Соленоидный вентиль Alco controls 200 RB 3 T3 (без катушки) 801239
Общая информация:
Соленоидные клапаны серий 110RB/ 200RB/ 200RH/ 240RA используются для перекрытия потока на жидкостной, всасывающей или нагнетательной магистралях. Все клапаны, за исключением 540RA, нормально закрытого типа (НЗ), то есть клапан закрыт, когда на катушку клапана не подается напряжение. Клапаны серии 540RA нормально открытого типа (НО).
Инструкция по безопасности:
• Внимательно прочитайте инструкцию по эксплуатации. Неисполнение инструкции может привести к отказу устройства, выходу из строя холодильной системы или к травмам персонала.
• Согласно EN 13313 к обслуживанию допускается только квалифицированный и имеющий необходимые разрешения персонал.
• Перед открытием любой системы убедитесь, что давления в ней сравнялось с атмосферным.
• В случае сильного химического загрязнения системы избегайте вдыхания паров кислот, а также попадания на кожу загрязнённых хладагентов / масел. Несоблюдение этих требований может привести к травмам персонала.
• Не выпускайте хладагент в атмосферу!
• Не превышайте указанные предельные значения давления и температуры.
• Предупреждение: нельзя использовать соленоидные вентили как предохранительные или сервисные.
• Запрещается использовать какую-либо другую рабочую жидкость без предварительного разрешения EMERSON. Использование неразрешённых жидкостей может привести к следующему Изменение категории опасности продукта и, следовательно, изменение процедуры оценки соответствия для продукта согласно Европейской директиве 97/23/ЕС для оборудования, работающего под давлением.
Место монтажа:
• Клапан 110RB/200RB/200RH/240RA должен устанавливаться по возможности ближе к отключаемому или управляемому им прибору.
• Необходимо наличие свободного пространства над клапаном для возможной замены катушки.
• Клапаны могут быть установлены в горизонтальной или вертикальной плоскости (рис. 1). Перевернутое расположение клапана не допускается и может стать причиной выхода его из строя.
Монтаж:
• Не сминать, не сгибать и не использовать трубку штока вентиля как рычаг. Повреждение штока может привести к сгоранию катушки, выходу из строя клапана или к утечке.
• Направление потока должно соответствовать стрелке на корпусе клапана.
• Внутренние части должны быть защищены от инородных частей и загрязнений. Рекомендуется использовать фильтры-осушители EMERSON на линиях всасывания и нагнетания.
Пайка: ( см. рис . 2 )
• Проводите пайку в соответствии с требованиями EN 14324.
• Нет необходимости разбирать клапан на части перед пайкой.
• Перед пайкой, а также после неё необходимо очищать паяные соединения.
• Используйте для пайки соответствующие материалы (припои).
• Во избежание окисления рекомендуется во время пайки заполнять систему нейтральным газом (например, азотом).
• Не используйте кислород или горючие газы.
• Не превышайте максимальную температуру корпуса 120°C! Совместимость катушек:
• Соленоидные клапаны EMERSON совместимы со следующими катушками: – ASC3 – для клапанов 110RB, 200RB, 200RH, 240RA и 540RA.
• Техническая информация по катушкам в отдельной инструкции.
Проверка:
• Перед проверкой охладите все части клапана ниже +40°С.
• Запустите клапан в работу несколько раз. При подаче питания на соленоид должен быть слышен характерный звук. Испытание на прочность: После окончания монтажа испытание на прочность должно проводиться следующим образом: – …в соответствии с EN 378 для систем, подпадающих под действие Европейской директивы 97/23/ЕС (оборудование, работающее под давлением)… – с максимальным рабочим давлением системы для других применений.
Предупреждение:
• Невыполнение этого требования может привести к утечке хладагента и травмам персонала.
• Испытание на прочность должно проводиться квалифицированным персоналом; при этом необходимо принимать во внимание опасность высокого давления.
Испытание на герметичность:
Для определения наличия утечек необходимо провести испытание на герметичность в соответствии с требованиями EN 378-2. Допустимый уровень утечек должен соответствовать спецификации изготовителя системы.
Техническое обслуживание:
• Перед началом любых сервисных операций, отключите электропитание установки и отсоедините клапан от его источника.
• Полностью стравите давление. После того, как давление сравняется с атмосферным, можно открыть клапан и заменить внутренние запасные части. Протрите детали перед установкой. Устанавливайте детали в обратном порядке (см. рис. 3)
Технические данные:
• Максимальное рабочее давление PS:
– 110RB/200RB/240RA: 31 бар;
– 200RH: 60 бар;
– 540RA 20: 28 бар
• Max. Давление испытания PT:
– 110RB/200RB/240RA: 34 бар;
– 200RH: 66 бар
– 540RA 20: 31 бар
• Соответствуют стандарту EN 12284.
• Совместимость: CFC, HCFC, HFC, минеральное и синтетическое масло
Соленоидный вентиль с катушкой BC-EMV6 38S (IT)
Соленоидный вентиль с катушкой BC-EMV6 38S (IT)Описание
Соленоидные вентили серии BC-EMV (IT), нормально закрытые, предназначены для установки в жидкостные и всасывающие линии, а также трубопроводы горячего газа холодильных установок и систем кондиционирования воздуха.
ПАРАМЕТРЫ:
Для использования с HFC, HCFC и CFC хладагентами
Максимальное рабочее давление – 45 бар
Температура окружающей среды – от -40 до 70 С
Температура рабочей жидкости/газ – от -35 до +105 С
Материал корпуса – латунь
Потребляемая мощность катушки – 21 Вт
Напряжение питания — 12V DC, 24 V DC, 230 V AC 50/60 Гц
Класс защиты – IP65
высокая надежность
компактные размеры
Расшифровка маркировки соленоидного вентиля BC EMV6 38S(IT) | |
ВС | Торговая марка becool |
EMV | Электромагнитный (соленоидный) вентиль |
6 | Типоразмер вентиля («живое» сечение) |
38 – 3/8″ | Диаметр присоединяемого трубопровода |
S | Соединение под пайку, пробел — соединение под резьбу |
(IT) | Произведено в Италии |
Технические характеристики
Соленоидный вентиль с катушкой BC-EMV6 38S (IT)
Модель: BC-EMV6 38S (IT)
Код заказа: 051873
Температура окружающей среды: -40 до 70° С
Температура рабочей жидкости/газ: -35 до 110° С
Дифференциал рабочего давления: 0 до 21 бар
Максимальное рабочее давление: 45 бар
Расход, м3/час: 0,80
Производительность, кВт*:
По жидкости: 13. 8
По всас пару: 13.8
По горячему газу: —
Класс защиты: IP 65 (DIN40050)
Вх/Вых пайка (ODF): 10 мм (3/8)” / 10 мм (3/8)”
Совместим с хладагентами: R12, R22, R134A, R404A, R407C, R410A, R502, R507
Напряжение катушки питания: 220/230 В, 50/60 Гц
* номинальная производительность по жидкости и всас пару при To=+4°C, Tк=+38°С, Δр=0,15 бар, R-407С
Мембранный соленоидный вентиль — Большая Энциклопедия Нефти и Газа, статья, страница 1
Мембранный соленоидный вентиль
Cтраница 1
Мембранные соленоидные вентили имеют следующие преимущества по сравнению с поршневыми: надежное закрытие основного клапана; малая мощность электромагнитной катушки; плавное открытие и закрытие вентиля и вследствие этого отсутствие гидравлических ударов; надежное срабатывание при значительном падении напряжения; хорошая фильтрация жидкости и вследствие этого повышенная возможность работы на загрязненных растворах и ряд других.
Мембранные соленоидные вентили изготовляют двух видов — комбинированного и непрямого действия. [2]
Мембранные соленоидные вентили могут работать на загрязненном рассоле. [4]
Мембранные соленоидные вентили имеют следующие преимущества по сравнению с поршневыми: надежное закрытие основного клапана; малая мощность электромагнитной катушки; плавное открытие и закрытие вентиля и вследствие этого отсутствие гидравлических ударов; надежное срабатывание при значительном падении напряжения; хорошая фильтрация жидкости и вследствие этого повышенная возможность работы на загрязненных растворах и ряд других. [5]
Мембранные соленоидные вентили в работе более надежны, чем поршневые, они не требуют такой тщательной очистки рабочей жидкости как поршневые, поэтому в настоящий момент промышленность переходит на выпуск мембранных соленоидных вентилей, конструкцию которого разработал ВНИХИ совместно с центральным конструкторским бюро арматуростроения. [6]
Мембранные соленоидные вентили выполняются в трех схемах: непрямого действия, с подвижным и с неподвижным седлом вспомогательного клапана и комбинированного действия с подвижным седлом вспомогательного клапана. [7]
Мембранный соленоидный вентиль ВСФ-2 ( вентиль соленоидный фреоновый) применяют в малых холодильных машинах, в частности льдогенераторах [127], работающих на фреоне-12. По конструкции ( рис. 116, в) прибор близок к соленоидным вентилям СВМ с условным проходом от 6 до 15 мм. [8]
Мембранные соленоидные вентили марки СВМ ( 15кч888р и 15кч888р1) рассчитаны на рр 16 кгс / см2 и температуру среды в трубопроводе от — 40 до 45 С. [9]
В мембранных соленоидных вентилях ( СВМ) ( рис. 86) камера над основным клапаном отделена от напорной линии мембраной / из прорезиненной ткани. Поступающая жидкость проходит через фильтрующую щель 2 и равннтельные отверстия 3 и по прорези в направляющей попадает в область над мембраной. Давление жидкости над мембраной становится равным давлению под ней. Под действием пружины 4 клапан 5 перемещается вниз и закры вается. [11]
В мембранных соленоидных вентилях ( СВМ) ( рис. 62) камера над основным клапаном отделена от напорной линии мембраной / из прорезиненной ткани. Поступающая жидкость проходит через фильтрующую щель 2 и уравнительные отверстия 3 и по прорези Б направляющей попадает в область над мембраной. Давление жидкости над мембраной становится равным давлению под ней. [13]
При разборке мембранных соленоидных вентилей возможно повреждение мембраны, которая прилипает к корпусу и крышке вентиля. Для устранения этого дефекта края мембраны перед сборкой следует протереть тальком. [14]
Страницы: 1 2
принцип действия, устройство, виды || ИТАЛГАЗ
Электромагнитный (соленоидный) клапан — это устройство для управления рабочей средой под давлением в трубопроводе. Его действие заключается в том, чтобы открывать / закрывать проходное отверстие плунжером, на который воздействует магнитное поле электромагнитной катушки или усилением за счет давления рабочей среды и мембраны.
Принцип действия электромагнитного (соленоидного) клапана
Клапан оснащен соленоидом, который представляет собой электрическую катушку с подвижным ферромагнитным сердечником в центре. Это ядро называется плунжером. В положении покоя плунжер закрывает небольшое отверстие. Электрический ток через катушку создает магнитное поле. Магнитное поле оказывает силу на плунжер, в результате плунжер тянет к центру катушки так, что отверстие открывается. Это основной принцип, который используется для открытия и закрытия электромагнитных клапанов.
Устройство электромагнитного клапана
Основные компоненты:
1. Корпус клапана, который состоит из впускного и выпускного отверстия, а также седла.
2. Арматурная трубка с сердечником, на которую устанавливается катушка.
3. Плунжер, который скользит внутри арматурной трубки и в некоторых случаях служит уплотнением.
4. Катушка электромагнитная, которая создает магнитное поле, необходимое для перемещения плунжера.
Основные типы электромагнитных клапанов
Электромагнитный клапан непрямого действия
Данный вид клапанов доступен с присоединительными размерами 1/4″… 3″. При больших диаметрах статическое давление рабочей среды увеличивается, и необходимо, чтобы магнитное поле, создаваемое катушкой, способно было справится с ним. Это достигается за счет использования сервоуправляемого действия в клапане. При этом варианте конструкции давление среды помогает удерживать уплотнение главного клапана.
Нормально-закрытый клапан (2/2 NC) имеет впускное и выпускное отверстие в корпусе. Когда соленоид не находится под напряжением, поток блокируется основным уплотнением, которое может быть либо диафрагма, либо поршень. В этом режиме среда течет через небольшое отверстие в диафрагме или поршне и помогает удерживать клапан закрытым. Когда на электромагнитную катушку подается напряжение, открывается пилотное отверстие, позволяющее среде выйти из полости над основным уплотнением и открыть главный клапан.
Этот тип требует минимального перепада давления для работы, иначе поток среды через клапан будет минимальным или клапан просто не откроется.
Нормально-открытый клапан непрямого действия (2/2 NO) имеет впускное и выпускное отверстие в корпусе. При больших диаметрах статическое давление рабочей среды увеличивается, и все еще необходимо, чтобы магнитное поле, создаваемое соленоидной катушкой, способно было справляться с ним. В этой конструкции давление среды помогает удерживать открытым основной клапан.
Эта конструкция требует минимального перепада давления для работы, иначе клапан просто не закроется.
Электромагнитный клапан прямого действия
Двухходовой клапан имеет впускное и выпускное присоединительное отверстие в корпусе.
Нормально-закрытый клапан прямого действия (2/2 NC).
При этом варианте рабочая среда не протекает через клапан, а перекрыта плунжером, который прижат пружиной. При включении напряжения электромагнитная катушка поднимает плунжер и среда двигается к выпускному отверстию.
Нормально-открытый клапан прямого действия (2/2 NO).
При этом варианте отверстие открыто, рабочая среда направляется от впускного отверстия к выпускному. При подаче напряжения отверстие закрывается. Операция в обоих случаях зависит только от магнитного поля, создаваемого соленоидной катушкой.
Эти клапаны способны работать при нулевом давлении.
Клапан с принудительным подъемом мембраны
Нормально-закрытый клапан (2/2 NC) с принудительно поднимаемой диафрагмой, имеет впускное и выпускное отверстие в корпусе. В этих моделях плунжер механически прикреплен к диафрагме и управляет центральным пилотным отверстием и ходом основного уплотнения, что позволяет ему работать при нулевом перепаде давления.
Трехходовой электромагнитный клапан прямого действия
Трехходовой клапан имеет впускное и выпускное присоединительное отверстие в корпусе, а третье присоединительное отверстие находится в арматурной трубке («выхлоп»).
Нормально-закрытый трехходовой клапан (3/2 NC).
При этом варианте среда не пропускается через впускное отверстие, так как плунжер прижат к седлу пружиной. Но среда из выходного трубопровода выводится через «выхлоп». При подключении к электросети впускное отверстие открывает подачу рабочей среды, а «выхлоп» закрывается.
Нормально-открытый трехходовой клапан (3/2 NO).
В этом исполнении отверстие открыто, рабочая среда направляется от впускного отверстия к выпускному, а «выхлоп» закрыт. При подключении к электросети впускное отверстие закрывается, в то же время «выхлоп» открывается и соединяется с выходным трубопроводом. В обоих случаях операция зависит только от магнитного поля, создаваемого соленоидной катушкой.
Трехходовые электромагнитные клапаны могут работать при нулевом давлении.
Соленоидный клапан является одним из наиболее используемых компонентов в газовых и жидкостных системах, количество применений почти бесконечно. Вот некоторые примеры использования: системы отопления, технология сжатого воздуха, промышленная автоматизация, бассейн, стиральные машины, стоматологическое оборудование, системы мойки и оросительные системы.
Надеемся, что данная статья окажется Вам полезной и поможет разобраться в теме — электромагнитный клапан.
какой выбрать? Особенности, отличия, эксплуатационные ограничения
Введение
При управлении потоками жидких и газообразных сред на современных промышленных предприятиях наиболее часто используются два типа клапанов: соленоидные клапаны и клапаны с пневмоприводом. Огромное количество различных моделей клапанов обоих типов, предназначенных для самых разнообразных задач, привело к тому, что выбор между соленоидным (электромагнитным) клапаном и клапаном с пневмоприводом перестал быть очевидным.
В данной статье рассмотрены конструктивные особенности клапанов обоих типов и то, как эти особенности влияют на выбор клапанов и их эксплуатацию. Описываемые явления и полученные выводы справедливы практически для всех клапанов, независимо от модели или производителя, поскольку причины этих явлений сосредоточены в самом принципе действия клапанов рассматриваемых типов.
1. Виды, принцип работы и особенности эксплуатации электромагнитных клапанов
1.1. Конструкция соленоидных клапанов прямого действия
Устройство наиболее простого соленоидного клапана представлено на рисунке 1.
Рисунок 1 – Конструкция соленоидного клапана прямого действияКатушка (1) установлена на трубке сердечника (2), внутри которой расположен сердечник (3), прижимаемый к седлу клапана (5) пружиной (4). При подаче напряжения на катушку, внутри неё и, соответственно, внутри трубки сердечника создаётся электромагнитное поле, в результате воздействия которого сердечник поднимается, открывая проход жидкости через седло клапана.
Таким образом, клапаны данного типа работают за счет электромагнитного поля, создаваемого катушкой. Саму же катушку часто называют соленоидом, отсюда и название клапана — «соленоидный» или «электромагнитный». Поскольку электромагнитное поле катушки воздействует напрямую на сердечник, перекрывающий проходное отверстие клапана, такие электромагнитные клапаны называют клапанами прямого действия.
Сложность при создании электромагнитных клапанов прямого действия проявляется по мере увеличения их размера для обеспечения большего расхода жидкости. Это связано с резким увеличением силы втягивания катушки, необходимой для подъёма сердечника и открытия клапана.
Пример расчёта усилия, необходимого для втягивания сердечника
В общем случае, для любой однородной жидкой или газообразной среды, давление связано с силой следующим образом:
P=FS(1),P= {F} over {S}, ~( 1 )где:
Р – давление среды;
F — усилие, оказываемое средой на поверхность;
S — площадь поверхности. 2 times %mu_0 times R } ~( 9 )
Тогда формула, втягивающего усилия катушки примет следующий вид
F=W×Kcc(10)F=W times K_cc ~( 10 )Формула (10), показывает что втягивающее усилие катушки зависит от конструкции узла клапана «катушка-сердечник» и пропорционально электрической мощности, потребляемой катушкой.
Рассмотрим два электромагнитных клапана с катушками разной мощности, но имеющих одинаковую конструкцию катушки и сердечника. Тогда втягивающее усилие F1 и F2 и потребляемые мощности W1 и W2 будут соотносится следующим образом:
F1W1=F2W2(11){F_1} over {W_1} = {F_2} over {W_2} ~( 11 )Выражая из данного равенства W2 получим:
W2=W1F2F1(12){ {W_2} = W_1 {F_2} over {F_1} ~( 12 )Подставив в формулу (12) значения необходимых минимальных усилий втягивания F1, рассчитанного по формуле (4), F2, рассчитанного по формуле (5) и паспортного значения мощности катушки AMISCO EVI 5P/13 W1 = 17 Вт, получим:
W2=W1F2F1=17Вт1962,5Н11,8Н=2827Вт≈3кВт(13){ {W_2} = W_1 {F_2} over {F_1} =17Вт {1962,5Н} over {11,8Н} =2827Вт approx 3 кВт ~( 13 )Таким образом, мы рассчитали мощность катушки, необходимую для обеспечения работы электромагнитного клапана прямого действия с диаметром седла 50 мм и рабочим давлением 10 бар. Разумеется, эти расчеты носят приблизительный характер, однако, порядок полученных значений верный. Очевидно, что применение катушек такой мощности неоправданно.
Тем не менее, существуют электромагнитные клапаны, удовлетворяющие условиям задачи, но с катушками мощность которых не превышает 10 – 20 Вт. Дело в том, что эти клапаны имеют другую конструкцию, описанную ниже.
1.2 Устройство соленоидных клапанов непрямого действия
Для уменьшения энергопотребления соленоидных клапанов больших диаметров и для работы с большими давлениями была разработана конструкция электромагнитного клапана непрямого действия, представленная на рисунке 2а.
Рисунок 2 – Конструкция и принцип действия соленоидных клапанов с плавающей мембранойВ таких электромагнитных клапанах основное проходное сечение перекрывается мембраной, которая прижата к седлу. Открытие клапана осуществляется за счет подъема мембраны, вызванного перераспределением величины давления рабочей среды в зонах над мембраной и под мембраной.
В исходном состоянии (см. рисунок 2а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход электромагнитного клапана, через небольшое перепускное отверстие в мембране, проникает в область над мембраной. Площадь поверхности мембраны, с которой взаимодействует жидкость, в зоне над мембраной больше, чем в зоне под мембраной. При равенстве давлений над и под мембраной, это приводит к возникновению силы, прижимающей мембрану к седлу клапана. Одним из ключевых элементов конструкции, оказывающих влияние на работу электромагнитного клапана, является перепускное отверстие. Его расположение на схеме и фотография показаны на рисунке 2б.
Подача напряжения на катушку (см. рисунок 2в) вызывает подъём сердечника. В результате этого жидкость из области над мембраной через пилотное отверстие начинает поступать на выход электромагнитного клапана. Диаметр пилотного отверстия больше диаметра перепускного отверстия, поэтому давление над мембраной уменьшается, а сама мембрана поднимается, открывая основной проход клапана.
Подъём мембраны осуществляется за счет давления жидкости, поступающей на вход клапана, поэтому клапаны такой конструкции не могут работать при низком давлении среды. Разница давлений между входом и выходом, как правило, должна составлять не менее 0.3 – 0.5 бар. Этот параметр указывается в технических характеристиках электромагнитного клапана.
До тех пор, пока катушка находится под напряжением (см. рисунок 2г), сердечник поднят и пилотное отверстие открыто. Это приводит к тому, что давление над мембраной и сила упругости сжатой пружины становится меньше давления жидкости под мембраной. В результате чего мембрана остается поднятой, а клапан открытым.
При снятии напряжения с катушки (см. рисунок 2д), сердечник под действием пружины опускается и перекрывает пилотное отверстие электромагнитного клапана. Жидкость перестает выходить из области над мембраной, в результате чего давление в этой зоне растет и становится равным давлению жидкости под мембраной (на входе клапана). Под действием силы упругости сжатой пружины мембрана начинает опускаться, перекрывая проход жидкости через клапан.
После закрытия клапана (см. рисунок 2е) мембрана плотно прижимается к седлу за счет силы, вызванной давлением жидкости и разной площадью смоченной поверхности мембраны.
В вышеописанном процессе при открытии электромагнитного клапана мембрана поднимается под действием жидкости – «всплывает», поэтому клапаны такой конструкции часто называют соленоидными клапанами с плавающей мембраной.
Примеры клапанов с плавающей мембраной
Описанный принцип действия справедлив для нормально закрытых (НЗ) электромагнитных клапанов. Нормально открытые (НО) электромагнитные клапаны устроены аналогичным образом, но пилотное отверстие открыто в нормальном состоянии и закрывается при подаче напряжения на катушку. Мембрана этих клапанов также поднимается в результате воздействия на неё давления жидкости. Таким образом, если перепад давления ΔP меньше минимально допустимого ΔPмин, то мембрана будет закрывать основной проход клапана, но пилотное отверстие будет открыто. Поэтому при ΔP мин НО клапан будет открыт, но расход через него будет значительно меньше, чем в рабочем режиме, когда ΔP > ΔPмин.
Электромагнитные клапаны с плавающей мембраной корректно работают при ΔPмин макс. При ΔP мин клапаны работают, но расход рабочей среды через них намного меньше номинального.
Существует ещё одна распространённая конструкция электромагнитных клапанов непрямого действия – клапаны с мембраной принудительного подъёма. Она изображена на рисунке 3. Принцип действия этих клапанов аналогичен ранее рассмотренным.
Рисунок 3 – Конструкция и принцип действия электромагнитных клапанов с мембраной принудительного подъемВ исходном состоянии (см. рисунок 3а) напряжение на катушку клапана не подано. Жидкость, поступающая на вход клапана через небольшое перепускное отверстие, проникает в область над мембраной и прижимает мембрану к седлу клапана.
Подача напряжения на катушку (см. рисунок 3б) вызывает подъем сердечника. Через пилотное отверстие жидкость начинает поступать на выход клапана и давление над мембраной падает.
Мембрана поднимается за счет разности давлений над и под ней, открывая основное проходное сечение соленоидного клапана (см. рисунок 3в).
В отличии от ранее рассмотренных клапанов, электромагнитные клапаны с мембраной принудительного подъёма могут работать без перепада давления (ΔP = 0 бар). В такой ситуации подъем мембраны осуществляется за счет усилия электромагнитной катушки, втягивающей сердечник. Он поднимает мембрану, связанную с сердечником пружиной.
Способность этих клапанов работать без перепада давления привела к тому, что их часто ошибочно называют клапанами прямого действия. Более правильное название – соленоидные клапаны с мембраной принудительного подъема – обусловлено тем что при отсутствии давления, мембрана поднимается принудительно (не зависимо от рабочей среды) за счет усилия, создаваемого электромагнитным полем катушки.
Примеры клапанов с плавающей мембраной
Выше были рассмотрены три наиболее распространенные конструкции клапанов с электромагнитным приводом. Однако, все они имеют следующие общие особенности:
- рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана, внутри трубки сердечника;
- внутри имеется не менее одного небольшого отверстия, критически важного для работы клапана;
- большая часть электромагнитных клапанов непрямого действия, имеют мембрану из гибкого материала. Как правило, это одна из разновидностей резины: NBR – нитрилбутадиеновая, EPDM – этилен-пропиленовая или FPM – фтористая.
1.3. Факторы, ограничивающие использование соленоидных клапанов
1.3.1 Рабочая жидкость, проходящая через клапан, находится вокруг сердечника клапана и внутри трубки сердечника
Если через клапан проходит чистая и однородная среда без каких-либо примесей, она практически не влияет на работу самого соленоидного клапана. Однако, если среда загрязнена и содержит в себе мелкодисперсные элементы (например, вода с примесями ржавчины), эти частицы со временем оседают на сердечнике и стенках трубки сердечника. Загрязнение трубки сердечника может привезти к заклиниванию сердечника внутри неё, что вызывает залипание клапана (см. рисунок 4). При этом электромагнитный клапан может остаться как в открытом, так и в закрытом состоянии.
Рисунок 4 – Заклинивание сердечника клапана вследствие загрязненияТакже прямой контакт рабочей жидкости с трубкой сердечника обеспечивает хороший теплообмен между ними. Поэтому если через электромагнитный клапан проходит горячая среда (пар или горячая вода), то сердечник будет нагреваться, вызывая нагрев катушки и ускоренное старение межвитковой изоляции. Как правило, катушки соленоидных клапанов, рассчитанных на работу с паром, имеют высокий класс нагревостойкости изоляции (F или H). Несмотря на это, перегрев и дальнейшее перегорание катушки парового клапана не яв- ляется чем-то необычным и встречается достаточно часто.
В случаях, когда через соленоидный клапан проходит холодная среда (например, охлажденный раствор пропиленгликоля), трубка сердечника охлаждается до температуры ниже температуры окружающей среды. Это приводит к выпадению конденсата, под действием которого ржавеют металлические части катушки и нарушается целостность изоляционной оболочки (см. рисунок 5). В итоге, влага проникает внутрь катушки, вызывает повышенное токопотребление, а со временем, и пробой изоляции.
Рисунок 5 – Повреждение катушки под воздействием агрессивной окружающей средыДля защиты от этого явления следует исключить выпадение конденсата на клапанах (например, уменьшением влагосодержания цехового воздуха). Если полностью исключить конденсат не удаётся, то можно добиться существенного уменьшения его негативного влияния, воспользовавшись клапанами, катушка которых имеет влагозащиту, например, электромагнитными клапанами GEVAX серии 1901R-KBN. Если же и это невозможно, то следует вручную герметизировать уязвимые узлы катушки, защитив их от попадания конденсата.
1.3.2 Внутри клапана имеется не менее одного небольшого отверстия, критически важного для работы всего клапана
Для соленоидных клапанов прямого действия – основное проходное сечение, имеющее малый диаметр; для соленоидных клапанов непрямого действия – перепускное и пилотное отверстия. Дело в том что засорение перепускного или пилотного отверстия приводит к нарушению нормальной работы соленоидного клапана. Как правило, это не вызывает необратимых разрушений конструкции, и подобные неисправности могут быть легко устранены путем чистки клапана. Однако, очистка внутренних частей клапана требует его разборки и, как следствие, невозможна во время его работы.
Таким образом, чистота рабочей среды является одним из наиболее важных факторов, позволяющих обеспечить длительную и безотказную работу соленоидных клапанов.
1.3.3 Большая часть электромагнитных клапанов непрямого действия имеют мембрану из гибкого материала
Ранее было отмечено, что соленоидные клапаны рассчитаны на работу с чистыми средами. Наличие в среде крупных загрязнений может привести не только к засорам клапана, но и к разрыву мембраны, после чего потребуется её замена.
При возникновении в системе гидроударов также возможно повреждение мембраны из-за кратковременного превышения допустимого давления.
Энергия среды, проходящей через клапан, является одним из основных факторов, обеспечивающих как открытие клапана, так и его герметичность в закрытом состоянии. Поэтому соленоидные клапаны непрямого действия являются однонаправленными – корректная работа обеспечивается только при протекании среды от входа к выходу. Верное направление подачи среды показано на рисунке 6. Если при монтаже клапана вход и выход будут перепутаны, то рабочая среда будет поступать только в зону под мембраной, в результате чего «передавит» пружину и откроет клапан (см. рисунок 7).
Рисунок 6 – Верное направление подачи жидкости в клапан Рисунок 7 – Не верное направление подачи жидкости в клапанОпределить правильное положение при монтаже можно по стрелке на корпусе клапана (см. рисунок 8).
Рисунок 8 – Стрелка на корпусе клапана для определения направления подачи средыОднако, даже при правильном направлении потока жидкости, мембранная конструкция может вызывать проблемы при эксплуатации. Они проявляются в момент подачи жидкости на вход клапана или при резких изменениях давления газообразных сред.
Дело в том, что перепускное отверстие в мембране имеет небольшой размер. Жидкость, проходящая через него, не может сразу заполнить всю полость над мембраной клапана (см. рисунок 9а). В этот момент времени давление жидкости под мембраной больше, чем давление жидкости над ней. Это вызывает подъем мембраны и самопроизвольное открытие электромагнитного клапана. Клапан будет находиться в открытом состоянии до тех пор, пока жидкость не заполнит область над мембраной через перепускное отверстие (см. рисунок 9б). После завершения этого процесса давление над и под мембраной клапана уравновешивается и клапан закрывается (см. рисунок 9в).
Рисунок 9 – Последовательность возникновения эффекта самопроизвольного открытия соленоидного клапана с плавающей мембраной при подаче жидкостиВремя открытия клапана в описанном переходном процессе зависит от многих факторов, но даже для больших клапанов оно не превышает 1…2 с. Однако, за это время через клапан может пройти несколько литров жидкости.
Несмотря на то, что давление среды, как правило, не выходит за пределы рабочего диапазона, клапан подвергается повышенным ударным нагрузкам. Частое повторение данного явления при эксплуатации приводит к повышенному износу мембраны и пружины клапана, а со временем и к их поломке.
1.4. Ключевые особенности эксплуатации соленоидных клапанов
- Соленоидные клапаны предназначены для работы с чистыми, гомогенными средами. Загрязненная среда вызывает нарушение работы клапана, а иногда и его поломку.
- Использование соленоидных клапанов для управления потоком среды, температура которой сильно отличается от температуры окружающей среды, имеет свои особенности и требует особой внимательности при выборе клапана и его эксплуатации.
- Направление подачи среды в электромагнитный клапан является критически важным. Соленоидный клапан следует считать однонаправленным, если иное не указано в технической документации.
Несмотря на то, что были рассмотрены лишь наиболее часто встречающиеся факторы, ограничивающие использование соленоидных клапанов, может сложиться впечатление, что соленоидный клапан является источником проблем и частых неполадок. На самом деле это не так. Электромагнитные клапаны являются надежным устройством управления потоком жидкости или газа при соблюдении условий эксплуатации.
2. Принцип работы и особенности эксплуатации клапанов с пневмоприводом
2.1. Устройство угловых седельных клапанов с пневмоприводом
Конструкция седельного клапана с пневматическим приводом показана на рисунке 10.
Рисунок 10 – Конструкция седельного клапана с пневмоприводомВнутри корпуса пневмопривода (1) находится поршень (2), герметично прилегающий к стенкам пневмопривода за счет уплотнения (3). Под действием пружины (4) поршень занимает положение, соответствующее начальному состоянию пневмоклапана (закрытому для НЗ клапанов и открытому для НО клапанов). На поршне жестко закреплён шток (5) с диском (6). В закрытом состоянии диск надежно прижимается к седлу (7) и обеспечивает герметичность клапана. Большая часть клапанов с пневмоприводом имеет визуальный индикатор (8), механически связанный с поршнем клапана.
Для открытия клапана (см. рисунок 11) необходимо подать сжатый воздух в пневмопривод. Пневмоклапан открывается под действием сжатого воздуха, перемещающего поршень вместе со штоком вверх, что также приводит к сжатию пружины.
Рисунок 11 – Клапан с пневмоприводом в открытом состоянииДля закрытия клапана достаточно сбросить воздух из пневмопривода. Поршень под действием пружины опускается вниз, прижимая диск к седлу.
Открытие клапана с пневмоприводом осуществляется только за счет давления сжатого воздуха, а закрытие – за счет мощной пружины. Таким образом, работа клапанов с пневмоприводом существенно меньше зависит от параметров среды, проходящей через него, в отличии от соленоидных клапанов.
Примеры угловых клапанов с пневмоприводом
2.2. Схема управления клапанами с пневмоприводом
Для управления пневмоклапанами используются специальные электромагнитные клапаны, называемые пилотными или распределительными клапанами. Эти клапаны называются так, потому что они не просто перекрывают подачу рабочей среды, но и перераспределяют её между различными входными и выходными портами.
Для управления клапанами с пневмоприводом используются распределительные клапаны типа 3/2, схема работы которых показана на рисунке 12.
Рисунок 12 – Пневматическая схема распределителя 3/2Порт 1 соединяется со входным портом пневмопривода, к порту 2 подключается подвод сжатого воздуха, а порт 3 остается открытым и используется для выхлопа – выпуска воздуха из пневмопривода в атмосферу при закрытии клапана с пневмоприводом.
До тех пор, пока катушка распределительного клапана обесточена, порт 1 соединен с портом 3, а порт 2 перекрыт. Таким образом, сжатый воздух в пневмопривод не поступает, а сам пневмопривод соединен с атмосферой – клапан с пневмоприводом закрыт.
При подаче напряжения на катушку порт 1 соединяется с портом 2, а порт 3 перекрывается. Сжатый воздух поступает в пневмопривод, за счет чего пневмоклапан открывается.
На рисунке 13 показаны распределительные электромагнитные клапаны 3/2 различной конструкции.
Рисунок 13 – Распределительные клапаны 3/2 различных конструкцийУ клапана, изображенного слева, выхлоп в атмосферу проходит сквозь трубку сердечника. У клапана, изображенного справа, порты подачи воздуха и выхлопа находятся сверху и снизу клапана.
На рисунке 14 показана обобщенная схема управления клапаном с пневмоприводом.
Рисунок 14 – Обобщенная схема управления клапаном с пневмоприводомЭлектрический сигнал из системы управления поступает на распределительный клапан (2), который осуществляет управление потоком сжатого воздуха, подавая его в пневмоклапан (1). Требуемая степень очистки воздуха и стабилизация давления обеспечивается фильтром-регулятором (3).
Распределительные клапаны могут быть установлены непосредственно на клапане с пневмоприводом (см. рисунок 15) или отдельно в шкафу управления (см. рисунок 16).
Рисунок 15 – Монтаж пилотного клапана на клапан с пневмоприводомРисунок 16 – Монтаж распределительных клапанов в шкафу управленияКаждый из этих способов монтажа имеет свои преимущества и недостатки.
Установка распределителей на клапанах с пневмоприводом
Преимущества
- +Меньше время срабатывания клапанов (так как воздух поступает сразу в пневмопривод).
- +Выше энергоэффективность за счет экономии сжатого воздуха (при каждом срабатывании клапана с пневмоприводом весь воздух после распределительного клапана сбрасывается в атмосферу; при монтаже распределителя непосредственно на привод клапана между ними отсутствует пневмотрубка, следовательно расходуемый объем сжатого воздуха ниже).
Недостатки
- —Необходимость прокладки двух линий до клапана: пневматической и электрической.
- —Распределитель находится возле клапана с пневмоприводом, где может подвергаться негативному воздействию окружающей среды.
Установка распределителей в шкафу управления
Преимущества
- +Упрощение разводки электрических цепей (все распределители в одном шкафу, до клапана с пневмоприводом прокладывается только одна линия – пневматическая).
- +Все распределители легко доступны для обслуживания, так как находятся в шкафу управления.
- +Все распределители надежно защищены от воздействия окружающей среды (повышенная температура, запыленность, мойка оборудования химическими реагентами и так далее).
Недостатки
- —Больше время срабатывания клапанов с пневмоприводом.
- —Повышенный расход воздуха.
3. Сравнение клапанов с пневмоприводом с соленоидными клапанами
Основным преимуществом клапанов с пневмоприводом перед электромагнитными клапанами является их повышенная устойчивость к воздействию негативных факторов окружающей среды и среды, проходящей через клапан. Это обусловлено тем, что клапаны с пневмоприводом:
- приводятся в действие сжатым воздухом, а не средой, проходящей через клапан;
- не имеют дополнительных перепускных отверстий, которые легко забиваются малейшими загрязнениями;
- менее подвержены влиянию окружающей среды, так как имеется возможность вынести распределительный клапан в шкаф управления, где он будет защищен от вредных воздействий.
Каким же образом система, построенная на клапане с пневмоприводом, может оказаться надежнее системы, основанной на соленоидных клапанах? Ведь любой клапан с пневмоприводом требует своего распределителя, что увеличивает количество последовательно соединенных элементов системы. Это должно приводить к уменьшению общей надежности системы. Данное замечание справедливо при эксплуатации клапанов в идеальных условиях.
Однако, при неблагоприятных условиях запаса устойчивости соленоидного клапана может оказаться недостаточно. Это вытекает из особенностей его конструкции, описанных выше.
Следующим фактором, говорящим в пользу клапанов с пневмоприводом, является их меньшее гидравлическое сопротивление и, как следствие, больший расход среды при том же давлении на входе. Это достигается благодаря угловой (наклонной) конструкции клапана. Проходящий через него поток существенно меньше отклоняется от прямолинейного движения, следовательно расходует меньше энергии на преодоление сопротивления клапана. Для примера в таблице 1 приведены данные коэффициента расхода Kv для электромагнитных клапанов GEVAX серии 1901R-KBN и клапанов с пневмоприводом VALMA серии ASV.
Тип клапана | Электромагнитный клапан | Клапан с пневмоприводом |
---|---|---|
Схема движения потока жидкости | ||
Размер клапана | Коэффициент расхода Kv, л/мин | |
DN 15 | 65 | 70 (+ 8%) |
DN 20 | 110 | 150 (+ 36%) |
DN 25 | 180 | 308 (+ 71%) |
DN 32 | 250 | 608 (+ 143%) |
DN 40 | 390 | 700 (+ 79%) |
DN 50 | 575 | 910 (+ 58%) |
В отличии от соленоидных клапанов, клапаны с пневматическим приводом преимущественно являются двунаправленными, то есть могут пропускать среду как в прямом, так и в обратном направлении (см. рисунок 17). Направление, показанное на изображении слева, называют «вход под диском», на изображении справа – «вход над диском».
Рисунок 17 – Допустимые направления движения жидкости для клапанов с пневмоприводомОчевидно, что при подаче рабочей среды «над диском», её давление препятствует открытию клапана. Этот эффект приводит к снижению рабочего давления клапана, однако в некоторой мере он может быть скомпенсирован увеличением управляющего давления воздуха.
Пример изменения рабочего давления при подаче среды над и под диском
На рисунке 18 изображен шильдик клапана с пневмоприводом VALMA ASV-T-040-AL063.
Рисунок 18 – Шильдик клапана с пневмоприводом VALMA ASV-T-040-AL080-UРабочее давление пневмоклапана при подаче среды «под диском» составляет 6 бар, при подаче среды «над диском» – 5 бар. Эти данные указаны для давления управляющего воздуха 6 бар. Однако, изменением давления управления возможно увеличить рабочее давление клапана при подаче среды «над диском». Данная зависимость показана на рисуноке 19.
Рисунок 19 – График зависимости давлений рабочей и управляющей средыПо графику видно, что увеличение управляющего давления до 8 бар позволяет увеличить давление рабочей среды (при входе «над диском») до 10 бар, а увеличение управляющего давления до 9 бар позволяет увеличить давление рабочей среды до 12 бар.
Однако, соленоидные клапаны тоже имеют преимущества перед клапанами с пневмоприводом. Системы, построенные на основе соленоидных клапанов, как правило, проще и дешевле систем, построенных на основе клапанов с пневмоприводом, поскольку состоят из меньшего числа компонентов.
Электромагнитные клапаны могут применяться на объектах, в составе которых отсутствует пневмосистема. Установка оборудования для сжатия воздуха и его очистки на таких объектах приводит к сильному удорожанию и усложнению системы в целом.
Заключение
В данной статье описана конструкция электромагнитных клапанов и седельных клапанов с пневмоприводом, рассмотрены их преимущества и недостатки. Вся информация, изложенная в статье, основана на конструктивных особенностях клапанов обоих типов и может быть применима к клапанам указанных конструкций независимо от конкретных моделей или изготовителей клапанов.
Обобщенные преимущества и недостатки электромагнитных клапанов и клапанов с пневмоприводом приведены ниже.
Электромагнитные клапаны
- +Подключаются напрямую к электрической системе управления
- +Не требуют подвода сжатого воздуха
- +Системы на основе данных клапанов, как правило, проще и дешевле
- —Имеют особые требования к чистоте рабочей среды
- —Однонаправленные
Клапаны с пневмоприводом
- +Устойчивы к загрязнениям рабочей среды
- +Давление, вязкость, скорость потока и другие параметры рабочей среды не влияют на работу клапана
- +Как правило, двунаправленные
- —Для подключения к системе управления, требуют установки распределительных (пилотных) электромагнитных клапанов
- —Для работы требуют подключение сжатого воздуха
Инженер ООО «КИП-Сервис»
Быков А.Ю.
Читайте также:
Соленоидный вентиль | ООО «Сибхолод»
Описание
Прямое действие:
- Срабатывание при нулевом давлении;
- Соленоиды большой мощности.
Непрямое действие:
- Отсутствие гидроудара в трубопроводах за счёт плавного открытия и закрытия;
Модель | Тип катушки | Соединительные концы под пайку внахлёст ODS | Kv, м³/ч | Ps, бар | Ts,°С | Чертёж | ||
дюйм | мм | min | max | |||||
1028/2S | HF2 HF3 HM2 HM3 HM4 CM2 | 1/4 | — | 0,15 | 45 | -35 | +110 | |
1028/2S.E | 1/4 | — | 0,23 | |||||
1028/3S | 3/8 | — | ||||||
1028/M10S | — | 10 | ||||||
1068/3S | 3/8 | — | 0,8 | +105 | ||||
1068/M10S | — | 10 | ||||||
1068/M12S | — | 12 | ||||||
1068/4S | 1/2 | — | ||||||
1078//M12S | — | 12 | 2,2 | |||||
1078/4S | 1/2 | — | ||||||
1078/5S | 5/8 | 16 | 2,61 | |||||
1079/7S | 7/8 | 22 | ||||||
1098/5S | 5/8 | 16 | 3,8 | |||||
1098/6S | 3/4 | — | 4,8 | |||||
1098/7S | 7/8 | 22 | 5,7 | |||||
1099/9S | 1 1/8 | — | ||||||
1078/9S | 1 1/8 | — | 10 | |||||
1079/11S | 1 3/8 | 35 | ||||||
1038/3S | 3/8 | — | 1 | +110 | ||||
1038/M10S | — | 10 | ||||||
1038/M12S | — | 12 | ||||||
1038/4S | 1/2 | — | ||||||
1048/M12S | — | 12 | 2,4 | |||||
1048/4S | 1/2 | — | ||||||
1048/5S | 5/8 | 16 | 3 | |||||
1049/7S | 7/8 | 22 | ||||||
1058/5S | 5/8 | 16 | 3,8 | |||||
1058/6S | 3/4 | — | 4,8 | |||||
1058/7S | 7/8 | 22 | 5,7 | |||||
1059/9S | 1 1/8 | — | ||||||
1098/9S | 1 1/8 | — | 10 | |||||
1099/11S | 1 3/8 | 35 | ||||||
1078/11S | 1 3/8 | 35 | 16 | |||||
1079/13S | 1 5/8 | — | ||||||
1079/M42S | — | 42 | ||||||
1078/13S | 1 5/8 | — | 25 | |||||
1078/M42S | — | 42 | ||||||
1079/17S | 2 1/8 | 54 |
Соленоидные вентили | Системы и приборы автоматического регулирования
Соленоидные вентили устанавливают на потоках хладагента (как правило, перед регулирующим вентилем). Работают они следующим образом. При включении катушки 6 (рис. 91) электромагнита в цепь электрического тока возникает электромагнитное поле, которое втягивает стальной сердечник 5 с прикрепленным к нему разгрузочным клапаном 8. После этого жидкость с нагнетательной стороны, находящаяся в полости над клапаном, через отверстия малого диаметра в седле разгрузочного клапана поступает в полость под клапаном. При этом основной клапан 4-разгружается от давления, прижимавшего его к седлу, и как бы «всплывает», открывая проход жидкости из нагнетательного трубопровода.
При выключении соленоидной катушки сердечник 5 с разгрузочным клапаном 8 медленно опускается вниз на свое седло.
Давление на основной клапан 4 сверху начинает расти, и он под действием веса и напора садится на гнездо, перекрывая проход.
При выходе из строя соленоидной катушки 6 или при перерыве подачи электроэнергии соленоидный вентиль можно открыть или закрыть вручную, сняв для этого колпачок 1 и вращая накидным ключом шпиндель 2 ручного привода.
Иногда импульс изменения температуры передается не электрическому соленоидному вентилю, а регулирующему клапану с пневматическим приводом. Проход в этих клапанах устанавливается в зависимости от величины давления сжатого воздуха на мембрану. Клапаны такого типа (рис. 92) бывают рычажные или пружинные.
Регулирующие клапаны широко применяются в абсорбционных холодильных машинах.
Регулирование производительности компрессоров в установках с промежуточным хладоносителем наиболее удобно производить по температуре хладоносителя на выходе из испарителя. При ее понижении ниже заданного предела регулятор температуры размыкает цепь катушки магнитного пускателя и останавливает электродвигатель.
Рис. 91. Соленоидные вентили:
а — аммиачный,
б — фреоновый;
1 — колпачок,
2 — шпиндель ручного привода,
3, 9 — выходной и входной штуцеры,
4 — основной клапан,
5 — сердечник,
6 — соленоидная катушка,
7 — клеммная коробка,
8 — разгрузочный клапан
Рис. 92. Регулирующие клапаны с пневматическим мембранным приводом:
а — рычажный, б — пружинный
Что такое электромагнитный клапан?
Когда я начал работать с нашим сайтом 3 года назад, я был сбит с толку продуктами, которые он размещал на своих страницах. С тех пор я многое узнал о функциях и применении тех продуктов, которые когда-то были такими загадочными. Но один клапан всегда ускользал от меня. На этой неделе я подумал, что пришло время наконец ответить на мой вопрос: что, черт возьми, такое соленоидный клапан?
ЧТО ТАКОЕ СОЛЕНОИДНЫЙ КЛАПАН?
Электромагнитный клапан — это клапан с электронным управлением, который обычно используется для замены ручного клапана, поэтому клапаном можно управлять дистанционно.
КАК ЭТО РАБОТАЕТ
Электромагнитный клапан состоит из двух основных блоков: соленоида или электромагнита и корпуса клапана, который содержит два или более отверстий или отверстий. Блок соленоида состоит из нескольких основных частей, катушки, плунжера, втулки в сборе и плунжера с совместимым уплотнительным материалом.
Электромагнитные клапаны работают за счет использования электромагнитной соленоидной катушки для открытия или закрытия клапана. Когда катушка внутри соленоида находится под напряжением, плунжер поднимается или опускается в трубке втулки, чтобы открыватель закрыл отверстие (в зависимости от того, как клапан был настроен для работы).
ЛУЧШИЕ ПРИЛОЖЕНИЯ
Электромагнитные клапаны хорошо работают во многих различных областях, связанных с жидкостями или газами:
- Общие приложения включения / выключения
- Стенды поверочные и испытательные
- АСУ ТП
- Контуры управления пилотной установкой
- Многие приложения OEM (спринклерные системы, стиральные машины и т. Д.)
ПРЕИМУЩЕСТВА
Электромагнитные клапаны чрезвычайно универсальны. Их можно использовать во многих разнообразных и уникальных системных приложениях, работающих с воздухом, водой, нефтью, газом, паром… практически с любыми жидкими или газообразными веществами.
Еще одно преимущество соленоидных клапанов — это то, что они являются очень эффективным средством автоматического регулирования расхода жидкостей и газов. Эти типы клапанов требуют меньше проводов, затрат и усилий по сравнению с другими клапанами.
НЕДОСТАТКИ
Конечно, у этих клапанов не может быть недостатков. Электромагнитные клапаны плохо справляются с грязными или загрязненными жидкостями / газами. Посторонние предметы могут накапливаться в трубках сердечника и мешать работе.
Также очень важно, чтобы на эти клапаны подавалось правильное напряжение.Слишком мало, и он не будет открываться или закрываться, может вызвать «дребезжание» и чрезмерный шум, и он будет быстрее изнашиваться. Перенапряжение приведет к слишком большому нагреву и преждевременному износу соленоида.
Они также чувствительны к влаге. Влага внутри корпуса соленоида вызовет отказ катушки и остановку открытия / закрытия клапана.
Если вы думаете, что электромагнитный клапан может быть подходящим для вашего применения, поговорите с инженером, имеющим опыт выбора / определения размеров этих типов клапанов. Это поможет вашей системе работать с максимальной эффективностью при меньшем объеме обслуживания.
Правильное мышление электромагнитных клапанов подходит для ваших применений? Спросите нас об этом! У нас есть широкий выбор клапанов для вашего применения.
Электромагнитные клапаны — Bürkert
AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBoliviaBonaireBosnia и HerzegovinaBotswanaBrazilBritish Virgin IslandsBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCayman IslandCentral Африканский RepChadChileChinaChristmas IslandCocos IslandColombiaComorosCongoCook IslandCosta RicaCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFaroe IslandsFiji IslandsFinlandFranceFrench GuianaFrench PolynesiaGabonGambiaGeorgiaGermanyGhanaGreeceGreenlandGrenadaGuadeloupeGuatemalaGuinea, BissauGuinea, RepGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsraelItalyIvory CoastJamaicaJapanJordanKazakhstanKenyaKiribatiKorea, SouthKosovoKuwaitKyrgyzstanLaoLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacau МадагаскарМалавиМалайзияМальдивыМалиМальтаМариана островМаршалл-АйлендМартиникаМавританияМаврикийМайоттМексикаМикронезия (Федеративные Штаты) МолдоваМонакоМонголияМонтенегроМонтсерратМароккоМозамбикМьянмаНамибияНаур.AntillesNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNorfolk IslandNorth MacedoniaNorwayOmanPakistanPalauPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairn IslandPolandPortugalPuerto RicoQatarRomaniaRussiaRwandaRéunionSaint Киттс и NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSaudi ArabiaSenegal RepublicSerbia, Республика ofSeychellesSingaporeSlovakiaSloveniaSolomon IslandSomaliaSouth AfricaSpainSri LankaSudanSurinameSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTuvaluUgandaUkraineUnited арабских EmiratesUnited KingdomUnited StatesUnited Штаты Virgin IslandsUruguayUzbekistanVanuatuVenezuelaVietnamWallis и Футуна IslandWestern SamoaYemenZambiaZimbabwe
Как работает электромагнитный регулирующий клапан?
17 сен. Как работает электромагнитный регулирующий клапан?
Отправлено в 21:00 в дисковых затворах от Butterfly Valves & ControlsСоленоиды полезны в большом количестве механических функций.Как работает соленоид? Электромагнитная катушка из проволоки преобразует электрическую энергию в механическую. Положительный и отрицательный полюса совершают линейное движение в электромагнитном поле, перемещая поршень вперед или назад.
Мы находим соленоиды, используемые в таких автоматизированных приложениях, как спринклерные системы, выключатели питания, автомобильные стартеры и многое другое.
Что такое электромагнитный регулирующий клапан?Электромагнитный регулирующий клапан используется инженерами для автономного и удаленного управления потоком жидкости в системе, что устраняет необходимость в ручном закрытии и открытии клапанов.Текущей средой может быть вода, воздух, газ, масло, пар или хладагент.
Электромагнитный регулирующий клапан состоит из двух основных компонентов: соленоида вверху и системы клапанов внизу. Электромагнетизм, вызванный токами, перемещает плунжер вверх или вниз, чтобы сжимать и контролировать поток. Электромагнитный регулирующий клапан бывает либо «нормально закрытым», либо «нормально открытым».
Как работает электромагнитный клапан?Электромагнитный клапан состоит из двух частей: соленоида и корпуса клапана.Сам соленоид содержит катушку электромагнитной индукции, окружающую железный центр (плунжер).
Для «нормально открытого» соленоидного клапана клапан закрывается при обесточивании. Чтобы «открыть» клапан, ток активирует магнитное поле и перемещает врезку. Но когда клапан «нормально закрыт», ток возбуждения поднимает плунжер, открывая отверстие и позволяя среде течь через клапан.
Типы электромагнитных клапановПоскольку электромагнитные клапаны используются во многих приложениях, различные конструкции выполняют разные функции.Ниже описаны пять распространенных типов электромагнитных клапанов.
1. Клапаны прямого действияЭлектромагнитный клапан прямого действия (или прямого действия) прост и обычно используется для приложений с относительно небольшим расходом. По своей функции он не зависит от внешнего давления. Клапан открывается прямым действием, когда электромагнитная активность в катушке подтягивает плунжер вверх, чтобы позволить среде пройти (или наоборот для обычно открытых клапанов).
Клапаны прямого действия не имеют минимального рабочего давления или перепада давления.Диаметр отверстия (вместе с магнитной силой, приложенной к электромагнитному клапану) определяет скорость потока и максимальное рабочее давление.
2. Клапаны с пилотным управлениемКлапаны с пилотным управлением (также называемые «сервоуправляемыми» или «пилотными») представляют собой клапаны непрямого действия. Открытие и закрытие этих клапанов происходит при разнице давлений среды, поэтому давление 0,5 бар является минимальным. Клапаны с пилотным управлением требуют меньше электроэнергии, работают с меньшей скоростью и нуждаются в полной мощности, чтобы оставаться открытыми.Эти электромагнитные клапаны лучше всего подходят для приложений с высоким расходом и достаточным перепадом давления.
Процесс потока клапана непрямого действия является односторонним. Между впускным и выпускным портами находится резиновая мембрана, в которой есть небольшое отверстие для потока среды из впускного отверстия в верхний отсек. Усиление из дополнительной камеры давления позволяет меньшим соленоидам управлять большим расходом.
Когда клапан обычно закрыт, давление на входе над мембраной и поддерживающая пружина над ней удерживают его закрытым.Управляющее отверстие открывается, когда на соленоид подается питание, и давление над диафрагмой уменьшается. Это создает перепад давления с обеих сторон мембраны, заставляя ее подниматься, так что среда может течь к выходному отверстию из входа. Для «нормально открытого» клапана этот процесс работает с теми же деталями, но наоборот.
3. Двухходовые клапаныДвухходовые клапаны являются наиболее распространенным типом электромагнитных регулирующих клапанов. Есть два порта: порт полости и порт отверстия корпуса.Каждый порт используется поочередно как для запуска, так и для остановки медиапотока.
Двухходовой клапан настроен на «нормально открытый» или «нормально закрытый». Обычно закрытые двухходовые клапаны более распространены и остаются закрытыми до тех пор, пока электрическая энергия не заставит клапан открыться.
Нормально закрытый соленоидный клапан является наиболее распространенным и остается закрытым до тех пор, пока источник питания не откроет его. Нормально открытый клапан по умолчанию открыт до тех пор, пока источник питания не закроет клапан. Когда электроэнергия прекращается, клапан снова открывается в состояние по умолчанию.
4. Трехходовые клапаныТрехходовой электромагнитный клапан имеет три порта. Трехходовой клапан хорошо подходит для операций, требующих переменного и полного давления. Одновременно можно подключить только два порта. Ниже приведены различные варианты установки трехходового клапана.
● Установка для смешивания (два входа и один выход): Когда плунжер блокирует режим отсутствия питания нижнего отверстия, среда течет от верхнего входа к выходу.При включении плунжер подтягивается вверх, чтобы закрыть верхний выпуск, так что среда проходит от другого впускного отверстия к выпускному.
● Отводная установка (одно входное и два выходных): Когда плунжер блокирует нижнее отверстие в режиме отсутствия питания, среда перемещается от входа к верхнему выходу. В режиме с питанием поршень перемещается вверх, чтобы закрыть верхнее выпускное отверстие, поэтому среда направляется от впускного отверстия к другому выпускному отверстию.
● Универсальная установка: Эта конструкция позволяет среде течь в любом направлении, но, как и в вышеупомянутых двухходовых клапанах, одновременно подключаются только два порта.
5. Четырехходовые клапаныЧетырехходовые клапаны обычно используются с цилиндром или приводом двойного действия и включают четыре или более соединений порта. Два из четырех портов обеспечивают давление, а два других используются для давления выхлопных газов. Настройки четырехходового клапана: нормально открытый, нормально закрытый или универсальный.
Применение электромагнитного клапанаЭлектромагнитные клапаны помогают во многих процессах, будь то высокое или низкое давление или малый или большой расход.Ниже приведены некоторые примеры использования электромагнитных регулирующих клапанов для управления давлением, направлением и потоком среды в процессах.
● Пневматические приводы
● Производство продуктов питания и напитков
● Торговые холодильные установки
● Системы полива
● Посудомоечные и другие стиральные машины
● Медицинское и стоматологическое оборудование
Связаться с дисковыми затворами и средствами управления сегодняЭлектромагнитные управляющие клапаны используются во многих приложениях для облегчения процессов, требующих автоматического или дистанционного управления клапанами.
Butterfly Valves & Controls предлагает соленоиды Namur и Inline. Эти клапаны обеспечивают превосходную работу с высокими расходами, широким диапазоном температур и устойчивостью к коррозии при длительном использовании. Этот электромагнитный регулирующий клапан идеально подходит для приложений, требующих простой установки, монтажа на линии и ручного дублирования. Свяжитесь с нами по телефону (817)421-5343 или напишите нам по адресу [email protected] для получения информации о наших клапанах или помощи в поиске правильного клапана для ваших операций.
Как работают электромагнитные клапаны — инженерное мышление
Как работают электромагнитные клапаны Как работают электромагнитные клапаны, в этой статье мы рассмотрим, как работают электромагнитные клапаны. Мы рассмотрим основные операции двух типов электромагнитных клапанов. Мы также расскажем, как выглядят настоящие электромагнитные клапаны, почему используются электромагнитные клапаны, где используются электромагнитные клапаны и как работают электромагнитные клапаны.
Прокрутите вниз, чтобы посмотреть видео на YouTube по этой статье
Если вы работаете с соленоидными клапанами, вам нужно загрузить приложение Magnetic Tool от Danfoss.
Приложение Magnetic Tool, входящее в состав Danfoss CoolApps Toolbox, позволяет быстро и легко тестировать катушку электромагнитного клапана и доступно во всем мире для Android и iPhone.
🎁 Загрузите магнитный инструмент за бесплатно — нажмите здесь
Электромагнитные клапаны используются для преобразования электрической энергии в механическую.
Часть электромагнитного клапанаЭлектромагнитные клапаны имеют весьма характерный внешний вид. Как и следовало ожидать, у них есть корпус клапана, но сверху у них есть блок с выходящими проводами.Эта верхняя часть является соленоидом, а нижняя часть — клапаном, поэтому образует соленоидный клапан.
Эти клапаны бывают разных форм и размеров, я просто покажу вам несколько примеров ниже. Вариация формы зависит от емкости клапана, давления, с которым он работает, и различных внутренних механизмов.
Типы электромагнитных клапановПочему мы используем электромагнитные клапаны
Почему мы используем электромагнитные клапаны? Эти клапаны позволяют инженерам автономно и удаленно управлять потоком жидкости в системе.Эта жидкость может быть жидкостью или газом. Например, вода, воздух, природный газ, масло, пар, хладагент и т. Д. Список можно продолжать и продолжать.
Катушка соленоида используется для управления клапаном, пропуская через нее электрический ток для создания электромагнитного поля и управления клапаном. Это означает, что, если он подключен к контроллеру, им можно управлять автономно и удаленно с помощью компьютера без необходимости для инженеров физически открывать и закрывать клапаны. Это позволяет системам работать более эффективно и безопасно.
Где мы используем электромагнитные клапаны
Где мы используем или находим электромагнитные клапаны? Короткий ответ — ВЕЗДЕ! Электромагнитные клапаны можно найти во всем, от стиральных машин до космических ракет, хотя в этом видео мы сосредоточимся на промышленных приложениях и системах отопления, вентиляции и кондиционирования воздуха.
Приведем несколько примеров.
В коммерческих холодильных системах мы почти наверняка найдем в системе по крайней мере один соленоидный клапан, который обычно находится в жидкостной линии рядом с расширительным клапаном.Мы также рассмотрели, как работают расширительные клапаны ранее, проверьте это, нажав здесь.
Пример электромагнитного клапана AHU Пример: установка для обработки воздуха.
Внутри находится двойной охлаждающий змеевик прямого расширения для контроля температуры воздуха, циркулирующего по всему зданию. Верхний расширительный клапан и охлаждающий змеевик всегда включены, когда система работает, но второй расширительный клапан и змеевик включаются только летом, когда охлаждающая нагрузка слишком велика для одиночного змеевика.Поэтому здесь электромагнитный клапан используется для изоляции второй змеевики и расширительного клапана до тех пор, пока он не понадобится. Затем контроллер посылает сигнал клапану на открытие и обеспечение дополнительного охлаждения.
Пример: размораживание горячим газом
Еще одно очень распространенное применение электромагнитных клапанов в холодильных системах — это линия размораживания горячим газом для управления потоком горячего хладагента в испаритель во время цикла размораживания. Когда влага в воздухе конденсируется на трубках испарителя, она замерзает и вызывает образование льда.Нам нужно удалить это, чтобы обеспечить эффективную работу, поэтому мы открываем соленоидный клапан, чтобы направить горячий хладагент из компрессора и через испаритель вместо конденсатора. Затем, когда размораживание завершено, электромагнитный клапан закрывается, и система продолжает работать в обычном режиме в режиме охлаждения.
Пример: Производство напитков
В промышленных применениях мы можем использовать эти клапаны для точного управления потоком и смешиванием жидкостей, например, чтобы налить идеальное количество газированного напитка в бутылку на производственной линии.
Мы также можем обнаружить, что в производственной линии используются электромагнитные клапаны для предотвращения утечек. Если датчик обнаруживает утечку в трубопроводе, электромагнитный клапан в этой части технологической линии автоматически отключается, чтобы предотвратить отходы продукта и защитить производственное оборудование, пока инженеры не смогут это исправить.
Как они работают
Существует несколько вариантов работы клапана в зависимости от требуемой производительности и давления, с которым он работает. Мы собираемся сосредоточиться на клапане прямого действия, который является самой простой версией.
С клапаном прямого действия у нас есть соленоид наверху, который по сути представляет собой катушку с проволокой. Как вы, возможно, видели в наших обучающих видео по электрике. Когда мы пропускаем электрический ток через катушку, мы генерируем электромагнитное поле. Это магнитное поле управляет клапаном.
Как работает электромагнитный клапанУ нас есть два типа клапанов: нормально открытый и нормально закрытый. Давайте сначала посмотрим на нормально закрытый тип.
Нормально закрытые электромагнитные клапаны
Внутри клапана находится якорь.Над ним помещается соленоид, который полностью окружает якорь, так что он находится в центре его магнитного поля. Внутри цилиндра якоря находится плунжер и пружина.
Как работают нормально закрытые электромагнитные клапаныПружина толкает плунжер вниз в клапане нормально закрытого типа. Поскольку плунжер толкается пружиной, он будет находиться в нижнем положении, чтобы закрыть клапан на неопределенное время. Но если катушка получает электрический ток, она генерирует электромагнитное поле, и это магнитное поле проходит через плунжер и заставляет его двигаться вверх против пружины, открывая клапан.(Подробную анимацию см. В видео на YouTube)
В центре катушки линии магнитного поля самые компактные и, следовательно, самые сильные. Поэтому мы помещаем поршень в центр.
Когда электрический ток прекращается, магнитное поле исчезает, и пружина снова заставляет плунжер опуститься, чтобы закрыть клапан.
Нормально открытые электромагнитные клапаны
Нормально открытый электромагнитный клапанС нормально открытыми клапанами катушка снова находится вокруг якоря, но на этот раз пружина толкает плунжер в верхнее положение, так что клапан всегда открыт, если на катушку соленоида не подается питание.
Если затем пропустить через катушку ток, он снова создаст электромагнитное поле, но на этот раз поле толкает поршень, а не тянет его. Когда плунжер нажимается, он закрывает клапан и останавливает поток жидкости в системе.
Когда электрический ток прекращается, пружина возвращает поршень в верхнее положение и снова открывает клапан.
Производители электромагнитных клапанов | Поставщики электромагнитных клапанов
Список производителей электромагнитных клапанов
Благодаря преимуществам, которые они предлагают в виде безопасного и быстрого переключения, надежности, длительного срока службы и компактной конструкции, соленоиды очень популярны в различных отраслях промышленности.Однако чаще всего они используются в жилищном, бытовом, промышленном и коммерческом секторах.
Некоторые общие области применения включают охлаждение, HVAC и кондиционирование воздуха, мойку с электроприводом, кондиционирование воздуха в сельском хозяйстве, пневматические и гидравлические системы (двигатели, цилиндры, буферы и т. Д.), Системы сжатого воздуха, автомобильную технику и бытовую технику.
История электромагнитных клапановПервым электромагнитным клапаном был электромагнитный регулирующий клапан, проданный и произведенный в 1910 году компанией ASCO Numatics.Затем, в 1950-х годах, производители начали продавать пластмассовые формованные соленоидные клапаны. Переход на пластик означал, что электромагнитные клапаны стали более эффективными, надежными, коррозионно-стойкими и химически стойкими.
Миниатюрные электромагнитные клапаны — International Polymer Solutions
Эта тенденция к совершенствованию продолжалась до конца 20 века. Например, начиная с 70-х годов производители начали производить автоматические запорные электромагнитные клапаны, которые были безопаснее и проще в эксплуатации, чем запорные клапаны с ручным управлением.
В 1990-х годах правительства всего мира, а также независимые организации начали разработку стандартизации электромагнитных клапанов, что позволило увеличить частоту международной торговли, упростить сотрудничество между компаниями и упростить техническое обслуживание. Сегодня новые стандарты также ограничивают использование опасных веществ при изготовлении клапанов, чтобы повысить их экологичность. Сегодня большая часть инноваций в производстве и использовании клапанов ориентирована на здоровье и экологичность.
Дизайн Производственный процесс
Производители производят электромагнитные клапаны с помощью различных процессов, таких как: обработка с ЧПУ, лазерная сварка, литье под давлением и намотка катушек.После изготовления компонентов клапана они собирают их.
Эти компоненты включают в себя катушку электромагнитного клапана, клапан, впускной порт, выпускной порт, пружину, диафрагму и привод. Часто соленоид также имеет уплотнения.
Материалы
Производители имеют широкий выбор материалов, из которых они могут построить свои электромагнитные клапаны. Клапаны могут изготавливаться как из пластмассы, так и из металлических материалов, таких как ПВХ, натуральный полипропилен, ПТФЭ, ХПВХ, нержавеющая сталь, бронза, алюминий и латунь.Уплотнения, такие как уплотнения из витона или nbr, обычно изготавливаются из какой-либо резины. Иногда производители делают уплотнения из нержавеющей стали.
Проектирование и настройка
Производители электромагнитных клапанов делают выбор на основе технических характеристик, таких как: природная жидкость / газ внутри трубы (коррозионная активность, опасность, вязкость, кислотность и т. Д.), Окружающая среда, частота, с которой будет использоваться труба и требования стандарта приложения. В зависимости от технических характеристик они могут выбирать такие аспекты конструкции, как размер клапана, материал клапана, тип и конфигурация клапана, а также количество портов.
Поставщики могут настраивать вашу систему электромагнитных клапанов несколькими способами. Например, они обычно создают клапаны с двумя участками соединения и одним отверстием, но они также могут создавать клапаны с тремя участками соединения и двумя отверстиями. Аналогичным образом, хотя они обычно проектируют клапаны для работы от источника постоянного тока на 12 В, они также могут настроить их для работы с источниками питания на 3, 6 или 24 В. Они также могут предоставить вам специализированные данные: уровни давления, возврат пружины, размер клапана и т. Д.
ХарактеристикиЭлектромагнитные клапаны работают с использованием двух основных компонентов: соленоидной катушки и клапана. Катушка представляет собой катушку из намагниченной проволоки, которая оживает благодаря серии электрических зарядов, а затем излучает ток. Этот ток генерирует магнитное поле, которое преобразует электрическую энергию в механическую для перемещения привода. Привод является продолжением клапана; он вместе с прикрепленной струной отвечает за перемещение клапана из открытого в закрытое положение.
Электромагнитные клапаны обычно изготавливаются как нормально закрытые (NC) или нормально открытые (NO). Нормально закрытые клапаны работают с внутренним плунжерным стержнем или штифтом, называемым плунжером, удерживаемым на месте катушкой соленоида, который блокирует ток. Чтобы активировать поток в NC-клапане, через катушку должен быть направлен электромагнитный заряд, который затем поднимет плунжер в сторону, чтобы позволить потоку. С другой стороны, клапаны NO — это наоборот. Они закроются при срабатывании соленоида.
ТипыЭлектромагнитные клапаны определяются тремя общими компонентами, чтобы помочь производителям выбрать лучший клапан:
1. Контролируемый материал, например, соленоидные водяные клапаны и соленоидные воздушные клапаны
2. Конструкция / конструкция клапана , такие как пропорциональные электромагнитные клапаны, 3-ходовые электромагнитные клапаны и пластиковые электромагнитные клапаны
3. Как они питаются, например, 12-вольтовые электромагнитные клапаны и пневматические электромагнитные клапаны
Электромагнитный водяной клапан
Соленоидные водяные клапаны, также называемые гидравлическими соленоидами клапаны, прямой поток воды с пилотным управлением, нормально открытые клапаны.
Электромагнитный воздушный клапан
Электромагнитные воздушные клапаны, также называемые газовыми соленоидными клапанами, воздушными клапанами или пневматическими соленоидными клапанами, регулируют поток воздуха и газа с помощью диафрагм и давления газа. Они способны поддерживать как постоянное давление, например, для отопления и охлаждения дома, так и чрезвычайно высокое давление, например, регулируемое для работы с электроинструментом.
Пропорциональный электромагнитный клапан
Пропорциональные электромагнитные клапаны работают как обычные пневматические клапаны, за исключением того факта, что они работают с более совершенными возможностями управления потоком, которые позволяют им устанавливать переменный поток, пропорциональный электрическому управляющему сигналу клапана.
Двенадцатавольтный электромагнитный клапан
Двенадцатавольтный соленоидный клапан питается от источника постоянного тока напряжением 12 вольт. (Стандартно — двенадцать вольт.)
Электромагнитные клапаны бывают пилотного или прямого действия.
Электромагнитный клапан с пилотом поток.
Электромагнитный клапан прямого действия
Электромагнитный клапан прямого действия использует плунжер, который имеет прямой контакт с отверстием корпуса клапана на входе, называемым диафрагмой. В этом случае плунжер открывает и закрывает отверстие для регулирования потока.
Электромагнитный клапан полупрямого действия
Электромагнитный клапан полупрямого действия заимствует свойства клапанов как прямого, так и непрямого действия. Это позволяет им работать при давлении от 0 бар (0 фунтов на кв. Дюйм) при работе с высоким расходом.Обычно они используются для приложений высокого давления.
Электромагнитный клапан высокого давления
Электромагнитные клапаны высокого давления являются отличным средством управления потоком в областях, несовместимых с другими клапанами, например, в рабочих зонах, которые связаны с опасным оборудованием или недоступными линиями.
Электромагнитный клапан из нержавеющей стали
Электромагнитные клапаны из нержавеющей стали, как следует из их названия, имеют корпус из нержавеющей стали. Поскольку нержавеющая сталь устойчива к коррозии и истиранию, соленоидные клапаны из нержавеющей стали хорошо работают с химическими процессами, которые требуют исключительного контроля щелочей, кислот и аналитических реагентов.
Миниатюрный электромагнитный клапан
Миниатюрные электромагнитные клапаны идеального размера для деликатного медицинского оборудования, такого как биотехнологическое оборудование, портативные медицинские устройства и газоанализаторы.
Дроссельная заслонка
Дроссельная заслонка — это электромагнитный клапан, который регулирует или изолирует поток жидкости. Его закрывающий механизм представляет собой вращающийся диск, расположенный в центре трубы, где стержень пропускает его через него к приводу на его внешней стороне. Когда привод вращается, диск также будет вращаться перпендикулярно или параллельно потоку.Дроссельная заслонка всегда присутствует в потоке.
Шаровой кран с приводом
Шаровой кран с приводом назван так потому, что он содержит шар с небольшим отверстием посередине, которое помогает ему контролировать поток материала через трубу, и привод, который вращает шар. Когда привод катит шар, поток либо запускается, либо останавливается. Одним из наиболее распространенных типов шаровых кранов является трехходовой шаровой кран с тремя отверстиями. В первую очередь, шаровые краны с приводом используются для запуска и остановки потока, но не обязательно для управления им.Шаровые краны с приводом лучше всего подходят для приложений с высоким расходом и приложений, требующих возможности ручного дублирования.
Трубчатый электромагнитный клапан
Трубчатый соленоидный клапан представляет собой соленоидный клапан в форме трубы. Обычно они используются только с источниками питания постоянного тока.
Тарельчатый клапан
Тарельчатый клапан, иногда называемый грибовидным клапаном, состоит из овального или круглого отверстия, а также дискообразной конической заглушки, расположенной на конце вала, называемого штоком клапана.Тарельчатый клапан, который может быть закрытого или открытого типа, используется для управления количеством и синхронизацией потока воздуха / газа в двигателе. Он изготовлен из нержавеющей стали или латуни.
Латунный электромагнитный клапан
Электромагнитные клапаны из латуни отлично подходят для работы с некоррозионными веществами, такими как инертный газ, вода или легкое масло. Они недостаточно прочны, чтобы переносить сильно коррозионные вещества.
Электромагнитный клапан из ПТФЭ
Электромагнитные клапаны из ПТФЭ, также известного под торговой маркой Teflon®, являются отличным выбором для агрессивных газов и агрессивных жидкостей.
Есть много причин для покупки электромагнитных клапанов перед другими. С меньшим количеством движущихся частей, чем у других клапанов, электромагнитные клапаны сравнительно не требуют обслуживания. Они также могут управляться удаленными устройствами, что является бесценной функцией для опасных приложений. Кроме того, их можно сделать портативными. Наконец, электромагнитные клапаны гибкие; возможность использования гидравлической или пневматической энергии.
ПринадлежностиТипичные принадлежности для электромагнитных клапанов включают: соединители, коллекторы, винты, прокладки и фонари.Из них наиболее распространены разъемы. Они помогут вам собрать более сложные клапаны в сборе. Чтобы узнать, какие аксессуары лучше всего подходят для вашего приложения, обратитесь к производителю.
УстановкаВы, ваш поставщик или профессиональное третье лицо можете установить ваши клапаны. Нет ничего плохого в том, чтобы не сделать это самостоятельно. Если вы все же решите установить клапаны самостоятельно, примите следующий совет, а также совет, предложенный вашим производителем:
Установите соленоидные клапаны в критических точках, чтобы дать любой системе возможность оптимально работать в течение многих лет. .Всегда устанавливайте их в сухом и хорошо вентилируемом помещении, потому что они могут сильно нагреваться во время работы, и вы не хотите, чтобы они перегревались или реагировали с чем-то вокруг. Следите за стрелкой на корпусе клапана, которая указывает направление потока. Установите его в этом направлении.
Правильный уход за электромагнитными клапанамиПри небольшом внимании ваши электромагнитные клапаны прослужат долго. Один из способов ухода за клапанами — это просто их регулярно чистить по установленному графику.С соответствующими инструментами, такими как те, что входят в комплект для обслуживания, вы можете сделать это без полной разборки клапана. В дополнение к регулярной очистке, если и когда вы заметите утечки, чрезмерный шум или медленную работу, вам следует как можно скорее очистить клапаны.
Чтобы улучшить работу клапанной системы, избегайте использования несовместимых жидкостей, поскольку это может вызвать преждевременный износ. Кроме того, никогда не позволяйте веществам внутри клапана замерзать. Точно так же всегда держите содержимое клапана при надлежащей температуре и давлении.
СтандартыСтандарты, которым должны соответствовать ваши электромагнитные клапаны, зависят от вашего приложения, отрасли и местоположения.
Если ваши клапаны будут контактировать с питьевой водой, например, ваши электромагнитные клапаны не должны содержать свинца. В Соединенных Штатах правила для питьевой воды и водопровода требуют, чтобы оборудование RO (обратного осмоса) было сертифицировано NSF и / или соответствовало NSF 61-G, нормативам по фильтрам и свинцу, выпущенным NSF (Национальным научным фондом).Если вы собираетесь использовать электромагнитные клапаны за границей, они должны быть сертифицированы NSF International как бессвинцовые и аккредитованы как ANSI, так и Советом по стандартам Канады.
Кроме того, NEMA (Национальная ассоциация производителей электрооборудования) предлагает стандартные обозначения пригодности клапана. Вообще говоря, чем выше номер типа NEMA, тем более жесткое воздействие может выдержать клапан. Например, клапаны NEMA Type 1 хорошо подходят для использования внутри помещений, тогда как клапаны NEMA Type 7 и 9 лучше всего подходят для сред, содержащих взрывоопасную пыль или пары.
На что следует обратить вниманиеПри поиске электромагнитных клапанов для вашего приложения вы должны убедиться, что производитель, с которым вы работаете, может выполнить все ваши спецификации, включая сертификаты, сроки выполнения и бюджет. Иногда полезно изучить программы быстрой доставки, а не стандартные варианты доставки. Не забудьте поговорить об этом со своим потенциальным поставщиком. Кроме того, вам следует подумать о производителе, предлагающем хорошую систему поддержки.Это означает, что они будут доступны для помощи в установке, обучения на месте и для консультации, обслуживания деталей и замены деталей после установки.
Наконец, чрезвычайно важно работать с производителем, которому можно доверять. Чтобы найти опытного и надежного поставщика, ознакомьтесь с полным списком, который мы представили на этой странице.
Электромагнитные клапаны Информационное видео
Электромагнитный клапан — обзор
Электромагнитные клапаны используются везде, где поток жидкости должен регулироваться автоматически, например, при автоматизации производства.Компьютер, на котором запущена программа автоматизации для заполнения контейнера некоторым количеством жидкости, может послать сигнал на соленоидный клапан на открытие, позволяя контейнеру заполниться, а затем удалить сигнал, чтобы закрыть соленоидный клапан, и, таким образом, остановить поток жидкости до тех пор, пока следующий контейнер на месте. Захват для захвата предметов на роботе часто представляет собой устройство с пневматическим управлением. Можно использовать электромагнитный клапан, чтобы давление воздуха могло закрыть захват, а второй электромагнитный клапан можно использовать для открытия захвата. Если используется двухходовой соленоидный клапан, два отдельных клапана в этом случае не нужны.Разъемы электромагнитных клапанов используются для подключения электромагнитных клапанов и реле давления.
(1) Принципы работы
Электромагнитные клапаны — это блоки управления, которые при включении или отключении электропитания либо перекрывают, либо пропускают поток жидкости. Привод внутри электромагнитного клапана имеет форму электромагнита. При подаче напряжения создается магнитное поле, которое натягивает плунжер или поворотный якорь против действия пружины. В обесточенном состоянии плунжер или поворотный якорь возвращается в исходное положение под действием пружины.
В зависимости от режима срабатывания различают клапаны прямого действия, клапаны с внутренним управлением и клапаны с внешним управлением. Еще одна отличительная черта — это количество подключений к портам или количество потоков или «путей».
Электромагнитные клапаны прямого действия имеют уплотнение седла, прикрепленное к сердечнику соленоида. В обесточенном состоянии отверстие седла закрыто и открывается при подаче напряжения на клапан. В клапанах прямого действия силы статического давления увеличиваются с увеличением диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления силы давления, соответственно становятся больше.Поэтому электромагнитные клапаны с внутренним управлением используются для переключения более высоких давлений в сочетании с отверстиями большего размера; в этом случае дифференциальное давление жидкости выполняет большую часть работы по открытию и закрытию клапана.
Двухходовые электромагнитные клапаны — это запорные клапаны с одним входным и одним выходным портами, как показано на Рисунке 4.17 (a). В обесточенном состоянии пружина сердечника при помощи давления жидкости удерживает уплотнение клапана на седле клапана, перекрывая поток.При подаче напряжения сердечник и уплотнение втягиваются в катушку соленоида, и клапан открывается. Электромагнитная сила больше, чем объединенная сила пружины и силы статического и динамического давления среды.
Рисунок 4.17. Принцип действия электромагнитных клапанов.
(Любезно предоставлено OMEGA)Трехходовые электромагнитные клапаны имеют три соединения порта и два седла клапана. Одно уплотнение клапана всегда остается открытым, а другое закрытым в обесточенном режиме. Когда катушка находится под напряжением, режим меняется на противоположный.Трехходовой электромагнитный клапан, показанный на Рисунке 4.17 (b), спроектирован с сердечником плунжерного типа. Доступны различные операции клапана в зависимости от того, как текучая среда связана с рабочими портами. На Рисунке 4.17 (b) давление жидкости увеличивается под седлом клапана. Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к седлу клапана и перекрывает поток жидкости. Порт A выпускается через R. Когда катушка находится под напряжением, сердечник втягивается, и седло клапана в порте R закрывается подпружиненным верхним уплотнением сердечника.Текучая среда теперь течет от P к A.
В отличие от версий с сердечником плунжерного типа, электромагнитные клапаны с поворотным якорем имеют все соединения портов внутри корпуса клапана. Изолирующая диафрагма предотвращает контакт текучей среды с камерой змеевика. Клапаны с поворотным якорем могут использоваться для управления любым трехходовым электромагнитным клапаном. Основной принцип конструкции показан на Рисунке 4.17 (c). Клапаны с поворотным якорем стандартно оснащены ручным дублером.
Электромагнитные клапаны с внутренним управлением оснащены двухходовым или трехходовым пилотным соленоидным клапаном. Мембрана или поршень обеспечивают уплотнение для седла главного клапана. Работа такого клапана показана на Рисунке 4.17 (d). Когда пилотный клапан закрыт, давление жидкости увеличивается с обеих сторон диафрагмы через выпускное отверстие. Пока существует разница давлений между впускным и выпускным портами, запорная сила доступна за счет большей эффективной площади в верхней части диафрагмы.Когда пилотный клапан открыт, давление сбрасывается с верхней стороны диафрагмы. Большая эффективная сила чистого давления снизу теперь поднимает диафрагму и открывает клапан. Как правило, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия.
Четырехходовые электромагнитные клапаны с внутренним управлением используются в основном в гидравлических и пневматических системах для приведения в действие цилиндров двустороннего действия. Эти клапаны имеют четыре соединения порта; впускной патрубок P, два штуцера порта цилиндра A и B и один штуцер выхлопного отверстия R.Четырех / двухходовой тарельчатый соленоидный клапан с внутренним управлением показан на Рисунке 4.17 (e). В обесточенном состоянии пилотный клапан открывается на соединении входа давления с пилотным каналом. Обе тарелки главного клапана теперь находятся под давлением и переключаются. Теперь соединение порта P соединено с A, и B может выпускаться через второй дроссель через R.
В этих типах для приведения в действие клапана используется независимая управляющая среда. На рисунке 4.17 (f) показан поршневой клапан с угловым седлом и закрывающей пружиной.В безнапорном состоянии седло клапана закрыто. Трехходовой электромагнитный клапан, который может быть установлен на приводе, управляет независимой управляющей средой. Когда электромагнитный клапан находится под напряжением, поршень поднимается против действия пружины, и клапан открывается. Версия с нормально открытым клапаном может быть получена, если пружина расположена на противоположной стороне поршня привода. В этих случаях независимая управляющая среда подключается к верхней части привода. Версии двойного действия, управляемые четырех- / двухходовыми клапанами, не содержат пружины.
(2) Основные типы
Электромагнитные клапаны открываются и закрываются с помощью соленоида, который активируется электрическим сигналом. В большинстве промышленных применений электромагнитные клапаны бывают следующих пяти типов.
(1) Двухходовые электромагнитные клапаны
Электромагнитные клапаны этого типа обычно имеют одно впускное и одно выпускное отверстия и используются для разрешения и перекрытия потока жидкости. Два типа операций для этого типа — «нормально закрытый» и «нормально открытый».
(2) Трехходовые электромагнитные клапаны
Эти клапаны обычно имеют три трубных соединения и два отверстия.Когда одно отверстие открыто, другое закрывается, и наоборот. Они обычно используются для попеременного приложения давления к давлению выхлопа от привода клапана или цилиндра одностороннего действия. Эти клапаны могут быть нормально закрытыми, нормально открытыми или универсальными.
(3) Четырехходовые электромагнитные клапаны
Эти клапаны имеют четыре или пять трубных соединений, обычно называемых портами. Один из них представляет собой входное отверстие для давления, а два других — это входные отверстия цилиндра, обеспечивающие давление в цилиндр или привод двойного действия, а также один или два выходных отверстия для выпуска давления из цилиндров.У них есть три типа конструкции; одиночный соленоид, двойной соленоид или одиночный пневмопривод.
(4) Электромагнитные клапаны прямого монтажа
Это двухходовые, трехходовые и четырехходовые соленоидные клапаны, которые предназначены для группового монтажа на различное количество клапанов. Любая комбинация нормально закрытых, нормально открытых или универсальных клапанов может быть сгруппирована вместе. Эти серии представляют собой стандартные электромагнитные клапаны, трубопроводные соединения и монтажные конфигурации которых были заменены монтажной конфигурацией, которая позволяет устанавливать каждый клапан непосредственно на привод без использования жестких трубопроводов или трубок.
(5) Коллекторные клапаны
Коллектор электромагнитных клапанов состоит из матрицы электромагнитных клапанов, установленных в модулях на салазках с регулируемыми ножками в одном направлении (рисунок 4.18). Количество клапанов зависит от подключаемых элементов и функций каждого из этих элементов. Множество электромагнитных клапанов расположено и размещено на монтажной поверхности коллектора, а также плата, образованная с электрической цепью для питания этих электромагнитных клапанов (рисунок 4.18). Каждый соленоидный клапан включает в себя клапанную часть, содержащую клапанный элемент, и рабочую часть соленоида для приведения в действие клапанного элемента.Плата установлена на первой боковой поверхности коллектора под рабочей частью соленоида. Плата может быть прикреплена и отсоединена, оставив при этом электромагнитные клапаны установленными на коллекторе, соединители питания и сигнальные лампы предусмотрены в положениях на плате, соответствующих соответствующим электромагнитным клапанам. Каждый питающий соединитель расположен в таком положении, что он подключается к приемному выводу электромагнитного клапана втычным образом при установке электромагнитного клапана на коллекторе.Каждая световая индикация расположена в таком положении, чтобы ее можно было визуально распознать сверху соленоидного клапана, оставив соленоидный клапан установленным на коллекторе.
Рисунок 4.18. Несколько типов коллекторов электромагнитных клапанов.
(Любезно предоставлено KIP Inc.)Этот коллектор позволяет централизовать функции одного или нескольких резервуаров модульным способом, повышая эффективность системы и степень контроля над процессом. Коллектор с электромагнитным клапаном представляет собой автоматизированную альтернативу гибким шлангам и панелям отвода потока с переключаемыми изгибами.К резервуару или рабочей линии подключено столько клапанов, сколько функций должен выполнять элемент. Никаких ручных операций не требуется. Операция автоматизирована, что исключает риск несчастных случаев.
Типы электромагнитных клапанов — The Hope Group, A SunSource Company
Работа: Нормально закрытый и нормально открытый
Нормально закрытый
Клапан остается в положении «Закрыто» при обесточивании и является наиболее распространенным методом работы. Как правило, вы обнаружите, что нормально закрытые клапаны используются для включения / выключения или вентиляции, здесь вы хотите, чтобы процесс останавливался при отключении питания.В случае потери мощности клапан закрывается, и жидкость не выходит.
Нормально открытый
Клапан остается в положении «открыто» при обесточивании. Чаще всего нормально открытые клапаны используются в системах безопасности, где технологический процесс прекращается при потере мощности.
Универсальные клапаны
Клапан может быть либо нормально закрытым, либо нормально открытым в зависимости от того, как клапан подключен к трубопроводу. Обычно это наблюдается в 3- и 4-ходовых клапанах, где вы можете оказывать давление на любой порт клапана.Например, трехходовой клапан может иметь порт подачи, порт выхлопа и порт нагнетания. Это обеспечивает гибкость приложения и позволяет подключать его так, как вы считаете нужным.
Медиа
Часто проблемы с электромагнитным клапаном возникают из-за того, что среда или температура мешают правильному функционированию клапана. Он зависит от области применения, поэтому, если вы не уверены, обратитесь к каталогу производителя.
Давление электромагнитного клапана
Максимальное давление в зависимости отДифференциальное давление
Дифференциальное давление — это разница между давлением на входе (жидкость, когда она входит в клапан) и давлением на выходе (жидкость, когда она выходит из клапана). Важно определить перепад давления, чтобы вы знали, следует ли выбрать электромагнитный клапан с пилотным управлением или электромагнитный клапан прямого действия.
Например, давление на входе (P1), равное 90 фунтов на квадратный дюйм, и давление на выходе (P2), равное 80 фунтов на квадратный дюйм, представляет собой перепад давления в 10 фунтов на квадратный дюйм.