защитного заземления нельзя устанавливать переключатели и предохранители, а также нельзя использовать заземление в качестве линии защитного заземления.

Посредством приведенного выше анализа система заземления TNCS временно изменена в системе TNC.Когда трехфазный силовой трансформатор находится в хорошем рабочем состоянии заземления и трехфазная нагрузка относительно сбалансирована, влияние системы TNCS на использование электроэнергии в строительстве все еще возможно. Однако в случае несбалансированной трехфазной нагрузки и специального силового трансформатора на строительной площадке необходимо использовать систему заземления TNS.

Схема системы заземления TNCS

Нейтральный провод и заземляющий провод объединены в кабель питания. Обычно это будет концентрический кабель с линией в качестве центральной жилы и кольцом проводов вокруг нее для объединения нейтрали и земли.

В отеле нейтраль и земля отделены друг от друга, клемма заземления обычно находится на стороне выреза. Внутри выреза соединены земля и нейтраль.

По всей питающей сети комбинированный заземляющий / нейтральный проводник соединен с землей в нескольких местах, либо под землей, либо на опорах для воздушных линий электропередачи. Это многократное заземление является причиной того, что источник питания TNCS часто называют PME (защитное многократное заземление).

Схема системы показана на рисунке ниже.

Различия между системой заземления TNS и TNCS

Основное различие между этими двумя методами заземления состоит в том, что у вас есть отдельная заземляющая жила обратно на подстанцию ​​в TNS, тогда как в TNCS земля и нейтраль являются одной и той же жилой (CNE). Это означает, что в случае его поломки все ваши металлоконструкции могут оказаться под напряжением сети, поэтому они должны быть привязаны с помощью электродов по всей длине, чтобы минимизировать риск (защитное многократное заземление).

TNCS также дешевле, чем метод TNS для DNO (оператора распределительной сети).

Кроме того, в случае неисправности ток, протекающий в заземляющих проводниках заказчика, может быть намного больше, чем в системе TNS.

Преимущества системы заземления TNCS

Преимущества метода заземления TNCS следующие.

  • Этот метод заземления очень рентабелен, поскольку двухжильный кабель дешевле трехжильного.
  • Поскольку внешняя оболочка при заземлении TNCS обычно пластиковая, коррозия не возникает.
  • Отсутствие перенапряжения для изоляции оборудования.
  • Метод TNCS имеет меньшее сопротивление заземления PEN-проводника.
  • Система
  • TNCS может работать с простой защитой от перегрузки по току.
  • Этот метод эффективен при проблемах с электромагнитной совместимостью (ЭМС).
  • TNCS — наиболее распространенная конфигурация, используемая в Соединенном Королевстве, поскольку она обеспечивает низковольтное питание с надежным и безопасным заземлением.
  • Эта система позволяет нескольким пользователям использовать один кабель питания.

Недостатки системы заземления TNCS

Вот некоторые недостатки метода заземления TNCS.

  • Главный недостаток — обрыв комбинированного заземляющего / нейтрального проводника. Это приводит к появлению напряжения на открытых металлических конструкциях в собственности клиента, что может привести к поражению электрическим током.
  • Также возможно возникновение необычных циркулирующих заземляющих токов между объектами, особенно если в одних домах есть металлические водопроводные трубы, а в других — пластик.
  • Схема TN-C-S может оказаться опасной, если PEN-проводник станет разомкнутой цепью в источнике питания, потому что ток не будет немедленно возвращаться на уровень подстанции. Из-за этого есть определенные объекты, использование которых запрещено, включая заправочные станции, строительные площадки, автостоянки и некоторые хозяйственные постройки.

Итак, у вас есть подробное описание системы заземления TNCS. Если у вас есть опыт работы с другими типами методов заземления, сообщите нам об этом, оставив ответ в разделе комментариев.Есть ли вопросы, с которыми мы можем вам помочь? Не стесняйтесь зарегистрироваться на Linquip, чтобы получить самый профессиональный совет от наших экспертов.

типов систем заземления, используемых в электроустановках ~ Изучение электротехники

Пользовательский поиск

В международном стандарте IEC60364, часть 4, и в ссылке 10 используется набор диаграмм для объяснения пяти основных методов заземления и обеспечения нейтрали электроустановки там, где это необходимо. Эти пять методов обозначаются сокращенно: TNC , TNS , TNCS , TT и IT .

Первая буква обозначает источник питания от обмотки, соединенной звездой. T означает, что точка звезды источника надежно соединена с землей, которая обычно находится в непосредственной близости от обмотки.
I обозначают, что точка звезды и обмотка изолированы от земли. Точка звезды обычно подключается к индуктивному сопротивлению или сопротивлению. Емкостный импеданс никогда не используется.

Вторая буква обозначает потребителя. Потребляющее оборудование необходимо заземлить
.Существует два основных метода заземления корпуса электрооборудования. Эти методы обозначаются буквами T и N . Буква N подразделяется на другие буквы, S и C , что дает NS и NC и NCS.

T означает, что потребитель надежно заземлен независимо от метода заземления источника.

N означает, что провод с низким импедансом отводится от заземляющего соединения в источнике и направляется непосредственно к потребителю для конкретной цели заземления потребляющего оборудования.

S означает, что нейтральный проводник, проложенный от источника, отделен от проводника защитного заземления, который также проложен от источника. Это означает, что для трехфазного потребителя необходимо проложить пять проводов.

C означает, что нейтральный проводник и провод защитного заземления являются одним и тем же проводником. Это означает, что для трехфазного потребителя необходимо проложить четыре проводника.

Различные типы заземления показаны на следующих схемах:

(a) Система заземления TNC

(b) TNS Система заземления

(c) Система заземления TNCS

(d) TT Система заземления

(e) Система заземления IT

Источники питания и системы заземления

Правила безопасности, качества и непрерывности электроснабжения 2002 года требуют, чтобы распределитель электроэнергии устанавливал выключатель и счетчик в безопасном месте, где они имеют механическую защиту и могут безопасно обслуживаться.

Вернуться к статьям

Расположение и доступность источника питания

В соответствии с этим требованием следует также учитывать риск затопления. (см. «Подготовка к наводнениям (ODPM, 2003)». Оборудование распределителей и монтажный потребительский блок / плата предохранителей должны быть выше уровня затопления. Цепи питания и освещения наверху и цепи освещения внизу должны быть установлены выше уровня затопления.Цепи наверху и внизу должны иметь отдельные устройства максимального тока (предохранители или автоматические выключатели).

Бытовые приборы не следует устанавливать там, где маленькие дети могут им мешать.

В соответствии с этими правилами и контрактом на электроснабжение, предложения по новым установкам или значительным изменениям существующих, например, установка солнечной фотоэлектрической системы, должны быть согласованы с дистрибьютором электроэнергии.

Требования к системе питания от сети

Правила безопасности, качества и непрерывности электроснабжения 2002 года требуют, чтобы распределитель электроэнергии (Правило 27) сообщал:

  • Количество фаз
  • Частота; и
  • Напряжение

По запросу дистрибьютор электроэнергии (Правило 28) должен предоставить следующую информацию:

  • Максимальный ожидаемый ток короткого замыкания на клеммах питания.
  • Для низковольтных соединений — максимальное сопротивление контура заземления пути замыкания на землю за пределами установки.
  • Тип и мощность защитного устройства или устройств дистрибьютора, ближайших к клеммам питания.
  • Тип системы заземления, применимый к соединению

Многократное защитное заземление (PME) (система TN-C-S)

Почти все новые поставки в жилища будут осуществляться из распределительных систем PME.В системе TN-C-S заземление для установки обеспечивается через вырез распределителя с предохранителем, где он является общим с PEN или нейтральным проводом.

За исключением центров городов, для системы TN-C-S приняты следующие условия:

  • Максимальное сопротивление контура внешнего замыкания на землю Ze составляет 0,35 Ом.
  • Максимальный ожидаемый ток короткого замыкания — 16 кА

См .: Заземление: ответы на ваши вопросы (IEE, 2005) для получения дополнительных сведений и диаграмм.

Заземление оболочки кабеля (система TN-S)

Заземление является обязанностью дистрибьютора и выполняется путем подключения заземления к оболочке входящего кабеля питания. Соединение следует закрепить пайкой или пайкой.

Можно принять максимальный уровень повреждения 16 кА и максимальное сопротивление внешнего контура заземления 0.8 Ом.

См .: Заземление: ответы на ваши вопросы (IEE, 2005) для получения дополнительных сведений и диаграмм.

Нет заземления (система TT)

Установки

TT могут быть найдены в сельской местности с воздушным питанием или там, где дистрибьютор может не захотеть предоставить заземляющий терминал, например, для плавательного бассейна, фермы или строительной площадки.

Необходимо установить заземляющий электрод с сопротивлением истинной массе электрода не более 200 Ом. Это можно проверить, выполнив испытание на сопротивление заземлению при подключенном питании.

Металлические газовые, металлические водопроводные или другие металлические трубы не должны использоваться в качестве заземляющего электрода. Отдельный заземляющий электрод должен быть установлен с любыми имеющимися газовыми, водными и другими металлическими трубами, присоединенными к новому основному заземляющему зажиму.

См .: Заземление: ответы на ваши вопросы (IEE, 2005) для получения дополнительных сведений и диаграмм.

Основное защитное соединение металлических служб

В каждой установке требуются основные проводники защитного заземления для подключения к главному заземляющему зажиму для каждой посторонней проводящей части; в том числе:

  • Водопроводные трубы
  • Трубы газопроводные
  • Трубы и воздуховоды прочие
  • Системы центрального отопления и кондиционирования
  • Открытые металлические конструкции здания
  • Системы молниезащиты.

Если установка обслуживает более одного здания, вышеуказанное требование должно применяться к каждому зданию. В некоторых особых местах и ​​в установках с повышенным риском поражения электрическим током требуется дополнительное соединение.

К началу страницы

Если вы ищете надежную и опытную компанию для выполнения любых работ по электромонтажу, тестированию или техническому обслуживанию, мы можем помочь.

В вашем распоряжении специальные знания и постоянный опыт проектирования, установки и тестирования одно- и трехфазных электрических систем, включая те, которые используют и включают резервные генераторы, аккумуляторные батареи, системы ИБП, системы постоянного тока и насосы.

Мы поставляем практические решения в области производства энергии, энергосбережения и современные электрические решения для частных, коммерческих, торговых и сельскохозяйственных клиентов.Имея инженерные бюро в Суиндоне и Торки и электриков на дороге, мы обслуживаем клиентов по всей Южной и Юго-Западной Англии, а также в Уэст-Мидлендс.

Электромонтажные и испытательные услуги

Дополнительная литература и калькуляторы, связанные с проектированием, установкой, ремонтом и обслуживанием солнечных фотоэлектрических и электрических систем:

Краткий обзор некоторых распространенных электрических предупреждающих знаков и этикеток, которые могут быть прикреплены к электрическому оборудованию.

Знакомство с различными типами доступных фотоэлектрических систем, включая сетевые, автономные, гибридные и безбатарейные солнечные фотоэлектрические системы.

Обзор основных компонентов, необходимых для установки полной солнечной фотоэлектрической системы. Введение в солнечные фотоэлектрические панели. силовые инверторы, изоляторы постоянного и переменного тока и монтажные системы.

Список бесплатных солнечных фотоэлектрических калькуляторов, инструментов и программного обеспечения для проектирования солнечных батарей, используемых для расчета солнечной отдачи и рентабельности инвестиций (ROI) для солнечных фотоэлектрических систем.

Интересные времена … Умная экспортная гарантия вступила в силу в январе 2020 года. Умная экспортная гарантия — это обязательство, установленное правительством для лицензированных поставщиков электроэнергии, чтобы предлагать тариф и оплачивать малые низкоуглеродные генераторы и микрогенераторы за любую электроэнергию, которую они экспортируют в Национальную сеть.

На что обращать внимание при оценке и выборе солнечных фотоэлектрических панелей для установки в Великобритании.Электрические характеристики солнечных фотоэлектрических батарей и коэффициенты безопасности, используемые при выборе оборудования BoS, а также варианты монтажа.

Панели солнечных батарей: калькулятор размеров и мощности солнечной фотоэлектрической системы. Используется для разработки планировок крыши, размеров фотоэлектрических массивов, количества панелей и мощности. На основе SAP 2009.

Минимально необходимое пространство между параллельными рядами, чтобы избежать затенения, определяется высотой массива непосредственно перед ним, наклоном крыши и широтой места установки.В этой таблице показаны различные расстояния между рядами, необходимые для оптимального размещения в разных местах.

Как определить размер системы? Что такое кВт ?, В чем разница между киловаттом (кВт) и киловатт-часом (кВт-ч)? Как работает солнечная фотоэлектрическая система? Могу ли я добавить в свою систему дополнительные солнечные панели? Как узнать, работают ли мои солнечные панели?

Как и в любом строительном проекте, успех и эффективность установки солнечных фотоэлектрических панелей зависит от хорошего планирования.Несколько советов для потенциальных владельцев системы при подготовке к установке новой солнечной панели.

Солнечная фотоэлектрическая установка может быть классифицирована как «разрешенная застройка» в зависимости от условий и в случае, если она расположена не в пределах заповедной зоны, AONB или объекта всемирного наследия.

Сетевые соединения для микрогенераторов, включая солнечные фотоэлектрические системы и системы хранения электроэнергии в Великобритании. Менее 16 А на фазу, сеть синхронизирована.

Жилые фотоэлектрические системы, подлежащие уведомлению согласно Части P.Особое внимание необходимо уделить Части A. Сочетание серьезных рисков для установщиков солнечных панелей.

Что необходимо учитывать перед установкой модернизированной солнечной фотоэлектрической системы на крыше и знакомство с типом оборудования, используемым для защиты солнечной фотоэлектрической системы на крыше.

Доступный в качестве дополнения к существующим солнечным фотоэлектрическим системам или установленный как пакет вместе с новой системой, интеллектуальное переключение дает полный контроль над выходной мощностью солнечной фотоэлектрической системы в руки владельца системы.

Алфавитный список многих промышленных и технических терминов, с которыми вы, вероятно, столкнетесь при установке солнечной фотоэлектрической системы. В глоссарии также определены термины, которые используются в кровельных и электромонтажных работах, а также при установке фотоэлектрических солнечных батарей и производстве солнечных батарей.

Power One в какой-то момент были вторым производителем инверторов в мире, а в Великобритании установлено много инверторов Power One Aurora.Самыми популярными моделями являются Uno PVI-3.0-TL-OUTD и Uno PVI-3.6-TL-OUTD.

Инверторы серий

Fronius IG и IG Plus имеют ЖК-дисплеи на передней панели шасси, которые при условии, что они работают, будут указывать на любые ошибки инвертора или солнечной фотоэлектрической системы, с которой он работает.

Mastervolt Sunmaster и меньшие линейки инверторов Soladin были широко установлены в Великобритании в период с 2011 по 2014 год. Популярными моделями Sunmaster являются Sunmaster XS2000, Sunmaster XS3200 и Sunmaster XS4300.

Инверторы

SMA Sunnyboy широко используются в Великобритании, одними из самых популярных являются SB1200, SB2000 и SB3000. Высокочастотные модели включают SB2000HF, SB2500HF и SB3000HF. Бестрансформаторные модели включают SB3000TL и SB3600TL.

Система SolarEdge уникальна и, на наш взгляд, не имеет себе равных с точки зрения ее способности контролировать производительность системы вплоть до уровня панели. Это достигается за счет установки небольшого модуля, называемого оптимизатором.

Проблема, которую мы часто находим с этими инверторами, — это поврежденные реле, контрольным признаком отказа реле является Error 19: Relay или Error 19: Relay Fault Предупреждение , отображаемое на дисплее инвертора.

Начало страницы

Обслуживаемых территорий:

Swindon: Abingdon, Aldbourne, Andover, Banbury, Basingstoke, Bath, Berkshire, Bicester, Blunsdon, Box, Bracknell, Bradford on Avon, Bristol, Burford, Calne, Camberley, Carterton, Cheltenham, Chippenham, Chipping Norton, Chipping Norton, , Cirencester, Corsham, Cricklade, Devizes, Didcot, Evesham, Faringdon, Fleet, Gloucester, Gloucestershire, Hampshire, Henley-on-Thames, Highclere, Highworth, Hook, Hungerford, Keynsham, Kingsclere, Lambourn, Lechlade, Lyneham, Maidenhead , Мальборо, Маршфилд, Мелкшем, Минети, Ньюбери, Оксфорд, Оксфордшир, Пьюси, Пертон, Рэмсбери, Ройал Вуттон Бассет, Солсбери, Шалбурн, Слау, Стоу, Суиндон, Тьюксбери, Тэтчем, Троубридж, Уэнборо, Уилтиджетс, Уорминстер, Уинчестер, Уорминстер , Виндзор, Уитни, Уокингем, Вустер, Рутон и Йейт.

Жилой — Коммерческий — Сельскохозяйственный — Промышленный

© 2007-2020 ООО «Ин Баланс Энерджи»

Сравнение характеристик трех систем заземления для защиты микросетей в режиме подключения к сети

Интеллектуальная сеть и возобновляемые источники энергии
Vol.2 № 3 (2011), Идентификатор статьи: 6647,10 страниц DOI: 10.4236 / sgre.2011.23024

Сравнение характеристик трех систем заземления для защиты микросетей в режиме сетевого подключения

Рашад Мохаммедин Камель, Аймен Чауачи, Кен Нагасака

Экологическая энергетика, Департамент электроники и информационной инженерии, Токийский университет сельского хозяйства и технологий, Токио, Япония.

Электронная почта: [email protected], [email protected], [email protected]

Поступила 31 декабря 2010 г .; отредактировано 22 мая 2011 г .; принята 29 мая 2011 г.

Ключевые слова: Защита микросетей, системы заземления, ток короткого замыкания, напряжение прикосновения, микроисточники и инверторы, режим подключения к сети

РЕЗЮМЕ

В этой статье представлены, тестируются и сравниваются три системы заземления (TT , TN и IT) для защиты микросетей (MG) от различных типов неисправностей в подключенном режиме.Основным вкладом в эту работу является включение моделей всех микроисточников, подключенных к MG с помощью силовых электронных инверторов. Поочередные инверторы снабжены ограничителями тока, которые также включены в модели инверторов, чтобы точно имитировать реальную ситуацию в MG во время отказов. Результаты показали, что наиболее подходящей системой заземления для защиты MG в режиме подключения является система заземления TN.Эта система приводит к соответствующему значению тока короткого замыкания, достаточному для активации реле защиты от перегрузки по току. При использовании системы TN напряжения прикосновения к неисправной шине и шинам всех других потребителей меньше безопасного значения, если ограничитель тока включен в трансформатор главной сети, соединяющей MG. Для двух других систем заземления (TT и IT) ток короткого замыкания невелик и почти равен току перегрузки, поэтому реле защиты от перегрузки по току не может различать ток короткого замыкания и ток перегрузки.Все модели микроисточников, систем заземления, инверторов, главной сети и схем управления построены с использованием среды Matlab ® / Simulink ® .

1. Введение

Заземление электросети требует, чтобы ее сетевой объект и электрооборудование потребителя были заземлены, чтобы обеспечить безопасность и снизить вероятность повреждения оборудования.Эффективное заземление предотвращает длительные перенапряжения и сводит к минимуму риск поражения электрическим током. Заземление также обеспечивает заранее определенный путь для токов утечки на землю, которые используются для отключения неисправной установки или цепи с помощью защитных устройств. Микросеть (MG) является уникальным примером распределительной системы и требует тщательной оценки, прежде чем принимать решение о системе заземления.

MG состоит из группы микроисточников, систем накопления энергии (например, маховика) и нагрузок, работающих как единая управляемая система. Уровень напряжения MG составляет 400 Вольт или меньше. Архитектура MG выполнена радиальной с несколькими фидерами. MG часто обеспечивает как электричество, так и тепло в местные районы. MG может работать как в режиме подключения к сети, так и в изолированном режиме, как подробно описано в нашем предыдущем исследовании [1-10].

Микроисточники обычно изготавливаются из множества новых технологий, например микрогазовая турбина, топливный элемент, фотоэлектрическая система и несколько видов ветряных турбин. Система накопления энергии часто представляет собой систему с маховиком. Микроисточники и маховик не подходят для подачи энергии в сеть напрямую [11]. Они должны быть связаны с сетью через каскад инвертора.Таким образом, использование силовых электронных интерфейсов в MG приводит к ряду проблем при проектировании и эксплуатации MG. Одной из основных задач является проектирование защиты MG в соответствии с соответствующими национальными кодами распределения и поддержание безопасности и стабильности MG как в режиме подключения к сети, так и в изолированном режиме.

Однако MG на базе инвертора обычно не может обеспечить требуемых уровней тока короткого замыкания.В крайних случаях вклад тока короткого замыкания от микроисточников может быть только вдвое или меньше тока нагрузки [12,13]. Некоторые устройства измерения перегрузки по току даже не будут реагировать на этот уровень перегрузки по току. Кроме того, защита от повышенного / пониженного напряжения и частоты может не обнаруживать неисправности MG из-за управления напряжением и частотой MG. Эта уникальная природа MG требует свежего взгляда на конструкцию и работу защиты.Это задача данной рукописи.

В данной рукописи представлены и применены три системы заземления для защиты MG в режиме соединения. Два основных вклада в эту рукопись: 1) Рассмотрение моделей всех микроисточников (и их инверторов), установленных в MG, и 2) Включенный ограничитель тока с каждым инвертором внутри MG для точного моделирования реальной ситуации.

Три системы заземления реализованы и протестированы на MG. Приведено сравнение производительности трех систем. Наиболее подходящая система заземления определяется путем сравнения.

Для проведения предлагаемого исследования эта рукопись организована следующим образом: Раздел 2 описывает три разработанные системы заземления.В разделе 3 представлены характеристики неисправностей в каждой системе заземления, а также преимущества и недостатки каждой системы. Сеть MG включала все микроисточники, инверторы и систему заземления, представленную в разделе 4. В разделе 5 представлены результаты, полученные с применением трех систем заземления, и последовательность событий, происходящих с каждой системой заземления. Выводы представлены в разделе 6.

2. Типы систем заземления

Распределительную систему низкого напряжения (НН) можно определить по ее системе заземления. Они обозначаются пятью буквами T (прямое соединение с землей), N (нейтраль), C (комбинированный), S (отдельный) и I (изолированный от земли). Первая буква обозначает способ заземления нейтрали трансформатора (источника питания), а вторая буква обозначает способ заземления металлоконструкций установки (каркаса).Третья и четвертая буквы обозначают функции нейтрального и защитного проводов соответственно. Возможны три конфигурации [14]:

1) TT: нейтраль трансформатора заземлена и корпус заземлен.

2) TN: нейтраль трансформатора заземлена, корпус подключен к нейтрали.

3) IT: незаземленная нейтраль трансформатора, заземленный корпус.

Система TN включает три подсистемы: TN-C, TN-S и TN-C-S, как описано в следующих подразделах.

2.1. Система заземления TT ​​

В этой системе источник питания имеет прямое соединение с землей. Все открытые токопроводящие части установки также подключены к заземляющему электроду, который электрически не зависит от заземления источника.Структура системы TT показана на рисунке 1 [15].

Рисунок 1. Конфигурация системы заземления TT.

2.2. Система заземления TN

В системе заземления TN источник питания (нейтраль трансформатора) напрямую соединен с землей, а все открытые проводящие части установки соединены с нейтральным проводом.Безопасность персонала гарантируется, а вот безопасность имущества (пожар, повреждение электрооборудования) — в меньшей степени. Три подсистемы в системе заземления TN описаны ниже с их основными характеристиками.

2.2.1. Система заземления TN-C

Как показано на Рисунке 2 (a), система TN-C имеет следующие особенности:

1) Функции нейтрали и защиты объединены в одном проводе всей системы.(PEN — защитная заземленная нейтраль).

2) Источник питания напрямую подключен к земле, а все открытые проводящие части установки подключены к PEN-проводу.

2.2.2. Система заземления TN-S

Архитектура системы TN-S показана на Рисунке 2 (b) и имеет следующие особенности:

1) Система TN-S имеет отдельные нейтральный и защитный проводники по всей системе.

2) Источник питания напрямую заземлен. Все открытые токопроводящие части установки подключаются к защитному проводу (PE) через главный зажим заземления установки.

2.2.3 Система заземления TN-CS

Конфигурация системы заземления TN-CS показана на Рисунке 2 (c) и имеет следующие особенности:

1) Функции нейтрали и защиты объединены в одном проводе в части система TN-CS.Электропитание — TN-C, а расположение в установке — TN-S.

2) Использование TN-S ниже TN-C.

3) Все открытые токопроводящие части установки подключаются к PEN-проводнику через главную клемму заземления и нейтраль, причем эти клеммы соединяются вместе.

2.3. Система заземления IT

В этой системе источник питания подключается к

(a) (b) (c)

Рисунок 2. (a): Конфигурация системы заземления TN-C; (b): конфигурация системы заземления TN-S; (c): система заземления TN-C-S.

Заземление посредством преднамеренно введенного высокого импеданса заземления (заземленная по сопротивлению система IT) или изолировано от земли, как показано на Рисунке 3. Все открытые проводящие части установки подключены к заземляющему электроду.

Каждая открытая проводящая часть должна быть заземлена, чтобы удовлетворять следующим условиям для каждой цепи [16]:

(1)

где:

R b : Сопротивление заземляющего электрода для открытых проводящих частей.

I d : Ток повреждения, учитывающий токи утечки и полное сопротивление заземления электроустановки.

3. Поведение при отказе и характеристики различных систем заземления

Нарушение изоляции в электрической установке представляет опасность для людей и оборудования.В то же время это может вызвать отключение электроэнергии. Токи и напряжения короткого замыкания различаются от одной системы заземления к другой, как описано в следующих подразделах.

3.1. Поведение при повреждении в системе заземления TN

На рисунке 4 показано поведение при повреждении в системе заземления TN и путь тока повреждения.При наличии повреждения изоляции ток повреждения I d ограничивается только импедансом кабелей контура повреждения. Короткое замыкание pro-

Рис. 4. Поведение при неисправности в системе заземления TN-S.Устройства защиты

(автоматический выключатель или предохранители) обычно обеспечивают защиту от повреждений изоляции с автоматическим отключением в соответствии с заданным максимальным временем отключения (в зависимости от напряжения между фазой и нейтралью U o ). Типичные времена отключения в системе заземления TN приведены в таблице 1 в соответствии с IEC 60364 (U L — ограниченное безопасное напряжение).

3.1.1. Преимущества системы заземления TN

1) Система заземления TN всегда обеспечивает обратный путь при повреждениях в сети низкого напряжения. Заземлители трансформатора и всех потребителей соединены между собой. Это обеспечивает распределенное заземление и снижает риск того, что у клиента нет безопасного заземления.

2) Уменьшите сопротивление заземления PEN-проводника.

3) Система TN имеет то преимущество, что в случае нарушения изоляции, напряжения повреждения (напряжения прикосновения) обычно меньше, чем в системах заземления TT. Это связано с падением напряжения в фазном проводе и меньшим сопротивлением PEN-проводника по сравнению с заземлением потребителей в системах TT.

4) Отсутствие перенапряжения для изоляции оборудования.

5) Система TN-S обладает лучшими характеристиками электромагнитной совместимости (ЭМС) для 50 Гц и высокочастотных токов, особенно когда применяется кабель низкого напряжения с заземленной оболочкой.

6) Система заземления TN может работать с простой защитой от перегрузки по току.

7) Высокая надежность отключения неисправности более чем на

Таблица 1. Время торможения в системе TN (взято из таблиц 41 и 48A IEC 60364).

текущих устройства (т.е. ток короткого замыкания достаточно велик, чтобы активировать устройства защиты от перегрузки по току).

3.1.2. Недостатки системы заземления TN

1) Неисправности в электрической сети на более высоком уровне напряжения могут переместиться в заземление сети низкого напряжения, вызывая напряжения прикосновения у потребителей низкого напряжения.

2) Неисправность в сети низкого напряжения может вызвать напряжение прикосновения у других потребителей низкого напряжения.

3) Повышение потенциала открытых проводящих частей с нейтральным проводником в случае обрыва нейтрального сетевого проводника, а также для замыканий фазы низковольтной сети на нейтраль и фазы на землю, а также при замыканиях среднего и низкого напряжения.

4) Энергокомпания несет ответственность не только за надлежащее заземление, но и за безопасность потребителей во время нарушений в электросети.

5) Установка защиты в случае модификации сети (увеличение полного сопротивления контура короткого замыкания).

6) Система TN-C менее эффективна в отношении проблем электромагнитной совместимости (ЭМС).

3.2. Поведение при отказе в системе заземления TT ​​

Рисунок 5 поясняет, что в системе заземления TT ​​возникает неисправность. Когда происходит нарушение изоляции, ток короткого замыкания I d в основном ограничивается сопротивлениями заземления (R a и R b ).По крайней мере, одно устройство защитного отключения (УЗО) должно быть установлено на стороне питания установки. Для увеличения доступности электроэнергии использование нескольких УЗО обеспечивает селективность по времени и току при отключении [16].

3.2.1. Преимущества системы заземления TT ​​

1) Наиболее распространенная система заземления.

2) Неисправности в сети низкого и среднего напряжения не переносятся на других потребителей в сети низкого напряжения.

3) Хорошее состояние безопасности, так как повышение потенциала заземленной проводящей части должно быть ограничено на уровне 50 В для неисправности внутри установки и 0 В для неисправности в сети.

4) Простое заземление установки и простота реализации.

5) Нет влияния расширения сети.

3.2.2. Недостатки системы заземления TT ​​

1) Каждому заказчику необходимо установить и обслуживать свою собственную систему заземления

Рисунок 5. Поведение при неисправности в системе заземления TT.

заземляющий электрод. Безопасность и защита зависят от заказчика, поэтому полная надежность не гарантируется.

2) Высокое перенапряжение может возникнуть между всеми токоведущими частями и между токоведущими частями и проводом защитного заземления.

3) Возможное перенапряжение для изоляции оборудования установки.

3.3. Поведение при повреждениях в системе заземления IT

3.3.1. Первое повреждение в системе заземления IT

На рисунке 6 показано возникновение первого повреждения в системе заземления IT. Напряжение короткого замыкания низкое и не опасно. Следовательно, нет необходимости отключать установку в случае единичной неисправности.Однако важно знать, что есть неисправность, и ее необходимо отслеживать и устранять в кратчайшие сроки, прежде чем произойдет вторая неисправность. Для удовлетворения этой потребности информация о неисправностях предоставляется устройством контроля изоляции (IMD), контролирующим все токоведущие проводники, включая нейтраль [16]. Когда нейтраль не распределена (трехфазное трехпроводное распределение), должно выполняться следующее условие [16]:

(2)

где:

Z S = полное сопротивление контура замыкания на землю, содержащего фазный провод. и защитный провод.

I f = ток повреждения.

U o = напряжение между фазой и нейтралью.

Когда нейтраль распределена (трехфазное четырехпроводное распределение и однофазное распределение), должно выполняться следующее условие [16]:

(6.3)

, где:

= полное сопротивление контура замыкания на землю, включающего нейтральный провод и защитный провод.

Рисунок 6. Ток первого повреждения изоляции в системе заземления IT.

3.3.2. Вторая неисправность в системе заземления IT

На рисунке 7 показано возникновение второй неисправности в системе заземления IT. Максимальные времена отключения для системы заземления IT приведены в таблице 2 (как в таблицах 41B и 48A IEC 60364) [16].

Система заземления IT, используемая, когда важны безопасность людей и имущества, а также непрерывность обслуживания.

Рисунок 7. Второй ток повреждения изоляции в системе IT (распределенная нейтраль).

Таблица 2. Максимальное время отключения в системе заземления IT (вторая неисправность).

4. Архитектура исследуемой микросети

На рисунке 8 показана однолинейная диаграмма исследуемого MG. Исследуемый MG подключен к основной сети через трехфазный трансформатор ∆ / 400 кВА, 20 / 0,4 кВ. MG состоит из 7 автобусов. Маховик (накопитель) мощностью 30 кВт / 0,5 кВтч подключен к шине 1.Система ветроэнергетики (10 кВт) подключена к шине 2. Две фотоэлектрические панели мощностью 10 кВт и 3 кВт подключены к шинам 4 и 5 соответственно. Одновальная микротурбина (SSMT) мощностью 25 кВт подключена к шине 6. Автобус 7 снабжен твердооксидным топливным элементом (SOFC) мощностью 20 кВт. Все компоненты MG (микроисточники, инверторы с разными схемами управления, нагрузки и т. Д.)) подробно смоделированы в нашем предыдущем исследовании [1-10].

Разработанная модель носит общий характер и может использоваться для исследования поведения MG при всех типах неисправностей. Короткое замыкание, представленное в этом исследовании, представляет собой однофазное замыкание на землю, которое является наиболее частым повреждением в помещениях потребителей. В имитационной модели учтены микроисточники. Предполагается, что все силовые электронные инверторы, которые используются для взаимодействия с микроисточниками, снабжены ограничителями тока для ограничения тока повреждения примерно до 150% от тока полной нагрузки инвертора.Этот ограничитель тока включен в каждую схему инвертора, чтобы защитить полупроводниковые переключатели инвертора от повреждений и точно представить реальную ситуацию. На рисунке 8 проиллюстрирован исследуемый MG. Параметры линии приведены в таблице 3 [17-21].

Полная модель Matlab ® / Simulink ® , созданная для тестирования трех систем заземления, показана в конце этой статьи (рисунок 17).

5. Производительность трех систем заземления в защите MG в режиме соединения

В этом случае MG работает в режиме соединения. Основная сетка представляет собой свободную (опорную) шину для MG. Исследуемое возмущение представляет собой короткое замыкание (однофазное замыкание на землю), возникающее на питании потребителей на шине №2. Ток повреждения, напряжения прикосновения на всех потребителях, напряжение исправных фаз и напряжение нейтрали главного трансформатора показаны ниже. цифры (рисунки 9-16), когда в MG используются три системы заземления (TN-S, TT и IT).

Из результатов, показанных на предыдущих рисунках, можно сделать следующие выводы:

1) На рисунке 9 показан ток короткого замыкания в режиме подключения к сети. При использовании системы заземления TN-S ток короткого замыкания очень высок (максимальное значение почти 1900 А). Это связано с тем, что основная сеть участвует в большей части тока короткого замыкания.В нашем случае с основной сеткой нет ограничителя тока. В реальных ситуациях ограничитель тока обычно включается последовательно с основным.

Рисунок 8. Однолинейная схема исследуемого MG.

Рисунок 9.Ток короткого замыкания с тремя системами заземления в режиме подключения к сети.

Сеть

во время периода отказа, чтобы ограничить ток короткого замыкания до определенного уровня, который можно легко сбросить с помощью устройств защиты от перегрузки по току небольшого номинала. С другой стороны, в системах заземления TT ​​и IT ток короткого замыкания немного увеличивается, чем значение в установившемся режиме.

2) На рисунке 10 показано напряжение прикосновения в месте повреждения. При использовании системы заземления TN-S значение напряжения прикосновения мало по сравнению с двумя другими системами заземления, однако оно больше, чем значение, ограниченное безопасностью (U L = 50 Вольт). Это связано с большим значением тока повреждения. В реальной ситуации это напряжение прикосновения (с системой заземления TN-S) меньше, чем значение, показанное на Рисунке 10, из-за уменьшения тока короткого замыкания путем включения ограничителя тока последовательно с основной сетью.С другой стороны,

Рисунок 10. Напряжение прикосновения на потребителе шины №2 (неисправная шина).

с использованием системы заземления TT, напряжение прикосновения в месте повреждения очень высокое. Чтобы уменьшить это значение с помощью системы заземления TT, потребители должны использовать заземляющий электрод с низким сопротивлением.Для системы заземления IT напряжение прикосновения в месте повреждения равно нулю. На всех оставшихся шинах MG напряжение прикосновения с системой заземления TN-S меньше предельного значения безопасности, как показано на Рисунках 11–14. Напряжения прикосновения на всех шинах MG, кроме неисправной шины, при использовании систем заземления TT ​​и IT почти одинаковы. до нуля.

3) На рисунке 15 показаны напряжения исправных фаз (неповрежденных фаз) в месте повреждения.Как показано, наиболее опасной системой является система IT, в которой напряжение между исправными фазами и нейтралью подскакивает до значения, равного фазному напряжению (т.е. умноженному на), и устранение последствий неисправности должно быть быстро устранено для защиты оборудования, подключенного к двум исправным фазам при все автобусы MG. В системах заземления TT ​​и TN-S напряжения на исправных фазах имеют небольшое падение.

Рисунок 11.Напряжение прикосновения на потребителе шины №4.

Рисунок 12. Напряжение прикосновения на потребителе шины №5.

Рисунок 13. Напряжение прикосновения на потребителе шины №6.

Рисунок 14. Напряжение прикосновения на потребителе шины №7.

Рисунок 15. Напряжение исправных фаз (на шине №2).

4) На рисунке 16 показано напряжение нейтральной точки основной сети.Как показано, при использовании системы заземления IT это значение перескакивает на значение фазного напряжения (в идеале равное нулю) и вызывает скачок напряжения всех исправных фаз до линейного значения на всех шинах MG. В двух других системах заземления (TN-S и TT) напряжение нейтральной точки имеет небольшое значение из-за несимметричных нагрузок в MG.

5) В заключение, система TN-S является наиболее подходящей системой заземления для защиты MG в режиме подключения к сети, однако ограничитель тока следует использовать последовательно с основной сетью для ограничения тока повреждения, снижения напряжения прикосновения на поврежденной шине и снизить номинальные характеристики устройств максимальной токовой защиты, используемых для устранения неисправностей в MG в режиме подключения к сети.

6. Выводы

В этом документе используются три системы заземления для защиты MG от различных повреждений в режиме подключения к сети. Из результатов видно, что

Рисунок 16. Напряжение в нейтральной точке главного трансформатора.

Рисунок 17. Matlab © / Simulink © Разработанная модель MG с системой стирания.

Наиболее подходящей системой является система заземления TN. Это связано с тем, что тока короткого замыкания с системой заземления TN достаточно для срабатывания реле защиты.С другой стороны, для двух других систем заземления (TT и IT) реле защиты не может различать ток короткого замыкания и ток перегрузки. Кроме того, напряжения прикосновения к неисправной шине меньше, чем напряжение прикосновения при использовании системы заземления TT. В то время как с системой заземления TT ​​напряжение прикосновения на неисправной шине очень высокое и превышает предельное значение безопасности. Чтобы решить эту проблему, все потребители должны использовать заземляющие электроды с низким сопротивлением, чтобы снизить напряжение прикосновения до предельного значения безопасности.При использовании системы заземления IT, напряжения исправных фаз почти удвоятся (220 В стало 380 В) и вызовут напряжение для всего оборудования, которое питается от исправных фаз. В режиме подключения к сети следует использовать ограничитель тока, чтобы уменьшить ток повреждения, который участвует в основной сети, и, следовательно, уменьшить напряжение прикосновения на неисправной шине.

В заключение следует отметить, что система заземления TN является самой лучшей системой для защиты MG с точки зрения тока короткого замыкания и напряжений прикосновения.Судя по результатам этой статьи, система заземления TN является наиболее рекомендуемой системой для защиты MG в режиме подключения к сети. Кроме того, следует использовать ограничитель тока основной сети для снижения напряжения прикосновения на всех потребителях MG.

ССЫЛКИ

  1. Камель Р.М. и Б. Керманшахи, «Проектирование и реализация моделей для анализа динамических характеристик распределенных генераторов в микросети. Часть I: микротурбина и твердооксидный топливный элемент», Scientia Iranica, Transactions D, Computer Наука и техника и электротехника, Vol.17, No. 1, июнь 2010 г., стр. 47-58.
  2. Р. М. Камель, А. Чауачи и К. Нагасака, «Повышение динамического отклика MicroGrid с использованием нового пропорционального интегрального контроллера шага ветровой турбины и нейро-нечеткого фотоэлектрического контроллера слежения за точкой максимальной мощности», Электрические компоненты и системы, Vol. 38, No. 2, Januaruy 2010, pp. 212-239.
  3. р.М. Камель, А. Чауаши и К. Нагасака, «Сглаживание энергии ветра с использованием контроллера шага с нечеткой логикой и системы конденсаторов энергии для улучшения характеристик микросетей в автономном режиме», Energy, Vol. 35, № 4, март 2010 г., стр. 2119-2129. doi: org / 10.1016 / j.energy.2010.01.030
  4. RM Kamel, A. Chaouachi и K. Nagasaka, «Повышение динамического отклика в переходных процессах микросети во время snd после огромных и множественных нарушений путем подключения к ближайшим микросетям», Международный журнал устойчивой энергетики, Vol.30, № 4, август 2010 г., стр. 223–245. doi: org / 10.1080 / 1478646X.2010.509499
  5. Камель Р.М., А. Чауачи и К. Нагасака, «Влияние сбоя микроисточников на динамические характеристики микросети во время и после процесса обособления», ISESCO Science and Technology Vision, Vol. 6, No. 9, май 2010 г., стр. 2-10.
  6. Камель Р.М., Камель А.Чауачи и К. Нагасака, «Улучшение переходного динамического отклика микросети, последующее отключение и отказ микроисточников за счет двух соединенных соседних микросетей», ISESCO Science and Technology Vision, Vol. 5, № 8, ноябрь 2009 г., стр. 46-55.
  7. Р. М. Камель, А. Чауачи и К. Нагасака, «Новый контроллер шага и конденсаторная система с ПИ для уменьшения колебаний мощности ветра и поддержания стабильности микросетей после последующего обострения», Международный журнал энергетических и энергетических систем, том.30, No. 2, апрель 2010 г., стр. 131-138.
  8. Р. М. Камель и Б. Керманшахи, «Оптимальный размер и расположение распределенных генераторов для минимизации потерь мощности в первичной распределительной сети», Scientia Iranica, Transactions D, Компьютерные науки и инженерия и Электротехника, Vol. 16, № 6, декабрь 2009 г., стр. 137–144.
  9. р.М. Камель, А. Чауачи и К. Нагасака, «Снижение выбросов углерода и снижение потерь мощности помимо улучшения профилей напряжения с использованием микросетей», Low Carbon Economy, Vol. 1, No. 1, октябрь 2010 г., стр. 1-7. doi: org / 10.4236 / lce.2010.11001
  10. Р. М. Камель, А. Чауачи и К. Нагасака, «Влияние рейтинга ветроэнергетической системы на переходные динамические характеристики микросети в автономном режиме», Низкоуглеродная экономика, Том.1, № 1, октябрь 2010 г., стр. 28–37. doi: org / 10.4236 / lce.2010.11005
  11. С. Барсали и др., «Методы управления рассредоточенными генераторами для улучшения непрерывности электроснабжения», Зимнее собрание энергетического общества, Нью-Йорк, 27–31 января 2002 г., том . 2. С. 27-37.
  12. С. Р. Уолл, «Производительность распределенной генерации с инверторным интерфейсом», 2001 Конференция и выставка по передаче и распределению IEEE / PES, Атланта, 28 октября — 2 ноября 2001 г., Vol.2. С. 945-950.
  13. Н. Джаяварна и др., «Задача TE2 — Вклад тока короткого замыкания от преобразователей», Проект отчета микросетей для задачи TE2, Европейская комиссия, 2004 г.
  14. К. Преве, «Защита электрических сетей», ISTE Ltd, Лондон, 2006.
  15. Б. Лакруа и Р. Кальвас, «Системы заземления в низковольтном оборудовании», Методика Кайера компании Schneider Electric, No.172, март 2002 г.
  16. Н. Джаяварна, М. Лоренцу и С. Папатанассиу, «Обзор заземления в микросети», проект «Крупномасштабная интеграция микрогенерации в низковольтные сети» MICROGRIDS, РАБОЧИЙ ПАКЕТ E, № 1 , 23 апреля 2004 г.
  17. С. Папатанассиу, Н. Хатциаргириу и К. Струнц, «Эталонная сеть микросетей низкого напряжения», Материалы симпозиума СИГРЭ: Энергетические системы с рассредоточенной генерацией, Афины, 13–16 апреля 2005 г.
  18. W. Xueguang, N. Jayawarna, Y. Zhang, N. Jenkins, JP Lopes, C. Moreira, A. Madureira и J. Pereira da Silva, «Рекомендации по защите микросетей», конечный результат DE2 для микросетей ЕС проект, июнь 2005 г.
  19. WGE4 — Рабочая группа по безопасности подстанций, «Руководство IEEE по безопасности при заземлении подстанций переменного тока», Стандарт IEEE 80-2000 (пересмотр стандарта IEEE 80-1986), 2000 г.
  20. «Анализ подстанций в городских районах», Safe Engineering Services & Technologies Ltd., Монреаль, версия 8, январь 2000 г.
  21. К. Марней, Ф.Дж. Робджо и А.С. Сиддики, «Форма MicroGrid», Зимнее собрание IEEE PES, нов. Йорк, январь 2001 г.

Транспортные сетевые компании — Правила ведения бизнеса

Транспортные сетевые компании должны иметь страховое покрытие в соответствии с RCW 48.177.010 для всех транспортных средств, связанных с TNC, в любое время, когда они активны в приложении TNC.

В период до того, как пассажир запросит поездку, страховое покрытие должно включать:

  • Пределы телесных повреждений не менее 50 000 долларов на человека и 100 000 долларов на несчастный случай.
  • Не менее 30 000 долларов за материальный ущерб.

В период с момента, когда пассажир запрашивает поездку, до момента выхода пассажира из транспортного средства, страховое покрытие должно включать:

  • Комбинированное единовременное страхование ответственности в размере 1 миллиона долларов США в случае смерти, телесных повреждений и материального ущерба.
  • Страхование незастрахованных автомобилистов на сумму 1 миллион долларов США.

Дополнительно полисы должны:

  • Укажите город Сиэтл в качестве дополнительного застрахованного лица.
  • быть выданным допустимым перевозчиком с номером A.M. Лучший рейтинг не ниже B + (VII), если не выполнено исключение.
  • Предоставьте страховщику уведомление об аннулировании за 30 дней.
  • Не включает совокупные ограничения или исключения именованных драйверов.

Транспортные сетевые компании должны предоставить свидетельство о страховании директору Департамента финансов и административных услуг.

Водители должны хранить доказательства наличия коммерческой страховки в своих транспортных средствах во время их эксплуатации. Если вы водитель TNC, вы также должны иметь собственный полис автострахования, чтобы обеспечить покрытие, когда ваш автомобиль не используется для перевозки пассажиров.

Транспортные сетевые компании должны предоставить водителям TNC письменное уведомление о страховании, которое включает следующие заявления:

«[указать полное фирменное наименование и наименование TNC] подтверждает, в соответствии с SMC 6.310.260.A.2., Что, хотя водитель [укажите полное имя водителя] активен в его диспетчерской системе TNC, как определено в SMC 6.310.110, транспортное средство водителя застраховано в соответствии с требованиями RCW 48.177.010. «

«ПРИ РАБОТЕ В ЦИФРОВОЙ СЕТИ ИЛИ ПРОГРАММНОМ ОБЕСПЕЧЕНИИ ПОСТАВЩИКА УСЛУГ КОММЕРЧЕСКОГО ТРАНСПОРТА ВАША ЧАСТНАЯ ПОЛИТИКА АВТОМОБИЛЬНОГО СТРАХОВАНИЯ ПАССАЖИРА МОЖЕТ НЕ ПРЕОДОЛЕТЬ ОТВЕТСТВЕННОСТЬ.ЕСЛИ АВТОМОБИЛЬ, КОТОРЫЙ ВЫ ПЛАНИРУЕТЕ ИСПОЛЬЗОВАТЬ ДЛЯ ПРЕДОСТАВЛЕНИЯ УСЛУГ КОММЕРЧЕСКИХ ТРАНСПОРТНЫХ УСЛУГ ДЛЯ НАШЕЙ КОМПАНИИ, ИМЕЕТ ЗАЯВЛЕНИЕ НА ЭТО, ВЫ ДОЛЖНЫ УВЕДОМЛИТЬ, ЧТО ВЫ БУДЕТЕ ИСПОЛЬЗОВАТЬ АВТОМОБИЛЬ ДЛЯ КОММЕРЧЕСКИХ ТРАНСПОРТНЫХ УСЛУГ, НАРУШАЕМЫЕ ВАШИМ ТРАНСПОРТОМ. «

Electric — Почему в американских домах проводка TNC-S, а не TNC

Мы

делаем используем защиту RCD (устройство остаточного тока), и даже в наши дни довольно широко, она просто скрывается замаскированной

Североамериканская электрическая проводка действительно начиналась как система TN-C (все защитное заземление выполняется путем привязки объектов к нейтрали), еще в старые плохие дни, когда у нас не было трехконтактных розеток и GFCI (прерыватели цепи замыкания на землю), и доказательства этого можно увидеть по сей день (например, отвратительно распространенный NEMA 10).Однако произошло две вещи:

  1. В отличие от Европы, которая координировала совершенно новый стандарт для электромонтажа, устанавливает «все сразу», если вы будете через процесс IEC, защитное заземление (TN-CS) и защита GFCI (RCD) были добавлены в NEC США ( правила электропроводки США, более-менее) отдельно; кроме того, правила защиты GFCI в NEC были поэтапно в , местоположение за местоположением.

  2. Наша защита GFCI началась с широкого внедрения на уровне розеток из-за желания модернизировать защиту от ударов в существующих домах, особенно во влажных помещениях (ванные комнаты и кухни).Это контрастирует со стилем УЗО IEC, который получил широкое распространение в форме выключателя из-за большего количества новых установок в Европе.

Следствием этих двух вещей является то, что чувствительный UL 943 Class A GFCI, широко применяемый в настоящее время в США, в конечном итоге выполняет совершенно иную функцию по сравнению с защитой IEC RCD — первый разработан для защиты от поражения электрическим током, в том числе «не могу отпустить» опасности вплоть до утопления при шоковом воздействии, в то время как последнее защищает в первую очередь от огня с защитой от сильных ударов в качестве побочного эффекта.

Перенесемся на некоторое время вперед, и США, в значительной степени решив проблему поражения электрическим током, все еще имеют серьезную проблему с пожаром , частично электрическую по своей природе. Эта проблема с электрическим возгоранием объясняется множеством нарушений и дефектов, которые вызывают так называемые «дуги», но, точнее говоря, это неисправность с отслеживанием поверхности, когда чрезмерный ток периодически просачивается через поврежденную изоляцию, медленно обугливаясь / пиролизируя ее до точка, где он тлеет в электрический огонь.

В результате производители электрической защиты в США разработали так называемый прерыватель цепи дугового разряда (Arc Fault Circuit Interrupter), или AFCI, который предназначен для прослушивания сигнатуры кондуктивных РЧ-сигналов этих дуговых замыканий и разрыва цепи при их обнаружении. Однако из-за сочетания конструктивных ограничений и исторической случайности ранние AFCI были построены на основе того, что в основном является платформой GFCI, и, следовательно, в них была предусмотрена функция защиты оборудования от замыкания на землю 30 мА, которая используется для улавливания дуговых разрядов. -земля, несмотря на то, что функциональность не соответствует стандартам UL.

В результате стремительного внедрения автоматических выключателей AFCI и сохранения этой функции отключения GFPE тремя из четырех североамериканских производителей выключателей (GE — единственная, кто отказался от нее) во многих случаях возник современный дом в в США будет защита УЗО на уровне 30 мА в большинстве ответвленных цепей, при этом некоторые цепи будут защищены током 6 мА. Однако эта защита обеспечивается на уровне отдельных ответвленных цепей, а не для всей службы, как это обычно делается в 5-континентальной сети.

Почему это так, спросите вы? Что ж, общая защита от замыканий на землю применяется в крупных низковольтных трехфазных сетях в Северной Америке для защиты от пожаров и хорошо работает в этих приложениях. Тем не менее, чувствительность североамериканских устройств защиты от замыканий на землю при рабочих токах в жилых домах требует, чтобы они использовали электронный датчик для обнаружения замыкания на землю, в отличие от ранних УЗО прямого действия IEC , которые использовали дифференциальный ток в измерительных трансформаторах тока для срабатывания отключения. катушка без всякого смысла электроники.Это имеет положительную сторону, поскольку североамериканские GFCI смогли достичь надежной работы при низких уровнях утечки на раннем этапе; однако у есть обратная сторона : подключение GFCI в обратном направлении (с подачей питания на стороне НАГРУЗКИ) нарушит его неочевидным образом.

Как следствие этого, вы не можете разумно использовать GFCI в качестве основного прерывателя в Северной Америке, если вы не желаете использовать тот же подход, что и большие тройники, иначе вы столкнетесь с проблемами, как только начнете делать прочие сложные и желанные вещи, например солнечная энергия.Кроме того, больший размер служб США означает, что центральное УЗО должно быть чрезмерно нечувствительным из-за того простого факта, что дифференциальные токи утечки выше.

Что такое ТНК? ТНК — правильный выбор?

Что такое TNC, что означает TNC и подходят ли TNC?

Определение TNC:

Транспортная сетевая компания, также известная как «TNC», — это организация, занимающаяся «вызовом пассажиров» или «совместным использованием поездок», которая использует мобильное приложение, позволяя людям защищать индивидуальные поездки или совместные поездки водителей, которые используют свои собственные транспортные средства.Функция GPS в смартфонах определяет место получения и информирует клиента в режиме реального времени о прибытии автомобиля, а также предоставляет фотографию водителя для идентификации.

Для тех, кто занимается транспортным бизнесом, в ТНК нет ничего нового, однако их роль в постоянно меняющемся транспортном ландшафте становится все более заметной. В 2013 году Комиссия по коммунальным предприятиям Калифорнии создала категорию транспортных сетевых компаний для оказания услуг по совместному использованию пассажиров.В 2020 году Калифорния проголосовала «НЕТ» за требование, чтобы водители TNC имели лицензии, проходили обучение и действовали как водители такси. Сегодня все больше и больше организаций TNC продолжает развиваться.

TNC и NEMT

ТНК становятся поставщиками услуг в сфере неэкстренного медицинского транспорта (NEMT). Но учитывая, что у ТНК очень мало ограничений перед тем, как разрешить своим водителям сесть за руль, остается открытым вердикт о том, хорош этот вид услуг или плох. Вот факты:

  • Водители TNC являются независимыми подрядчиками, а не сотрудниками
  • ТНК не обязаны иметь те же лицензии для работы в большинстве городов, что и компании такси или медицинского транспорта.
  • ТНК не требуют такого же уровня автострахования и страхования гражданской ответственности, что и компании такси или медицинского транспорта.
  • Все эти и другие факторы делают бизнес TNC на основе приложений простым, рентабельным и сверхэффективным.Но могут ли ТНК когда-либо сравниться по качеству с качеством традиционных поставщиков NEMT? Давайте посмотрим на плюсы и минусы:

Плюсы

  • Приложения удобны и легкодоступны
  • Повышается доступность сети провайдера и снижаются эксплуатационные расходы
  • Наблюдается заметное увеличение посещаемости мероприятий, связанных со здоровьем
  • Некоторые ТНК могут создать систему здравоохранения на своей платформе за считанные дни
  • Другие имеют возможность интеграции с платформами программного обеспечения для здравоохранения

И против

  • Услуга относительно новая, и не было достаточно времени и исследований, чтобы определить ее истинное влияние на участников и отрасль NEMT
  • Отсутствуют доступные варианты мобильности
  • Водители не проходят обучение по оказанию первой помощи, сердечно-легочной реанимации и болезням, передающимся через кровь
  • Водители не обучены работать напрямую с пожилыми людьми или людьми с ограниченными возможностями
  • Отсутствуют требования к учетным данным для сотрудников TNC, в том числе проверка отпечатков пальцев, SAM.

Добавить комментарий

Ваш адрес email не будет опубликован.