Системы заземления электроустановок: Упс. Вы не туда попали!

Содержание

Виды заземлений в электроустановках, системы TN-C, TN-S, TN-C-S, TT, IT и их описания

Заземление относится к основным техническим мероприятиям, обеспечивающим безопасность в электроустановках.

Суть заземления заключается в присоединении частей электроустановок, не находящихся под напряжением в нормальном режиме к заземляющим устройствам. Защитное заземление предотвращает поражение током людей или животных при косвенном прикосновении.

В электрических сетях трёхфазного переменного тока напряжением до 1 кВ существует несколько систем заземления, различающихся режимом работы нейтрали, рабочего и защитного нулевых проводов.

Группа систем с глухо заземлённой нейтралью трансформатора обозначаются буквами TN. Система с изолированной или заземлённой через сопротивление нейтралью обозначается буквами IT.

СИСТЕМЫ ЗАЗЕМЛЕНИЯ TN – ОПИСАНИЯ И СХЕМЫ

Система TN – C.

Нейтраль трансформатора (общая точка обмоток трансформатора 0,4 кВ, соединённых в звезду) глухо заземлена на питающей подстанции.

Питание потребителей осуществляется по 4-х проводной линии. Нулевой рабочий и нулевой защитный проводники объединены в один провод PEN.

В электроустановках на стороне потребителя дополнительные заземляющие устройства не предусматриваются.

Система TN – C была доминирующей на протяжении многих лет, поэтому электроснабжение домов старой постройки до сих пор продолжает осуществляться таким способом. Определить, что дом или квартира подключена по системе TN – C можно по следующим признакам:

  • электропитание трёхфазных потребителей осуществляется 4-х проводной линией;
  • однофазные потребители подключаются по двум проводам;
  • электрические розетки не имеют заземляющего контакта, к ним подходит два провода.

Главный недостаток TN – C — это повышенная опасность. При повреждении изоляции корпус оборудования может длительно находиться под напряжением. УЗО в такой системе бесполезно, так как ток утечки протекает по рабочим проводам и дифференциальный орган на него не реагирует.

Самый радикальный выход из этой ситуации — переход на систему TN – S требует монтаж дополнительного провода на линиях от подстанции до потребителя и реконструкцию внутренней проводки.

Более простой путь заключается в переходе на систему заземления TN – C – S, которая требует только реконструкции внутренней разводки на объекте.

В крайнем случае, владелец дома или квартиры может обезопасить себя ещё более простым способом. Для этого нужно наиболее опасное электрооборудование (стиральная машина, электроплита и т.п.) подключить через:

а корпус электроприборов занулить, соединив его с проводом PEN до автомата.

В этом случае ухудшение изоляции электроприбора и появление тока утечки вызовет срабатывание дифференциального устройства (про подключение УЗО без заземления и с системами заземления написано здесь).

Система TN – C – S.

Заземление на подстанции выполнено так же, как в схеме TN – C. Отходящие от подстанции линии имеют 4 провода — три фазных и PEN. Непосредственно перед вводом в электроустановку потребителя или на промежуточном участке линии провод PEN разделяется на рабочий (N) и защитный (PE) нулевой проводник.

Разделение совмещённого нулевого провода выполняется до коммутационных аппаратов, установленных на вводе питания объекта. Внутренняя разводка — 5 проводов для трёх фаз и 3 провода для одной фазы. Корпусы электроприборов соединены с защитным нулевым проводом через 3-х контактную розетку.

TN – C – S обеспечивает защиту от косвенного прикосновения при использовании УЗО или дифавтоматов. При появлении фазного напряжения на корпусе электроприбора возникает режим короткого замыкания и срабатывает обычный автомат питания даже при отсутствии УЗО.

Недостаток системы заключается в уязвимости провода PEN на участке линии до разделения нулевых проводников, особенно при грозовых перенапряжениях.

По этой причине ПУЭ предписывает установку повторных заземлителей у опор ВЛ через каждые 100 – 200 метров в зависимости от грозовой активности района, а также применение способов механической защиты PEN – проводника линии.

TN – C – S является компромиссным решением, обеспечивающим приемлемый уровень защищённости при невозможности построения полноценной системы TN – S, требующей крупных капиталовложений.

Система TN – S.

Этот тип заземления в наибольшей степени отвечает современным требованиям безопасности. Раздельные нулевые провода N и PE, присоединённые к заземляющему устройству на подстанции идут вдоль всей ВЛ до ввода в электроустановку потребителя, то есть, линия электропередачи содержит пять проводов.

Полный перевод всех электрических сетей до 1000 вольт на систему TN – S сдерживается высокой стоимостью и трудоёмкостью реконструкции, а также необходимостью отключения большого числа потребителей на время производства работ.

Защитный нулевой проводник PE, идущий от подстанции к потребителю подвержен повреждению в меньшей степени, так как по нему не протекает рабочий ток. Защищённость от косвенного прикосновения сохраняется и при обрыве рабочего нулевого проводника.

ВИДЫ ЗАЗЕМЛЕНИЯ ЭЛЕКТРОУСТАНОВОК ПО СХЕМАМ TT и IT

Заземление по схеме TT.

Система, применяется только в особых случаях, когда нормы безопасности не могут быть соблюдены в рамках подсистем TN.

Суть заземления типа TT заключается в следующем:

  • объединённый PEN – проводник соединён на подстанции с заземляющим устройством, электроснабжение осуществляется по 4-м проводам, то есть аналогично подсистемам TN;
  • в электроустановке потребителя сформирован защитный PE – провод, соединённый с местным заземляющим устройством;
  • исключается всякий контакт местного заземлителя с центральным заземляющим устройством на подстанции и PE – провода с PEN – проводником.

Заземление типа TT применяется в тех случаях, когда косвенное прикосновение может сопровождаться контактом с физической землёй. Например, в металлической постройке, стоящей на земле или в строении с металлическим каркасом на стальных сваях.

В таких случаях ПУЭ предписывает создание полноценного местного заземлителя с контролем сопротивления заземления.

Обязательным условием эксплуатации заземления типа TT является применение УЗО с дифференциальным током отключения не более 30 мА.

Параметры заземляющего устройства и УЗО (или дифференциального автомата) должны отвечать соотношению:

RзIузо ≤ 50 вольт.

Здесь:

  • Rз — суммарное сопротивление заземления, то есть сумма сопротивлений заземлителя и заземляющего проводника;
  • Iузо — значение тока утечки, при котором срабатывает дифференциальный орган УЗО.

По сути, данная формула ограничивает напряжение прикосновения в рамках 50 вольт.

Система IT.

Этот тип заземления отличается изолированным режимом работы нейтрали на подстанции. Иногда выполняется соединение нейтрали с заземляющим устройством через большое сопротивление. Электроснабжение потребителей может осуществляться тремя фазными проводами, либо четырьмя, включая рабочий ноль.

Защитный нулевой провод здесь отсутствует по определению. Токопроводящие части электроустановок на стороне потребителя соединяются с местным заземляющим устройством.

Такой тип электроснабжения применяется на взрывоопасных объектах, либо там, где имеется сверхвысокая пожарная опасность. Объясняется это тем, что в сетях с изолированной нейтралью ток однофазного замыкания на землю имеет наименьшее значение.

Кроме этого, такая сеть продолжает работать при возникновении короткого замыкания.

  *  *  *


© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Заземление электроустановок: правила и основные требования

Отсутствие заземления электрооборудования или неправильное его выполнение может привести к производственному травматизму, выходу из строя приборов автоматизации или неправильной их работе, погрешности показаний измерительной техники. Это происходит в результате пробоя изоляции между токоведущими частями и корпусом оборудования. В результате на корпусе появляется напряжение и протекает электрический ток, который может нанести травму человеку и привести к сбоям в работе электрических устройств.

Чтобы этого избежать, часть установки, не находящуюся в нормальном состоянии под напряжением, соединяют с заземляющим устройством. Этот процесс называется заземлением.

Заземляющее устройство

Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть:

  1. Каркасы зданий (железобетонные или металлические), которые соединены с землей.
  2. Защитная металлическая оплетка проложенных в земле кабелей (кроме алюминиевой)
  3. Трубы скважин, водопроводов, проложенных в земле (кроме трубопроводов с горючими жидкостями, газами, смесями)
  4. Опоры высоковольтных линий электропередач
  5. Неэлектрифицированные железнодорожные пути (при условии сварного соединения рельсов)

Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем.
В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей.

Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний.

Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном.

Классификация систем заземления

Различают следующие системы заземления:

  • Система ТN (которая в свою очередь разделяется на подвиды TN-C, TN-S, TN-C-S)
  • Система TT
  • Система IT

Буквы в названиях систем взяты из латиницы и расшифровываются так:
Т – (от terre) земля
N – (от neuter) нейтраль
C – (от combine) объединять
S – (от separate) разделять
I – (от isole) изолированный
По буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя.

Система ТN

Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей.
TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате.
TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника.
TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление.

Система TT

Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление.

Система IT

Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование.

Требования к заземлению электродвигателя

Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом  с контуром заземления здания, выполненного из полосы металла при помощи сварки.

Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу.
Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т. к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат).
Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:

Таблица 1

Сечение фазных проводников, мм2Наименьшее сечение защитных проводников, мм2
S≤16S
16 < S≤3516
S>35S/2

Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.

Требования к заземлению сварочных аппаратов

Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.

Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания.
Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.

виды, защитное заземление, заземляющее устройство

Защитное заземление — это система, созданная для предупреждения воздействия электрического тока на человека, путём преднамеренного соединения с землёй корпуса и нетоковедущих частей оборудования, которые могут оказаться под напряжением. Системы заземления могут быть естественными и искусственными.

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления — отведение напряжения с корпуса электроустановки через устройство заземления на землю.

Основная цель применения заземления — снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Что такое нейтраль?

Нейтраль — это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования — зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Что такое PE и PEN проводники?

PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.

PE-проводник — это защитное заземление, которое мы используем, например,  в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

Недостатки:

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

Конструкция:

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.

Преимущества:

  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

Достоинства:

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.

Минусы использования:

  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.

Преимущества TT:

  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.

Недостатки:

  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

Системы с изолированной нейтралью

В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.

Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.

Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.

Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.

Система IT

Система IT с напряжением до 1000 В обеспечивает заземление через высокий уровень сопротивления и оснащена нейтралью источника питания.

Все внешние элементы электроустановки, которые выполнены из материалов, проводящих ток, заземляются. Среди преимуществ можно выделить невысокие показатели утечки тока во время однофазного КЗ электрической сети. Установка с таким механизмом может функционировать долгое время даже при аварийных ситуациях. Между потенциалами отсутствует разность.

Недостаток: защита от тока не срабатывает при замыкании на землю. Во время работы в режиме однофазного КЗ возрастает вероятность поражения током при прикосновении ко второй фазе установки.

Системы заземления TN-C-S, TN-C, TN-S, TN-C-S, TT, IT

Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:

  • трехфазная (три фазы и рабочий нуль), где напряжение между фазами составляет 380 вольт, а между каждой фазой и нулем — 220 вольт.
  • однофазная (одна из трех фаз с общего ввода на объект, и рабочий нуль), напряжение между каждой фазой и нулем составляет 220 вольт.

А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.

Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.

В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.

Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.

Условные обозначения

Для лучшего понимания материала, разберем принятые условные обозначения:

  • L1, L2, L3 — проводник, на который подключена фаза источника питания. В однофазных системах, обозначается буквой L.
  • N — рабочий нуль источника питания (нулевой проводник).
  • PE — защитный нуль: он же заземляющий проводник, соединенный с заземлителем.
  • PEN — проводник, совмещающий в себе рабочий и защитный нули.

TN-S

Самая безопасная система, это TN-S.

Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).

На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.

Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.

Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.

TN-C

Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.

В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.

Заземление TN-C не обеспечивает полной безопасности по следующей причине:

«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).

Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками — напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.

В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.

По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину — подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!

Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.

Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!

Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.

TN-C-S

Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.

Как она устроена, и в чем отличие от TN-S?

В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.

На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.

В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.

Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.

При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.

Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.

Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.

Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.

Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.

Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.

Вывод

Единственный безопасный способ — установить недалеко от подъезда контур заземления (согласно ПУЭ), и завести на объект надежный проводник.

После чего, можно развести полноценное заземление по квартирам. Разумеется, лучше поручить эту работу квалифицированным специалистам.

Видео по теме

что такое заземление,правильное заземление, устройство заземления,нормы заземления,теория заземления,заземление оборудования,устройство защитного заземления,системы заземления

В России основным документом, регламентирующим требования к заземлению и его устройству, являются ПРАВИЛА УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК (ПУЭ). В настоящий момент актуальны ПРАВИЛА УСТРОЙСТВА ЭЛКТРОУСТАНОВОК издание седьмое. Утверждены Приказом Минэнерго России от 08.07.2002 №204.

Пункт 1.7.28 ПУЭ Издание, 7 гласит:

Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.


Заземляющее устройство (заземление) может быть как одним вертикальным электродом (например из модульного заземления) погруженным в землю на определенную глубину ( в зависимости от требуемого значения сопротивления), так и представлять из себя совокупность вертикальных и горизонтальных заземлителей: 

 

Из представленной картинки  видно, что заземляющее устройство (ЗУ) состоит из заземлителя и заземляющего проводника.

Заземлитель – проводящая часть или совокупность  соединенных между собой проводящих частей, находящихся в электрическом контакте с землёй. Или простыми словами – часть заземляющего устройства находящихся в земле – это могут быть стальные уголки, модульное заземление в виде стальных штырей с медным покрытием, трубы отопления, обсадные трубы скважин.

 

Допустимые материалы и формы заземлителей и заземляющих проводников согласно ПУЭ 7:


Заземлитель может быть простым металлическим стержнем (стальными или с медным покрытием) и/или совокупностью вбитых стальных уголков в форме определенной геометрической фигуры (треугольник, квадрат, линия и т.д.)

Заземлители делятся на искусственные и естественные.

·         Искусственные заземлители – это заземлители выполняемые специально в целях заземления людьми.

·         Естественные заземлители – это металлические объекты, находящиеся в контакте с землей, которые могут быть использованы в целях заземления: водопроводные трубы, обсадные трубы скважин и т.д. Использование естественных заземлителе также регламентируются Правилами Эксплуатации электроустановок (ПУЭ изд. 7).

Заземляющий проводник – проводник, соединяющий заземляемую часть с заземлителем. Это могут быть стальные пластины, оцинкованные стальные пластины, медные кабеля сечением в соответствии с нормативными документами.

Ниже представлены пункты ПУЭ издание 7 нормирующие величину площади сечения защитных проводников в зависимости от площади сечения фазных проводников и некоторые особенности:


Качество заземления определяется значением сопротивления растеканию электрического тока. Чем сопротивление заземляющего устройства ниже, тем качество лучше. Сопротивление ЗУ можно снизить, увеличивая глубину и/или количество электродов в заземляющем устройстве, тем самым увеличивая площадь растекания тока, а так же можно снизить сопротивление ЗУ повышением концентрации солей в грунте. Требуемое значение сопротивления в конкретном случае нормируется требованиями ПУЭ либо производителями оборудования, которое требует заземления в процессе эксплуатации.

Пункты ПУЭ издание 7 нормирующие сопротивление заземляющих устройств:


 

РАЗНОВИДНОСТИ СИСТЕМ ЗАЗЕМЛЕНИЯ

 

ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TNC, TNS, TNCS, TT, IT.

 

В данном материале мы рассмотрим TN и TT системы, как наиболее часто встречающиеся на практике в нашей стране. Система IT, в которой нейтраль источника питания изолирована от земли или заземлена  через приборы или устройства, имеющие большое сопротивление, применяется, как правило, в электроустановках зданий и сооружений специального назначения.

·         система TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухо заземлённой нейтари источника посредством нулевых защитных проводников. Т.е. все разновидности систем заземления с маркировкой TN подразумевают то, что на подстанции нейтраль соединена с заземляющим устройством, тем самым в нейтрали (отходящей от источника) соединены функции нулевого рабочего и нулевого защитного проводника (обозначается как PEN).

Далее систему TN можно разделить по признаку того как нулевой рабочий проводник (N) и нулевой защитный проводник (PE) доставляется потребителю на подсистемы – TN-C, TN-S, TN-C-S;

·         система TNC – система TN, в которой нулевой защитный (РЕ) и нулевой рабочий (N) совмещены в одном проводнике на всем её протяжении. Простым языком это означает, что потребителю в случае 3-х фазного подключения приходит 4-х жильный кабель (3 фазы и ноль) и 2-х жильный кабель в случае однофазного подключения (1 фаза и ноль). Основной  и опасный недостаток системы в том, что при обрыве нуля возможно появление линейного напряжения на корпусах электроустановок. До сих пор может встречаться в нашей стране;

 

·         система TNS (пришла на смену системе TN-C в 1930 гг.) – система TN, в которой нулевой защитный (РЕ) и нулевой рабочий (N) проводники разделены на всем ее протяжении. Простым языком это означает, что к потребителю от подстанции в случае трехфазного подключения приходит 5-ти жильный кабель (3 фазы, ноль и «земля»), в случае однофазного подключения 3-х жильный кабель ( фаза, ноль, «земля») – нулевой рабочий проводник (N) и нулевой защитный проводник (PE) разделялись на подстанции, а заземление на подстанции представляет сложную конструкцию из металлической арматуры. При такой системе обрыв рабочего ноля не приводит к появлению линейного напряжения на корпусах электроустановок;


·         система TNCS (можно назвать ее частным случаем системы TN-S) – трансформаторная подстанция имеет непосредственную связь  токопроводящих частей с землёй и наглухо заземленную нейтраль , на линии (участок от подстанции до потребителя) же в какой-то части нулевой рабочий (N) и защитный (PE) проводники объединены в проводнике PEN, а начиная с какой-то точки происходит их разделение на N (нулевой рабочий проводник) и РЕ (защитный проводник). Например: на участке  от подстанции до ввода в здание потребителя  применяется совмещенный нулевой рабочий (N) и защитный (PE) обозначаемый PEN, т.е применяется система TN-C, а при вводе в здание производится разделение PEN на рабочий нулевой проводник (N) и защитный (PE) далее по зданию до распределительного щита идут уже жила- фаза, жила — «чистый» ноль и жила -«чистая» земля, т.е. система TN-S. Вероятно из-за такой трансформации получилось TN-C-S. Есть случаи, когда разделение происходит в вводно распределительном устройстве (ВРУ) внутри здания.


В случае организации TN-C-S для частного дома необходимо производить разделение PEN на N и PE в щите учета (перед вводом в дом, как правило, эти щиты  расположены на столбах, если идет воздушная линия или стоят на земле около участка, в случае, если идет линия в земле) до счетчика и вводного автомата, при чем разделение PEN должно происходить без разрыва этого проводника с использованием прокалывающего зажима, либо использовать Н-образную шину разделения PEN на N и PE c надежными болтовыми соединениями проводников ( в этом случае будет разрыв PEN, но при таком соединении разрыв допустим)

 

 
Н-образная шина разделения проводника PEN

 
Схема разделения проводника PEN с помощью Н-образной шины
 перед вводом в дом


ПЭЭП!!!!

В соответствии с ПУЭ 7, система TN-C-S является основной и рекомендуемой системой. При организации системы TN-C-S, ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN, а также повторных заземлений PEN  воздушной линии по столбам через определенное расстояние (от 40 до 200 метров в зависимости от количества грозовых часов в году на определённой местности).

Достоинства: возможность обнаружения КЗ фазы на корпус оборудования простыми автоматами и практически пожаробезопасная .

Недостатки: при повреждении ноля на линии до разделения возникает ситуация, когда под фазным напряжением оказываются заземленные корпуса оборудования, что представляет опасность для человека и никакая автоматика не сможет разорвать цепь, так как PE после разделения идет в обход всех автоматических выключателей.  Внутри помещения это решается системой уравнивания потенциалов (СУП) – все металлические части объекта соединяются с главной шиной заземления (ГЗШ), на которую также заведен проводник от местного заземляющего устройства. В результате если произойдет обрыв ноля на линии и в доме все заземленные корпуса оборудования будут под фазным напряжение, то под таким же напряжением окажутся и все металлические части дома, следовательно разности потенциалов между ними не будет и при одновременном касании человека металлических частей дома и заземленных корпусов оборудования, приборов находящимся под напряжением(из-за аварии на линии)  поражения электрическим током не будет.
В случае когда нет возможности соблюсти условия организации системы TN-C-S обозначенные выше, ПУЭ рекомендуют систему заземления TT.

 

·         Система ТТ – система с трансформаторной подстанцией, которая имеет непосредственную связь токоведущих частей с землей. Все открытые проводящие части электроустановки потребителя имеют непосредственную связь с землей через заземлитель, независимый от заземлителя нейтрали трансформаторной подстанции. Т.е. к потребителю приходит, например, система TN-C (нулевой рабочий (N) и нулевой защитный (РЕ) совмещены), а электроустановка потребителя имеет свое независимое (не имеющее связи с PEN) заземление.


Достоинства:  разрушение нуля никак не влияет на

PE, т.е. при разрушении нуля на линии линейного напряжения не будет на заземленных корпусах оборудования;
Недостатки: основным недостатком системы ТТ является невозможность для обычного автомата отследить КЗ фазы на корпус оборудования.

ПУЭ рекомендуют систему заземления ТТ только как «дополнительную», только при условии того, что нет возможности соблюсти условия организации системы TN-C-S.
Тем не менее в сельской местности довольно часто встречаются системы заземления ТТ из-за низкого качества большинства воздушных линий. Если в частный дом с столба приходят пара неизолированных проводов  – это именно такой случай и сделать правильную, удовлетворяющую всем требованиям ПУЭ TN-C-S никак не удастся.

 

ВАЖНОЕ ТРЕБОВАНИЕ К ОРГАНИЗАЦИИ СИСТЕМЫ TT – ОБЯЗАТЕЛЬНОЕ ПРИМЕНЕНИЕ УЗО. Как правило устанавливают вводное УЗО с током утечки 300-100 мА, для отслеживания КЗ между фазой и PE (это необходимо для предотвращения пожара в щите, а в последствие в доме), а за ним для каждой конкретной цепи в доме с утечкой 30-10мА(для защиты людей от поражения электрическим током.

Современные системы заземления

Заземление является неотъемлемой частью всех энергетических систем. Представляет собой основную меру предотвращения поражения электротоком. Электрическая сеть с использованием защитного заземления обеспечивает безопасность:

  • человека при обслуживании электроустановок;
  • работы электроприборов.

Процесс сооружения контура заземления

Для обеспечения стабильной работы электросетей необходимо знать, какая система заземления должна быть внедрена в каждом конкретном случае.

Системы заземления, виды, особенности и требования к ним описаны в Правилах устройства электроустановок.

По способу действия разделяют на два типа:

  • Естественное. Стационарные металлоконструкции, заглубленные в землю постоянно (железобетонные фундаменты строений и др.). Регулировать величину сопротивления таких ЗУ невозможно, поэтому их применение в качестве единственного заземления электроустановок недопустимо.
  • Искусственное. Намеренное соединение электрооборудования с заземляющим устройством.

Устройство ЗУ


Все ЗУ состоят из: заземлителя (одной металлоконструкции либо сложной системы), контура, заземляющего проводника (ЗП), который соединяет электроустановку с контуром.

Проверка величины сопротивления контура

Заземлителем называется токопроводящая часть – множество соединенных между собой проводников, которые имеют прямой контакт с землей. Выполняется из стали либо из меди.

Нормы для отдельно взятых электроустановок регламентируется действующим ПУЭ. Качество системы заземления определяется величиной сопротивления (чем ниже значение, тем эффективнее система).

Повышают величину сопротивления растеканию тока путем увеличения площади электродов, уменьшением сопротивления грунта (забивание дополнительных электродов, увеличение глубины заложения ЗУ) и др.

Классификация искусственного заземления


  1. ЭУ до 1 кВ:
  • с изолированной нейтралью;
  • с глухозаземленной нейтралью.
  1. ЭУ выше 1 кВ:
  • с глухозаземленной (эффективно заземленной) нейтралью,
  • с изолированной (заземленной) на дугогасящий реактор нейтралью.

Применение каждой системы зависит от особенностей электросети, количества и характера электроустановок и др. Выбор типа сети для электроустановок устанавливает местная энергоснабжающая организация (в техусловиях обязательно указывается тип системы заземления).

Системы заземления в сетях до 1 кВ

  • TN-сеть с глухозаземленной нейтралью – заземляющий контур соединен непосредственно с нулем на ПС. ЭУ соединены с нейтралью на трансформаторе нулем.

TN-система с глухозаземленной нейтралью

Условие работоспособности данного вида заземления – величина тока между токопроводящей частью и фазой при КЗ должна быть больше, чем номинальный ток срабатывания коммутационного аппарата за допустимое время.

Системы TN разработаны для защиты оборудования при случайном прикосновении к поверхности неисправной изоляции.

Преимущества:

  • При повреждении целостности изоляционных покрытий (при возникновении больших токов) срабатывает защита.
  • При повреждении оборудования образуются низкие величины напряжения на токопроводящих частях, что уменьшает вероятность поражения электротоком.

Различают подвиды TN-системы:

  • TN-С. Подвид системы с глухозаземленной нейтралью, в которой защитный и рабочий ноль совмещен в PEN-проводнике по всей длине линии электропередачи (защитное зануление).
  • TN-S. В таком исполнении защитный и рабочий ноль электросети разделен по всей ее длине. Является наиболее безопасной, но и дорогостоящей системой. Редко применяется для электроустановок, удаленных от источника питания сети (в виду большого удорожания строительства).
  • TN-С-S – подвид системы с глухозаземленной нейтралью. Является гибридом TN-С и TN-S систем, т.е. совмещение PE- и N-проводников происходит лишь на части ЛЭП. Обычно совмещение происходит до вводно-учетного устройства электроустановок. Является самым популярным видом, т.к. обеспечивает высокую надежность работы энергосистемы по разумной цене.

Применение УЗО в системе TN-С-S

Разновидность выбирают в зависимости от конкретных условий.

Какую систему выбрать?

В бытовых сетях целесообразно применение системы с глухозаземленной нейтралью (TN).

Применение TN-С-заземления запрещено, поэтому при модернизации старых электропроводок выбирают TN-С-S и TN-S исполнения. Т.к. сооружение TN-S требует значительных капиталовложений, TN-С-S остается самой применяемой из сопоставления цены и качества.

IT-система (изолированная нейтраль). Ноль имеет заземление через приборы с большим сопротивлением. В настоящее время применяется редко.

TT-система (заземленная нейтраль). Является лучшим решением для заземления мобильных электроустановок (бытовки, строительные вагончики и др.). В схеме обязательно наличие УЗО и контура заземления с сопротивлением 4 Ом для сетей 0,4 кВ.

Система ТТ – лучший вариант для заземления мобильных электроустановок

Рабочий ноль в данной системе имеет заземление, а токопроводящие части заземлены независимым контуром заземления (не связанным с нулем).

При модернизации старых систем заземления существует вероятность некоторых трудностей. Потенциал может находиться на поверхности электроприборов при отгорании нулевого проводника и образовавшегося перекоса фаз. При ошибочном подключении фазного провода вместо нулевого, также может находиться потенциал на поверхности приборов.

В частном доме заменить TN-С проводку на TN-С-S не составит труда. Необходимо соорудить эффективный контур заземления и правильно подключить его к проводке (к ШВУ). В многоквартирных домах переделывать схему таким образом запрещено.

Модернизация сети в частном доме

Если в бытовой электросети не предусмотрен контур заземления, то соединение защитного и рабочего нуля запрещено. В схемы для предотвращения  поражения электротоком человека следует включать электроустройства защитного отключения или дифференциальные автоматы.

При модернизации сети следует сооружать TN-С-S-систему, а домашнюю проводку прокладывать медным трехжильным кабелем типа ВВГнг (не распространяющим горение).

Для защиты электросети необходимо применять устройства защитного отключения нескольких уровней: общедомового на 100 или 300 мА для предотвращения пожаров, групповые и отдельные УЗО на 30 мА, и УЗО на 10 мА для защиты от поражения электротоком в детских комнатах и помещениях с повышенной влажностью.

Устройство защитного отключения

Принцип работы системы заземления


Работает за счет:

  • стабилизации напряжения до условно безопасной величины;
  • установки устройства защитного отключения;
  • для электросетей с глухозаземленной нейтралью срабатывание защиты при попадании фазы на заземленный элемент.

Наиболее работоспособным является применение системы заземления в совокупности с устройством защитного отключения. При такой схеме аварийный участок электросети отключается за кратчайшее время. Также в цепи не наблюдается возникновение опасных потенциалов.

Системы заземления при неисправности сети


Наиболее часто встречающаяся неисправность – возникновение фазного напряжения на корпусе электрооборудования из-за нарушения целостности защитных кожухов. При наличии импульсных источников вторичного электропитания при отсутствии защитного заземления на корпусах приборов может находиться напряжение. Защиту от поражения электротоком в таких случаях можно произвести различным присоединением приборов к электропроводке.

Типы присоединения электроприборов к сети:

  • Есть заземление, отсутствует устройство защитного отключения. При протекании больших токов срабатывает расцепитель. Не является мерой, полностью обеспечивающей защиту организма от поражения электрическим током. При больших значениях номинального тока коммутационных аппаратов (25 А, например) на предохранителях при обычном сопротивлении (4 Ом), потенциал может составлять 0,1кВ, что является смертельно опасным.
  • В сети нет заземления, но присутствует УЗО (ДА). При протекании потенциала на поверхности прибора, УЗО сработает лишь в том случае, если в цепи появится ток утечки (прикосновение к неисправному устройству). Пострадавший получает удар током от 10 до 30 мА на время срабатывания УЗО.
  • Есть заземление и устройство защитного отключения. Является наиболее безопасной схемой, т.к. при возникновении потенциала электроток идет по заземляющему проводнику в землю. При этом происходит немедленное срабатывание УЗО (на отходящей линии, группового или на вводе в дом). При этом, если какой-нибудь элемент выйдет из строя, электросеть будет частично исправна.

Наиболее часто встречающиеся ошибки в реализации систем заземления:

  • Использование непредназначенных для заземления PE-проводников. Применение в качестве заземляющего проводника металлических труб недопустимо, т.к. в инженерных системах часто используют вставки из пластиковых трубопроводов. Кроме этого, соединение труб может быть неисправно из-за коррозии или на участке инженерной сети могут проводиться ремонтные работы, что приводит к неэффективности СУП и вероятности поражения электрическим током при прикосновении к токопроводящим поверхностям.
  • Объединение PE- и N-проводников на недопустимых для этого участках (за точкой разделения). Это приводит к беспричинным отключениям УЗО, а также присутствию токов на PE-проводнике.
  • Разделение PEN-проводника в бытовой электросети, т.к. PE-проводник все равно остается связанным с рабочей нулевой жилой – сохраняется фазный потенциал, который также может присутствовать на корпусе проводника. При перестановке местами фазных жил, при разрыве (отгорании) нулевого провода появляется опасность поражения электрическим током при прикосновении к токопроводящим поверхностям электроприборов.
  • Заземление низковольтных (телефонных кабелей, телевизионных и интернет сетей) отдельно от общего. При наличии двух и более заземляющих устройств может возникнуть разность потенциалов из-за разных токов на цепях. Это увеличивает вероятность поражения электротоком и выхода из строя слаботочных сетей. Система уравнивания потенциалов предотвращает подобные аварийные ситуации.

Системы уравнивания потенциалов

При возникновении аварийной ситуации, когда ЗУ находится под напряжением, его сопротивления недостаточно для обеспечения безопасности людей. СУП предназначены для защиты от ударов электротоком, когда он наведен на заземляющее устройство.

Система соединяет воедино все точки электросети, а также доступные для контакта металлоконструкции здания, инженерные коммуникации (трубы водо,- и теплоснабжения и др.), системы молниезащиты.

Организация СУП в TN-C-системе запрещена. В жилищах старого типа для организации СУП применяется соединение электрощитовых с элементами водопровода.

Присоединение с заземлителями выполняют отдельными защитными PE-проводниками. Допускается организация СУП в составе системы внутреннего электроснабжения.

Запрещено использовать шлейфы для соединения PE-проводников СУП. После ГЗШ совместное использование PE,- и N-проводника недопустимо.

Выделяют две системы уравнивания потенциалов: основную и дополнительную.

Главная заземляющая шина (ГЗШ) – элемент заземляющего устройства электроустановки

Состав основной системы уравнивания потенциалов:

  • Главная заземляющая шина. Установка предполагается в вводно-учетных и распределительных щитах. От нее отходят PE-проводники групповых отходящих фидеров и проводники уравнивания потенциалов ко всем металлоконструкциям жилища.
  • Контур заземления. От него проложена стальная полоса заземления к главной заземляющей шине.
  • «Сетка» заземляющих проводников.
  • ЗП. Элемент системы, которым присоединяют отдельные части в единую систему.

Включать в схему PE-проводника автоматы с расцепителями запрещено, т.к. в этом случае нарушается основное требование системы защиты – целостность линии.

Для соединения отдельных элементов СУП используют радиальную схему, т.е. для каждой части здания (ВРУ) должен предусматриваться отдельный проводник.

Дополнительная СУП применяется для обеспечения безопасности во влажных помещениях.

Состав:

  • соединительные элементы;
  • коробка уравнивания потенциалов.

Порядок монтажных работ:

  • согласовать расположение коробки;
  • соединить шинку ВРУ с шинкой КУП, материал проводника – медный;
  • присоединение к системе всех металлических элементов, которые находятся в комнате (труб горячего и холодного водоснабжения, отопления, стоков, ванны), а также бытовых розеток и выключателей;
  • затем происходит соединение защитных проводников с шиной PE КУП;
  • завершающим этапом является проверка целостности проводников и замеры электрического сопротивления.

Соединение труб с СУП можно производить металлическими хомутами.

Видео. Правильное заземление


Существует несколько систем заземления, каждая из которых должна применяться согласно требованиям и возможности реализации. После выбора системы заземления необходимо правильное внедрение ее в сеть потребителя. Только качественно обустроенные электросети гарантируют безопасную их эксплуатацию и стабильную работу электроустановок.

Оцените статью:

Схемы электроустановок зданий. Системы заземления. УЗО.

В настоящее время в нашей стране активно ведется работа по повышению уровня электробезопасности в электроустановках жилых и общественных зданий.
Важнейшим аспектом этой работы является усовершенствование и упорядочивание требований нормативных документов, особенно в области стандартизации устройства электроустановок.
С целью расширения области применения электрооборудования класса защиты I по электробезопасности и с учетом решения «О развитии нормативной базы для безопасного применения электрооборудования класса защиты I по электробезопасности в электроустановках зданий», утвержденного Госстроем России, Госстандартом России и Минтопэнерго России от 09.08.93, Департамент электроэнергетики и Главгосэнергонадзор Минтопэнерго России приняли решение о внесении изменений в гл. 7.1 Правил устройства электроустановок (ПУЭ, 6-е изд., 1986 г.) «Электрооборудование жилых и общественных зданий».
В п. 2 этого решения указывалось:
«Ввести дополнительный абзац в п. 7.1.33:
В жилых и общественных зданиях линии групповой сети, прокладываемые от групповых щитков до штепсельных розеток, должны выполняться трехпроводными (фазный, нулевой рабочий и нулевой защитный проводники). Питание стационарных однофазных электроприемников следует выполнять трехпроводными линиями. При этом нулевой рабочий и нулевой защитный проводники не следует подключать на щитке под один контактный зажим».
Таким образом, был сделан первый шаг по пути внедрения в России в электроустановках жилых и общественных зданий системы заземления TN-C-S.
В ПУЭ 7-го издания требования к выполнению групповых сетей сформулированы следующим образом (п.п. 7.1.13, 7.1.36, 7.1.45):
п.7.1.13. Питание электроприемников должно выполняться от сети 380/220 В с системой заземления TN-S или TN-C-S.
п.7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный — L, нулевой рабочий — N и нулевой защитный — РЕ-проводники).
Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий.
Нулевой рабочий и нулевой защитный проводники не допускается подключать под общий контактный зажим.

Важное замечание!


В электроустановках с системами заземления ТN-S и ТN-С-S электробезопасность потребителя обеспечивается не собственно системами заземления, а устройствами защитного отключения (УЗО), действующими более эффективно в комплексе с этими системами заземления и системой уравнивания потенциалов.
Собственно сами системы заземления — без УЗО, как и применение самого УЗО — без правильно выполненной системы заземления TN-S или TN-C-S, НЕ обеспечивают необходимой безопасности.
Например, при пробое изоляции на корпус электроприбора или какого-либо аппарата, при отсутствии УЗО отключение этого потребителя от сети осуществляется устройствами защиты от сверхтоков — автоматическими выключателями или плавкими вставками.
Быстродействие устройств защиты от сверхтоков, во-первых, уступает быстродействию УЗО, а, во-вторых, зависит от многих факторов — кратности тока короткого замыкания, которая в свою очередь определяется сопротивлением фазных и нулевых проводников, переходным сопротивлением в месте повреждения изоляции, длиной линий, точностью калибровки автоматических выключателей и др. Система заземления

— Что такое системы заземления

Системы заземления или системы заземления используются для соединения определенных частей энергосистемы с землей или землей. Эти системы используются для защиты персонала и электрических систем от ударов или повреждений, обеспечивая прямой путь для электрического тока, протекающего к земле.

Что такое заземление?

Заземление — это процесс передачи электроэнергии.С помощью провода с низким сопротивлением электрическая энергия спускается в землю. Это называется электрическим заземлением. Электрическое заземление достигается путем подключения нейтрали к земле. Ток, протекающий через систему в землю, в свою очередь, имеет нулевой потенциал, что означает, что он не может вызвать повреждение электрической системы.

Типы электрического заземления

Есть два типа электрического заземления; ОБОРУДОВАНИЕ и НЕЙТРАЛЬ.Все электрические системы состоят из двух частей, которые не пропускают ток и служат каркасом системы.

  • Заземление оборудования используется для самого оборудования. Каркас прикреплен к земле с помощью проводника, который направляет токи к земле, вдали от системы в случае возникновения неисправности.

  • Заземление нейтрали используется путем прямого подключения земли с помощью проводника, соответствующего нормам.Этот тип заземления используется в большинстве систем заземления, защищающих трансформаторы, генераторы и т. Д.

Соединение систем заземления

В системах заземления будет использоваться соединение, чтобы уменьшить любые опасности, связанные с системой, в случае неисправности. Проще говоря, связывание — это соединение двух металлических проводников вместе, чтобы подвести их к одному и тому же электрическому потенциалу. Если они не имеют одинаковый электрический потенциал, электрический заряд накапливается, создавая неисправность.Если произойдет сбой, это может привести к поражению электрическим током. Связывание проводов с последующим направлением этих скрепленных проводов на безопасный разряд на землю является ключом к успешной системе заземления. Соединительные проводники уменьшают напряжение, протекающее между двумя частями.

Неисправности в системах заземления

Неисправности внутри систем заземления могут проявляться разными способами. Одна из заметных неисправностей в установке — поражение электрическим током при прикосновении к металлической части, находящейся под напряжением.Это происходит потому, что ваше тело используется как путь от системы к Земле. Неисправности в системе также могут вызвать срабатывание защитных устройств, таких как автоматический выключатель или предохранитель; при выключении устройство отключает подачу электроэнергии. Неисправности могут быть опасными и могут привести к повреждению и травмам.

Почему важно заземление?

Заземление необходимо для электрических систем по многим причинам. Заземление защищает системы от скачков высокого напряжения, а также от любого грозового разряда, полученного во время сильного шторма.Заземление направляет электрический ток к земле, а электрические системы защищены от дорогостоящих и опасных повреждений. Заземление также служит для защиты тех, кто работает с оборудованием и рядом с ним. Сбои в системе всегда возможны и могут вызвать короткое замыкание устройства. Когда это происходит, металл находится под напряжением, и электрический ток может легко уйти от него через проводник любого типа, например, через тело человека. Система заземления обеспечивает быстрый обратный путь к земле даже при возникновении неисправностей в другом месте.

Проверка системы заземления

Системы заземления соответствуют определенным стандартам. При внесении изменений или дополнений необходимо проверить системы. Это означает не только вашу систему заземления, но и соединительные элементы. . Любая работа, выполняемая с электрической системой, может открыть дверь для многих неисправностей, что сделает вашу систему потенциально опасной. Каждый раз, когда в систему заземления вносятся изменения, лучше всего, чтобы лицензированный электрик проверил все выполненные работы, чтобы убедиться, что они были выполнены правильно и безопасно

типов систем заземления, используемых в электроустановках ~ Изучение электротехники

Пользовательский поиск

В международном стандарте IEC60364, часть 4, и в ссылке 10 используется набор диаграмм для объяснения пяти основных методов заземления и обеспечения нейтрали электроустановки там, где это необходимо.Эти пять методов обозначаются сокращенно: TNC , TNS , TNCS , TT и IT .

Первая буква обозначает источник питания от обмотки, соединенной звездой. T означает, что точка звезды источника надежно соединена с землей, которая обычно находится в непосредственной близости от обмотки.
I означает, что точка звезды и обмотка изолированы от земли. Точка звезды обычно подключается к индуктивному сопротивлению или сопротивлению.Емкостный импеданс никогда не используется.

Вторая буква обозначает потребителя. Потребляющее оборудование необходимо заземлить
. Существует два основных метода заземления корпуса электрооборудования. Эти методы обозначаются буквами T и N . Буква N подразделяется на другие буквы, S и C , что дает NS и NC и NCS.

T означает, что потребитель надежно заземлен независимо от метода заземления источника.

N означает, что провод с низким сопротивлением отводится от заземляющего соединения в источнике и направляется непосредственно к потребителю для конкретной цели заземления потребляющего оборудования.

S означает, что нейтральный проводник, проложенный от источника, отделен от проводника защитного заземления, который также проложен от источника. Это означает, что для трехфазного потребителя необходимо проложить пять проводов.

C означает, что нейтральный проводник и провод защитного заземления являются одним и тем же проводником.Это означает, что для трехфазного потребителя необходимо проложить четыре проводника.

Различные типы заземления показаны на следующих схемах:

(a) Система заземления TNC

(b) Система заземления TNS

(c) Система заземления TNCS

(d) Система заземления TT ​​

(e) Система заземления IT

Какова цель заземления электрической установки?

Практически во всех выполненных электрических установках используется заземление.Система заземления, также известная как система заземления, представляет собой цепь, соединяющую части электрической системы с землей. Таким образом, система заземления регулирует провода относительно проводящей поверхности земли. Следовательно, термин «заземление» также вполне уместен и показателен.

Зачем нужно заземление?

Заземление является важным компонентом электрических систем по следующим причинам:

  • Оно обеспечивает безопасность людей, предотвращая поражение электрическим током
  • Оно предотвращает повреждение электрических приборов и устройств, предотвращая прохождение чрезмерного тока через цепь
  • Оно предотвращает риск возгорания, который в противном случае мог бы быть вызван утечкой тока

Преимущества заземления

С технической точки зрения заземление имеет ряд отличных преимуществ, благодаря которым оно стало широко распространенной практикой в ​​электротехнической промышленности.

  • Электрическая система связана с потенциалом общей массы земли и не может достигать другого потенциала. Потенциал земли равен нулю вольт и известен как нейтраль источника электроэнергии. Это помогает сохранять баланс.
  • Еще одно преимущество состоит в том, что металл можно использовать в электрических установках, не беспокоясь о проводимости. Хотя металл является хорошим проводником электричества, правильное заземление гарантирует, что металлические части, не предназначенные для использования для передачи тока, могут быть включены в систему.Это достигается за счет обеспечения отдельного пути для этого неисправного тока, что позволяет его немедленное обнаружение и остановку.
  • В случае скачков напряжения через электрическую цепь может пройти высокое напряжение. Такие перегрузки могут привести к повреждению устройств и опасности для жизни человека. Когда заземление устанавливается вместе с электрическими установками, ток направляется по другому пути и не влияет на электрическую систему.
  • Электрическая цепь должна быть соединена вместе с большим вниманием к типу реакций, которые каждый трансформатор может иметь в ответ на любое действие со стороны любого другого трансформатора.Земля — ​​это постоянно присутствующая проводящая поверхность, которая помогает настроить эти отношения между различными электрическими источниками и упрощает обращение с ними.

Типы заземления

Пластинчатое заземление

Пластинчатое заземление требует, чтобы медное или оцинкованное железо было закопано вертикально в землю в земляной яме, выкопанной более чем на 10 футов в землю. Эти земляные ямы затем заполняются древесным углем и солью чередующимися слоями.

Заземление трубы

Для заземления трубы труба из оцинкованной стали укладывается в грунт вместо плиты.В трубе просверливаются отверстия для подключения заземляющих проводов. Длина и диаметр трубы зависят от типа почвы и типа электроустановки. В этом методе земляные ямы также заполняются чередующимися слоями древесного угля и соли для повышения реакционной способности. Заземление труб — самый распространенный вид заземления.

Стержневое заземление

Подобно заземлению труб, стержневое заземление требует закапывания стержня, сделанного из меди или оцинкованного железа. Электроды встраиваются в почву и, таким образом, уменьшают сопротивление земли по мере необходимости.

Заземление проводом

Для заземления провода выкапывается несколько горизонтальных траншей. Внутри этих траншей закапывают ленточные электроды. Эти электроды изготавливаются из меди, оцинкованного железа или стали. Иногда в земле также используются круглые проводники.

Метод Уотермана

Метод Уотермана требует использования труб Waterman или оцинкованных GI труб. Эти трубы закапывают в землю, и заземляющие зажимы используются для уменьшения сопротивления электрического соединения.

Независимо от того, какой метод заземления используется, важно обеспечить, чтобы размер устройства, глубина его заглубления и его подключение к электроустановкам выполнялись с большой осторожностью и после тщательных расчетов. чтобы быть эффективной.

Факторы, влияющие на заземляющие установки

Несколько факторов могут играть роль в заземляющих установках. Эти факторы необходимо принимать во внимание при любых расчетах, касающихся типа заземления, типа требуемых цепей и т. Д.

Тип почвы важен для определения эффективности заземления. Сопротивление земли, уровень влажности в почве, соли в почве и т. Д. Будут играть важную роль в определении способа заземления. Состав почвы также является еще одним фактором, который необходимо учитывать. Например, каменистую почву нужно обрабатывать иначе, чем влажную.

Помимо почвы, расположение земляной ямы важно для определения способа установки.Если есть подземные препятствия в виде каменных пластов, они повлияют на сооружения.

Введение в заземление и соединение

Заземление и соединение — это два очень разных, но часто путающих метода предотвращения поражения электрическим током.

Принцип заземления состоит в том, чтобы ограничить продолжительность напряжения прикосновения, если вы вступите в контакт с оголенной проводящей частью. Земля создает безопасный путь для прохождения тока вместо поражения электрическим током.

Целью соединения является снижение риска поражения электрическим током, если вы прикасаетесь к отдельным металлическим частям при неисправности где-то в электрической установке. В этом случае защитные заземляющие провода уменьшают величину напряжения прикосновения.

Заземление и соединение являются важными требованиями любой электрической установки и соответствуют требованиям безопасности BS7671.

Что такое система заземления?

В простейшем случае система заземления — это устройство, с помощью которого электрическая установка соединяется со средством заземления.Обычно это делается в целях безопасности, но иногда и для функциональных целей, например, в случае телеграфных линий, которые используют землю в качестве проводника, чтобы сэкономить на стоимости обратного провода в длинной цепи. Если в электрической установке возникнет неисправность, человек может получить удар электрическим током, прикоснувшись к находящейся под напряжением металлической части, потому что электричество использует тело как путь к земле. Заземление обеспечивает альтернативный путь прохождения тока короткого замыкания на землю.

В Великобритании существуют три основные системы заземления, используемые для неспециализированных установок и определенные в Правилах проводки IET, две — это системы TN (где оператор распределительной сети (DNO) отвечает за заземление), а другая — система TT ( который не имеет собственного заземления):

Обозначения: T = Земля (земля), N = нейтраль, C = комбинированный, S = отдельный

Системы

TN-S имеют одно соединение нейтрали с землей, расположенное как можно ближе к трансформатору питания, и отдельные кабели питания по всей длине.В источниках низкого напряжения трансформатор можно даже подключить к оболочке питающего кабеля, что даст отдельный путь обратно к трансформатору подстанции. Максимальное сопротивление внешней цепи замыкания на землю DNO в этих конфигурациях обычно составляет 0,8 Ом.

Это наиболее распространенная конфигурация, используемая в Великобритании. Он также известен как защитное многократное заземление (PME) и обеспечивает подачу низкого напряжения с надежным и безопасным заземлением. Эта система позволяет нескольким пользователям использовать один кабель питания.Возникающее в результате увеличение тока вызывает повышение напряжения в защитной заземленной нейтрали (PEN), которая требует многократного подключения к земле на всем протяжении маршрута питания. Нейтраль заземляется рядом с источником питания, на входе в установку и в необходимых точках распределительной системы. Поскольку DNO использует комбинированный нейтраль и обратный тракт PEN, максимальное сопротивление внешней цепи замыкания на землю составляет 0,35 Ом.

Несмотря на свою популярность, схема TN-C-S может оказаться опасной, если PEN-проводник станет разомкнутой цепью в источнике питания, потому что ток не будет немедленно возвращаться на уровень подстанции.Из-за этого есть определенные объекты, где его нельзя использовать, в том числе заправочные станции, строительные площадки, автостоянки и некоторые хозяйственные постройки.

Конфигурация аналогична системе TN-S, но не дает потребителям индивидуального заземления. Вместо этого потребители должны поставлять свою землю, например, закапывая стержни или плиты под землю, чтобы обеспечить путь с низким сопротивлением. Часто системы TT используются там, где устройства TN-C-S не могут быть использованы (например, в приведенном выше примере заправочной станции) или в сельской местности, где питание осуществляется на воздушных столбах.Меры защиты от ударов, такие как УЗО, часто используются для обеспечения автоматического отключения питания там, где существуют различные типы грунта, которые могут вызвать значения полного сопротивления контура внешнего замыкания на землю.

Что такое склеивание?

Электрическое соединение — это практика соединения всех открытых металлических предметов, не предназначенных для передачи электричества в зоне, с использованием защитного соединительного проводника, целью которого является защита людей, которые могут коснуться двух отдельных металлических частей, от поражения электрическим током в случае электрического повреждения.Это снижает напряжение, которое могло быть там.

Как упоминалось ранее, знать, когда элемент следует заземлить, а когда — соединить, может сбить с толку.

В качестве примера возьмем металлический кабельный лоток, который часто используется в электрических установках. Если:

  • Лоток является незащищенной проводящей частью (т. Е. К нему можно прикоснуться, и он обычно не находится под напряжением), его НЕОБХОДИМО заземлить.
  • Лоток является внешней проводящей частью (т. Е. Значение омического сопротивления между предполагаемой внешней частью и землей меньше 22 кОм), и он НЕОБХОДИМО соединить.
  • Лоток не является открытой или посторонней проводящей частью, поэтому его НЕ нужно заземлять или склеивать.

Узнайте больше о том, как определить посторонние проводящие детали здесь.

Электрическое заземление — методы и типы заземления

Электрическое заземление — компоненты, методы и типы заземления — Установка электрического заземления

Электрическое заземление, заземление, методы заземления, типы заземления, компоненты заземления и их характеристики Что касается электрического заземления для электрических установок.

Что такое электрическое заземление или заземление?


Для соединения металлических (проводящих) частей электрического прибора или установок с землей (землей) называется Заземление или Заземление .

Другими словами, соединение металлических частей электрических машин и устройств с пластиной заземления или заземляющим электродом (который находится во влажной земле) через толстый проводящий провод (который имеет очень низкое сопротивление) в целях безопасности известен как Заземление .

«Заземление» или «заземление», скорее, означает подключение части электрического оборудования, такой как металлическое покрытие, клемма заземления розеточных кабелей, опорные провода, которые не проводят ток на землю. Заземление можно назвать соединением нейтральной точки системы электроснабжения с землей, чтобы избежать или минимизировать опасность при разряде электрической энергии.

Полезно знать

Разница между заземлением, заземлением и соединением

Позвольте мне устранить путаницу между заземлением, заземлением и соединением.

Заземление и Заземление — это те же термины, которые используются для заземления. Заземление — это обычно слово , используемое для заземления в стандартах Северной Америки , таких как IEEE, NEC, ANSI и UL и т. Д., В то время как Заземление используется в европейских стандартах , странах Содружества и Великобритании, таких как IS и IEC и т. Д.

Слово Bonding используется для соединения двух проводов (а также проводов, труб или приборов вместе.Соединение известно как соединение металлических частей различных машин, которые не считаются проводящими электрический ток во время нормальной работы машин, чтобы привести их к одинаковому уровню электрического потенциала.

Почему важно заземление?

Основная цель заземления состоит в том, чтобы избежать или свести к минимуму опасность поражения электрическим током, пожара из-за утечки тока на землю по нежелательному пути и гарантировать, что потенциал токоведущего проводника не поднимется относительно земли, чем это предусмотрено. изоляция.

Когда металлическая часть электроприборов (части, которые могут проводить или пропускать электрический ток) соприкасается с токоведущим проводом, возможно, из-за неисправности установки или повреждения изоляции кабеля, металл заряжается, и на нем накапливается статический заряд. это . Если человек прикоснется к такому заряженному металлу , получится сильный шок.

Чтобы избежать таких случаев, системы электропитания и части приборов должны быть заземлены, чтобы переносить заряд непосредственно на землю. Вот почему нам необходимо электрическое заземление или заземление в электрических установках.

Ниже приведены основные потребности заземления.

  • Для защиты жизни людей, а также для обеспечения безопасности электрических устройств и приборов от тока утечки.
  • Для поддержания постоянного напряжения в исправной фазе (при отказе в какой-либо одной фазе).
  • Для защиты электрических систем и зданий от освещения.
  • Для выполнения функций обратного проводника в системе электрической тяги и связи.
  • Чтобы избежать риска возгорания в электрических установках.
Различные термины, используемые в электрическом заземлении
  • Земля: Надлежащее соединение между электрическими установочными системами через проводник с заглубленной в землю пластиной известно как Земля.
  • Заземленный: Когда электрическое устройство, прибор или системы проводки подключены к земле через заземляющий электрод, это называется заземленным устройством или просто «заземленным».
  • Твердозаземленный: Когда электрическое устройство, прибор или электрическая установка подключены к заземляющему электроду без предохранителя, прерывателя цепи или сопротивления / сопротивления, это называется «глухозаземленным».
  • Электрод заземления: Когда проводник (или токопроводящая пластина) закопан в землю для системы электрического заземления. Известно, что это электрод земли. Заземляющие электроды бывают различной формы, например, токопроводящая пластина, токопроводящий стержень, металлическая водопроводная труба или любой другой проводник с низким сопротивлением.
  • Провод заземления : Провод заземления или токопроводящая полоса, соединяющая электрод заземления и электрическую систему и устройства, называемые проводом заземления.
  • Заземляющий проводник: Проводник, который подключается между различными электрическими устройствами и приборами, такими как распределительный щит, различные вилки и приборы и т. Д. Другими словами, провод между заземляющим проводом и электрическим устройством или прибором называется непрерывностью заземления. дирижер.Он может иметь форму металлической трубы (полностью или частично), металлической оболочки кабеля или гибкого провода.
  • Дополнительный основной заземляющий провод : Провод, подключенный между распределительным щитом и распределительным щитом, то есть этот провод относится к вспомогательным основным цепям.
  • Сопротивление заземления: Это полное сопротивление между электродом заземления и землей в Ом (Ом). Сопротивление заземления — это алгебраическая сумма сопротивлений проводника заземления, провода заземления, заземляющего электрода и земли.
Точки для заземления

Заземление в любом случае не выполняется. Согласно правилам IE и IEE (Институт инженеров-электриков),

  • Заземляющий штырь 3-контактных розеток осветительных вилок и 4-контактных вилок питания должны быть надежно и надежно заземлены.
  • Все металлические корпуса или металлические покрытия, содержащие или защищающие любые линии электропитания или устройства, такие как трубы GI и кабелепроводы, содержащие кабели VIR или ПВХ, выключатели в железной оболочке, распределительные щиты с предохранителями и т. Д., Должны быть заземлены (заземлены).
  • Рама каждого генератора, стационарных двигателей и металлических частей всех трансформаторов, используемых для управления энергией, должна быть заземлена двумя отдельными, но разными соединениями с землей.
  • В 3-проводной системе постоянного тока средние проводники должны быть заземлены на электростанции.
  • Стяжные провода для воздушных линий следует заземлить, подключив хотя бы одну жилу к заземляющим проводам.

Связанное сообщение: Тестирование электрических и электронных компонентов и устройств с помощью мультиметра

Компоненты системы заземления

Полная система электрического заземления состоит из следующих основных компонентов.

  • Провод заземления
  • Провод заземления
  • Электрод заземления
Компоненты системы электрического заземления
Эта часть системы заземления 9152 Проводник заземления 9321 который соединяет металлические части электроустановки в целом, например кабелепровод, каналы, коробки, металлические корпуса переключателей, распределительных щитов, переключателей, предохранителей, регулирующие и управляющие устройства, металлические части электрических машин, такие как двигатели, генераторы, трансформаторы и металлический каркас, на котором установлены электрические устройства и компоненты. как заземляющий провод или провод заземления, как показано на рис.

Сопротивление заземляющего проводника очень низкое. Согласно правилам IEEE, сопротивление между клеммой заземления потребителя и проводом непрерывности заземления (на конце) не должно превышать 1 Ом. Проще говоря, сопротивление заземляющего провода должно быть меньше 1 Ом .

Размер заземляющего проводника или провода заземления зависит от размера кабеля , используемого в электрической цепи .

Размер проводника непрерывного заземления

Площадь поперечного сечения непрерывного заземляющего проводника не должна быть меньше половины площади поперечного сечения самого толстого провода, используемого в установке электропроводки .

Обычно размер голого медного провода, используемого в качестве проводника заземления, составляет 3SWG. Но имейте в виду, что не используйте менее 14SWG в качестве заземляющего провода. Медная полоса также может использоваться в качестве заземляющего проводника вместо неизолированного медного провода, но не используйте ее, пока производитель не порекомендует ее.

Провод заземления или заземляющий разъем

Проводник, соединяющий провод заземления и заземляющий электрод или пластину заземления, называется заземляющим стыком или «заземляющим проводом».Точка, где встречаются провод заземления и заземляющий электрод, называется «точкой соединения», как показано на рисунке выше.

Провод заземления — это завершающая часть системы заземления, которая подключается к заземляющему электроду (который находится под землей) через точку заземления.

В заземляющем проводе должно быть минимальное количество стыков, а также они должны быть меньше по размеру и прямые по направлению.

Как правило, медный провод можно использовать в качестве заземляющего провода, но медная полоса также используется для установки на больших площадях, и она может выдерживать высокий ток короткого замыкания из-за большей площади, чем у медного провода.

Жестко вытянутый неизолированный медный провод также используется в качестве заземляющего провода. В этом методе все заземляющие проводники подключаются к общим (одной или нескольким) точкам подключения, а затем заземляющий провод используется для подключения заземляющего электрода (заземляющей пластины) к точке подключения.

Для увеличения запаса прочности при установке в качестве заземляющего провода используются два медных провода для соединения металлического корпуса устройства с заземляющим электродом или пластиной заземления. Т.е. если мы используем два заземляющих электрода или заземляющие пластины, то будет четыре заземляющих провода.Не следует учитывать, что два заземляющих провода используются как параллельные пути для протекания токов повреждения, но оба пути должны работать должным образом, чтобы пропускать ток повреждения, поскольку это важно для большей безопасности.

Размер провода заземления

Размер или площадь провода заземления не должны быть меньше половины самого толстого провода, используемого в установке.

Наибольший размер провода заземления — 3SWG , минимальный — не менее 8SWG .Если используется провод 37 / .083 или ток нагрузки составляет 200A от напряжения питания, то рекомендуется использовать медную ленту вместо двойного заземляющего провода. Способы подключения заземляющего провода показаны на рис.

Примечание: мы опубликуем дополнительную статью о размере Земной плиты с простыми вычислениями… Следите за новостями.

Электрод заземления или пластина заземления

Металлический электрод или пластина, закапываемая в землю (под землей) и являющаяся последней частью системы электрического заземления.Проще говоря, последняя подземная металлическая (пластинчатая) часть системы заземления, которая связана с заземляющим проводом, называется заземляющей пластиной или заземляющим электродом.

В качестве заземляющего электрода можно использовать металлическую пластину, трубу или стержень, который имеет очень низкое сопротивление и безопасно переносит ток короткого замыкания на землю.

Размер заземляющего электрода

В качестве заземляющего электрода можно использовать как медь, так и железо.

Размер заземляющего электрода (в случае меди)

2 × 2 (два фута шириной и длиной) и толщиной 1/8 дюйма.. Т.е. 2 ’x 2’ x 1/8 ″ . ( 600x600x300 мм )

В случае железа

2 ′ x2 ′ x ¼ ” = 600x600x6 мм

Рекомендуется закапывать заземляющий электрод во влажную землю. Если это невозможно, налейте воду в трубу GI (оцинкованное железо), чтобы обеспечить влажность.

В системе заземления установите заземляющий электрод в вертикальное положение (под землей), как показано на рис. Кроме того, нанесите слой порошкового угля и смеси извести толщиной около 30 см вокруг пластины заземления (не путайте с электродом заземления и пластиной заземления, поскольку они оба являются одним и тем же).

Это действие позволяет увеличить размер заземляющего электрода, что обеспечивает лучшую непрерывность заземления (система заземления), а также помогает поддерживать влажность вокруг пластины заземления.

P.S: Мы опубликуем пример расчета размеров заземляющего электрода… Оставайтесь на связи.

Полезно знать:

Не используйте кокс (после сжигания угля в печи для выделения всех газов и других компонентов оставшиеся 88% углерода называют коксом) или каменный уголь вместо древесного угля (древесный уголь), потому что это вызывает коррозию пластины заземления.

Так как уровень воды в разных районах разный; поэтому глубина установки заземляющего электрода также различается в разных областях. Но глубина установки заземляющего электрода не должна быть меньше 10 футов (3 метра) и не должна быть ниже 1 фут ( 304,8 мм ) от постоянного уровня воды.

Двигатели , Генератор , Трансформаторы и т. Д. Должны быть подключены к заземляющему электроду в двух разных местах.

Размер заземляющей пластины или электрода заземления для небольшой установки

При небольшой установке используйте металлический стержень (диаметр = 25 мм (1 дюйм) и длина = 2 м (6 футов) вместо пластины заземления для системы заземления. На 2 метра ниже поверхности земли. Для поддержания влажности поместите 25 мм (1 дюйм) смесь угля и извести вокруг пластины заземления.

Для эффективности и удобства вы можете использовать медные стержни от 12,5 мм (0,5 дюйма) до 25 мм. (1 дюйм) в диаметре и 4 м (12 футов) в длину.Обсудим способ установки стержневого заземления.

Методы и типы электрического заземления

Заземление можно выполнить разными способами. Ниже описаны различные методы, применяемые для заземления (в домашней проводке или на заводе и другом подключенном электрическом оборудовании и машинах).

Пластинчатое заземление:

В системе пластинчатого заземления пластина из меди с размерами 60 см x 60 см x 3,18 мм (т. Е. 2 фута x 2 фута x 1/8 дюйма ) или оцинкованного железа (GI) размером 60 см x 60 см x 6,35 мм (2 фута x 2 фута x дюйма) закапывают вертикально в землю (земляная яма), которая должна быть не менее 3 м. (10 футов) от уровня земли.

Для правильной системы заземления выполните шаги, указанные выше в (Введение в заземляющую пластину), чтобы поддерживать влажность вокруг заземляющего электрода или пластины заземления.

Заземление трубы:

Гальванизированная сталь и перфорированная труба утвержденной длины и диаметра помещаются вертикально во влажную почву в такой системе заземления.Это самая распространенная система заземления.

Размер используемой трубы зависит от силы тока и типа почвы. Размер трубы обычно составляет 40 мм (1,5 дюйма) в диаметре и 2,75 м (9 футов) в длину для обычной почвы или больше для сухой и каменистой почвы. Влажность почвы будет определять длину трубы, которую предстоит заглубить, но обычно она должна составлять 4,75 м (15,5 фута).

Заземление стержня

это тот же метод, что и заземление трубы. Медный стержень 12.Диаметр 5 мм (1/2 дюйма) или 16 мм (0,6 дюйма) из оцинкованной стали или полого сечения 25 мм (1 дюйм) трубы GI длиной более 2,5 м (8,2 фута) закапывают в землю в вертикальном положении вручную или с помощью пневматический молот. Длина электродов, встроенных в почву, снижает сопротивление земли до желаемого значения.

Система заземления с медным стержневым электродом
Заземление через Waterman

В этом методе заземления трубы водяного (оцинкованного GI) используются для заземления.Обязательно проверьте сопротивление труб GI и используйте зажимы заземления, чтобы минимизировать сопротивление для правильного заземления.

Если в качестве заземляющего провода используется многожильный провод, очистите концы жил провода и убедитесь, что он находится в прямом и параллельном положении, которое затем можно плотно подсоединить к трубе водяного коллектора.

Заземление из ленты или проволоки:

При этом методе заземления зачищайте электроды сечением не менее 25 мм x 1.6 мм (1 дюйм x 0,06 дюйма) закапывают в горизонтальные траншеи минимальной глубиной 0,5 м. Если используется медь с поперечным сечением 25 мм x 4 мм (1 дюйм x 0,15 дюйма) и размером 3,0 мм, 2 , если это оцинкованное железо или сталь.

Если используются круглые проводники, их поперечное сечение не должно быть слишком маленьким, скажем, менее 6,0 мм. 2 , если это оцинкованный чугун или сталь. Длина проводника, закопанного в землю, обеспечит достаточное сопротивление заземления, и эта длина не должна быть менее 15 м.

Общий метод установки электрического заземления (шаг за шагом)

Обычный метод заземления электрического оборудования, устройств и приборов следующий:

  1. Прежде всего, выкопайте яму 5×5 футов (1,5 × 1,5 м) около 20-30 футов (6-9 метров) в земле. (Обратите внимание, что глубина и ширина зависят от характера и структуры грунта).
  2. Закопайте подходящую медную пластину (обычно 2 x 2 x 1/8 дюйма (600 x 600 x 300 мм) в этой яме в вертикальном положении.
  3. Надежный заземляющий провод через гайки с двух разных мест на пластине заземления.
  4. Используйте два провода заземления с каждой пластиной заземления (в случае двух пластин заземления) и закрепите их.
  5. Для защиты стыков от коррозии нанесите смазку вокруг них.
  6. Собрать все провода в металлическую трубу от заземляющего электрода (ов). Убедитесь, что труба находится на высоте 1 фута (30 см) над поверхностью земли.
  7. Чтобы поддерживать влажность вокруг земной плиты, положите 30-сантиметровый слой порошкообразного древесного угля (порошкообразного древесного угля) и смеси извести вокруг земной плиты вокруг земной плиты.
  8. Используйте болты с гайкой и гайкой, чтобы надежно подсоединить провода к опорным плитам машин. Каждая машина должна быть заземлена в двух разных местах. Минимальное расстояние между двумя заземляющими электродами должно составлять 10 футов (3 м).
  9. Провод заземления, который соединяется с корпусом и металлическими частями всей установки, должен быть плотно подключен к заземляющему проводу. Обязательно используйте непрерывность, используя тест на непрерывность.
  10. Наконец (но не в последнюю очередь) проверьте всю систему заземления с помощью тестера заземления.Если все идет по планировке, то яму засыпьте землей. Максимально допустимое сопротивление заземления составляет 1 Ом. Если оно больше 1 Ом, увеличьте размер (не длину) заземляющего провода и проводов заземления. Держите внешние концы труб открытыми и время от времени поливайте водой, чтобы поддерживать влажность вокруг заземляющего электрода, что важно для лучшей системы заземления.
Спецификация SI для заземления

Ниже приведены различные спецификации относительно заземления, рекомендованные индийскими стандартами.Вот несколько;

  • Заземляющий электрод нельзя располагать (устанавливать) вблизи здания, система заземления которого заземляется, на расстоянии не менее 1,5 м.
  • Сопротивление заземления должно быть достаточно низким, чтобы протекание тока было достаточным для срабатывания защитных реле или срабатывания предохранителей. Это значение непостоянно, так как оно меняется в зависимости от погоды, потому что оно зависит от влажности (но не должно быть меньше 1 Ом).
  • Заземляющий провод и заземляющий электрод будут из одного материала.
  • Заземляющий электрод всегда следует размещать в вертикальном положении внутри земли или ямы, чтобы он мог контактировать со всеми различными слоями земли.

Связанные сообщения:

Опасности незаземления системы питания

Как подчеркивалось ранее, заземление предоставляется в порядке

  • Во избежание поражения электрическим током
  • Во избежание риска пожара в результате тока утечки на землю через нежелательный путь и
  • Чтобы гарантировать, что ни один из проводников с током не поднимется до потенциала по отношению к общей массе земли, чем его проектная изоляция.

Однако, если чрезмерный ток не заземлен, приборы будут повреждены без помощи предохранителя. Обратите внимание, что на их генерирующих станциях происходит заземление чрезмерного тока, поэтому заземляющие провода несут очень небольшой ток или совсем не пропускают ток. Следовательно, это означает, что нет необходимости заземлять какой-либо из проводов (токоведущих, заземляющих и нулевых), содержащихся в ПВХ. Заземлить провод под напряжением — катастрофа.

Я видел человека, убитого просто потому, что провод под напряжением был отрезан от верхней опоры и упал на землю, пока земля была влажной.Чрезмерный ток заземляется на генерирующих станциях, и если заземление вообще неэффективно из-за короткого замыкания, на помощь придут прерыватели замыкания на землю. Предохранитель помогает только тогда, когда передаваемая мощность превышает номинальную мощность наших приборов, он блокирует ток от достижения наших приборов, сгорая и защищая наши приборы в процессе.

В наших электроприборах, если чрезмерные токи не заземлены, мы испытаем сильный ток. Заземление в электроприборах происходит только тогда, когда возникает проблема, и оно должно спасти нас от опасности.Если в электронной установке металлическая часть электроприбора вступает в прямой контакт с проводом под напряжением, что может быть вызвано, возможно, неисправностью установки или иным образом, металл будет заряжен, и на нем будет накапливаться статический заряд.

Если в этот момент вы прикоснетесь к металлической части, вас поразит удар. Но если металлическая часть прибора заземлена, заряд будет передаваться на землю, а не накапливаться на металлической части прибора. Ток не проходит через заземляющие провода в электроприборах, он протекает только тогда, когда есть проблема, и только для того, чтобы направить нежелательный ток на землю, чтобы защитить нас от сильного удара.

Кроме того, если токоведущий провод случайно (в неисправной системе) касается металлической части машины. Теперь, если человек коснется этой металлической части машины, то через его тело будет протекать ток на землю, следовательно, он получит удар током (удар током), что может привести к серьезным травмам, вплоть до смерти. Вот почему так важно заземление?

Электрическое заземление … Продолжение следует …

Пожалуйста, подпишитесь ниже, если вы хотите получить следующий пост о Заземление / заземление , например:

  • Рассчитайте размер заземляющего проводника, заземления Свинцовые и заземляющие электроды для различных электрических устройств и оборудования, таких как двигатели, трансформаторы, домашняя электропроводка и т. Д., Путем простых расчетов
  • Цепь заземления и ток замыкания на землю
  • Защита системы заземления и дополнительных устройств, используемых в системе заземления
  • Пункты для запоминания при обеспечении заземления
  • Важные инструкции по правильной системе заземления
  • Правила электроснабжения относительно заземления
  • Как проверить сопротивление заземления с помощью тестера заземления
  • Как проверить сопротивление контура заземления с помощью амперметра и вольтметра
  • Многократное защитное заземление
  • И многое другое….

Похожие сообщения:

Типы систем заземления TN, TT, IT и систем заземления — Aktif Group

В настоящее время технические установки во всех отраслях промышленности характеризуются постоянно растущей сложностью и автоматизацией. От высокоразвитых производственных линий до робототехники, количество оборудования, которому для бесперебойной работы требуется надежный источник питания, неуклонно растет. Поэтому основы надежности и доступности установки уже заложены путем выбора правильной системы электроснабжения.Наряду с защитой персонала и противопожарной защиты, отказоустойчивость является ключевым фактором при выборе подходящего источника питания. На этапе планирования установки доступны три типа систем: система TN, система TT и система IT.

Защитная мера всегда требует согласования заземления, типов токопроводящих проводов и защитного оборудования по отношению к типам систем заземления. В этом разделе описаны системы и их заземление в соответствии с IEC 60364-1.

Стандарт оценивает следующие характеристики системы распределения;

  • Типы систем токоведущих проводов;
  • Типы системного заземления.

В результате получаются следующие характеристические значения для типа распределительной системы

  • Тип и количество активных проводников системы

Различают системы переменного и постоянного тока.

В стандарте учитываются следующие системы токоведущих проводов.

Система переменного тока Система постоянного тока
Однофазный 2-проводный 2-проводный
Однофазный 3-проводный 3-х проводный
Двухфазный 3-проводный
Двухфазный 5-проводный
Трехфазный 3-проводный
Трехфазный 3-проводный

Типы систем заземления

Различные используемые коды основаны на отношении распределительной системы к земле и отношения открытых проводящих частей электроустановки к земле.Используемые коды имеют следующее значение;

Первое письмо Связь распределительной системы с землей
т Прямое подключение одной точки к земле;
я Все токоведущие части изолированы от земли или одна точка, соединенная с землей через полное сопротивление
Второе письмо Связь открытых токопроводящих частей установки с землей
т Прямое электрическое подключение открытых токопроводящих частей к заземлению независимо от заземления любой точки энергосистемы;
N Прямое электрическое соединение открытых проводящих частей с заземленной точкой энергосистемы (в системах переменного тока заземленной точкой энергосистемы обычно является естественная точка или, если нейтральная точка недоступна, фазный провод).
Последующее письмо Расположение нейтральных и защитных проводов
S Защитная функция обеспечивается проводом, отделенным от нейтрали или от проводника заземленной линии (или в системах переменного тока, заземленной фазы).
С Нейтральная и защитная функции объединены в одном проводе (провод PEN)
PE Защитный провод.

Главные распределительные системы:

Система TN, система TT, система IT

Система TN

TN Распределительные системы имеют одну точку прямого заземления, при этом открытые проводящие части установки соединяются с этой точкой с помощью защитных проводов.Существуют различные типы систем TN в отношении расположения нейтральных и защитных проводов. Они следующие:

  • Система TN-S: по всей системе используется отдельный защитный проводник;
  • Система
  • TN-C-S: нейтраль и защитные функции объединены в одном проводе в части системы;
  • Система
  • TN-C: нейтраль и защитные функции объединены в одном проводе по всей системе.

Система TT

Распределительная система TT имеет одну точку прямого заземления, а открытые проводящие части установки электрически соединены с заземляющими электродами.

независимо от заземляющих электродов энергосистемы.

ИТ-система

В распределительной системе IT все токоведущие части изолированы от земли или одна точка соединена с землей через полное сопротивление, а открытые проводящие части электроустановки заземлены.

  • Самостоятельно, или
  • вместе или
  • К заземлению системы

Результат

Системы заземления обычно важны для защиты основной защиты (от прямого контакта) и защиты от короткого замыкания / короткого замыкания (от косвенного контакта) от ударов и минимизации риска возгорания.Потому что от этих систем зависят два важных значения, которые нам необходимы для создания защиты и оснащения цепей необходимыми защитными устройствами. Эти два важных значения — ток короткого замыкания и напряжение прикосновения. Потому что защита изменится на размер этих значений. Эти значения полностью зависят от системы заземления.

Список литературы

  • W. Hofheinz: Мониторинг тока короткого замыкания в электроустановках
  • Актиф Мухендислик Каталог медицинских систем питания

Харун Öndül
Менеджер по продажам
Aktif Mühendislik

Что такое электрическое заземление? — Определение, типы заземления и его значение в электрической системе

Определение: Процесс передачи немедленного разряда электрической энергии непосредственно на землю с помощью провода с низким сопротивлением известен как электрическое заземление.Электрическое заземление выполняется путем подключения нетоковедущей части оборудования или нейтрали системы питания к земле.

В основном для заземления используется оцинкованное железо. Заземление обеспечивает простой путь к току утечки . Ток короткого замыкания оборудования проходит на землю с нулевым потенциалом. Таким образом защищает систему и оборудование от повреждений.

Типы электрического заземления

Электрооборудование в основном состоит из двух нетоковедущих частей.Эти части нейтральны по отношению к системе или корпусу электрического оборудования. Заземление этих двух нетоковедущих частей электрической системы можно разделить на два типа.

  • Заземление нейтрали
  • Заземление оборудования.

Заземление нейтрали

При заземлении нейтрали нейтраль системы напрямую соединяется с землей с помощью провода GI. Заземление нейтрали также называется заземлением системы. Такой тип заземления чаще всего применяется в системах со звездообразной обмоткой.Например, заземление нейтрали предусмотрено в генераторе, трансформаторе, двигателе и т. Д.

Заземление оборудования

Заземление такого типа предусмотрено для электрооборудования. Нетоковедущая часть оборудования, такая как металлический каркас, соединяется с землей с помощью проводящего провода. Если в аппарате возникает какая-либо неисправность, ток короткого замыкания проходит через землю с помощью провода. Таким образом защитите систему от повреждений.

Важность заземления

Заземление необходимо по следующим причинам

  • Заземление защищает персонал от тока короткого замыкания.
  • Заземление обеспечивает самый легкий путь прохождения тока короткого замыкания даже после выхода из строя изоляции.
  • Заземление защищает оборудование и персонал от скачков высокого напряжения и разряда молнии.

Заземление может быть выполнено путем электрического соединения соответствующих частей в установке с некоторой системой электрических проводов или электродов, размещенных рядом с почвой или ниже уровня земли. Заземляющий мат или электрод под уровнем земли имеют плоский железный стояк, через который подключаются все нетоковедущие металлические части оборудования.

При возникновении короткого замыкания ток замыкания от оборудования протекает через систему заземления на землю и тем самым защищает оборудование от тока замыкания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *