Транзистор назначение: Эта страница ещё не существует

Содержание

где применяются, область использования транзисторов

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. Транзистор управляет током на выходе пропорционально изменению силы входного тока и величины входного напряжения, причем при незначительном изменении входных параметров при определенных условиях можно добиться существенного усиления выходного сигнала. Поэтому полупроводниковые транзисторы часто применяются в усилительных схемах.

Области, где используются транзисторы, зависят от технических характеристик последних. Транзисторы разного конструктивного исполнения рассчитаны на работу в ключевом или усилительном режимах.

  • Ключевой режим. Полупроводниковый транзистор в этом случае находится в одном из двух состояний – открытом или закрытом. Это экономичный вариант, поскольку для руководства значительными нагрузками требуются небольшие управляющие токи.
  • Усилительный (динамический). В основе этого режима лежит принцип значительного усиления выходного сигнала при незначительном повышении управляющего сигнала.
  • Применение транзисторов

    Транзисторы востребованы практически во всех отраслях народного хозяйства. Минимализация габаритов этих приборов обеспечивает рост быстродействия электронных компонентов при снижении количества потребляемой энергии и выделения тепла.

    Производство слуховых аппаратов

    Благодаря практическому применению усиливающих свойств полупроводникового транзистора, стало возможным создание для слухового аппарата мощного микрофона с миниатюрными размерами.

    Принцип работы слухового аппарата:

    • звуковые волны, попадая на микрофон, преобразуются в электрический сигнал;
    • транзистор усиливает поступивший на него электрический сигнал;
    • усиленный электрический импульс преобразуется в акустический сигнал, и владелец слухового аппарата получает доступ к звуковой информации.

    Производство компьютеров и калькуляторов

    Полупроводниковые транзисторы используются во всех электронных компонентах компьютеров и калькуляторов. Они находятся в составе материнских плат, процессоров, карт расширения, периферийных устройств. Системы обработки, передачи и защиты данных – одни из основных областей, где применяются полупроводниковые транзисторы.

    Транзисторы, работающие в ключевом режиме, используются для защиты программ от взлома и предотвращения кражи информации. Управление силой тока – аналоговое, регулирование – с помощью ширины импульса.

    Транзисторы Дарлингтона (сборного типа)

    Это составной транзистор, состоящий из двух или нескольких биполярных транзисторов, расположенных на одном монокристалле и заключенных в общий корпус. В высоковольтной электронике используются составные гибридные транзисторы IGBT, в состав которых входят биполярные и полевые модели. Основное назначение транзистора сборного типа – получение высокомощного сигнала в электрической цепи. Однако из-за низкого быстродействия они эффективны только в низкочастотной аппаратуре.

    Силовые преобразователи инверторного типа

    Мощные транзисторы с изолированным затвором применяются в оборудовании, рассчитанном на питание током высокого напряжения. Это индукционные нагреватели, мощные сварочные аппараты, мостовые и полумостовые резонансные преобразователи.

    Где применяются транзисторы - видео

    В этой статье мы только кратко перечислили области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов. Более того, без этих радиоэлементов были бы невозможны достижения современной микроэлектроники, полеты в космос, создание систем наземного и воздушного наблюдения, связи, радиолокации и многих других.


    Была ли статья полезна?

    Да

    Нет

    Оцените статью

    Что вам не понравилось?


    Другие материалы по теме


    Анатолий Мельник

    Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


    Транзисторы: назначение, устройство и принципы работы

    Что означает название "транзистор"

    Первоначально все транзисторы называли полупроводниковыми триодами. Термин «транзистор» можно разделить на две составляющие: «трансфер» - передача, преобразование; «резистор» - электрическое сопротивление. Поэтому понятие «транзистор» определяется как преобразователь сопротивления. Такое объяснение совпадает и с принципом работы транзистора: транзистор открыт – сопротивление стремится к нулю, транзистор закрыт – сопротивление большое.

    Применение транзисторов

    Изначально транзисторы пришли на смену электрическим лампам в схемах усиления электрических сигналов в радиотехнике. Принцип действия любого усилителя достаточно прост: маломощный входной сигнал в электрической схеме с дополнительным источником питания получает усиление по амплитуде. Другими словами, транзистор позволяет управлять маломощным входным воздействием мощными потоками энергии.

    В большинстве схем усиления сигналов транзисторы используются в качестве управляемого сопротивления с маломощным входным сигналом задания. Схемы управления в радиоэлектронике строятся на базе источников постоянного напряжения. Входной управляющий сигнал изменяет внутреннее сопротивление транзистора, формируя переменный сигнал на выходе транзистора. В соответствии с этим формируется ток в цепи нагрузки транзистора.

    Электропроводность и строение атома

    Электропроводность любого материала определяется строением его атомов. В начале ХХ века Нильс Бор ввел понятие «планетарной модели атома», которая представлена на рисунке ниже.

    Согласно этой модели атом состоит из ядра (протоны и нейтроны), вокруг которого по орбитам вращаются заряженные частицы (электроны). Ядро имеет общий положительный заряд за счет наличия протонов. Количество протонов и электронов в ядре уравновешено, что позволяет атому находиться в состоянии электрического равновесия. При потере электрона атом превращается в положительно заряженный ион; при присоединении атомом чужого электрона – атом превращается в отрицательный ион. Строение атома рассмотрим на примере кремния (Si).

    По таблице Менделеева можно определить строение любого атома. Так для кремния распределение электронов по орбитам будет выглядеть как 2-8-4. В любом атоме орбиты имеют сферический характер, однако для упрощения примем все орбиты движения электронов как расположенные в одной плоскости.

    Свойства материала определяют электроны, расположенные на внешней орбите (валентные электроны), которые принимают участие в образовании молекул из нескольких атомов. Валентные электроны способны отрываться от атома и создавать электрический ток. Именно эти носители заряда и определяют полупроводниковые свойства транзисторов.



    Всего комментариев: 0


    его виды, назначение и принципы работы

    Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.

    Принцип работы прибора

    Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.

    Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:

    1. Электронные.
    2. Дырочные.

    В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу.

    А значит, и проводимость тока больше. Такие полупроводники называются электронными.

    Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.

    Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток

    . Такие полупроводники называются дырочными.

    Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.

    Виды транзисторов

    Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

    • Полевые.
    • Биполярные.

    Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

    Полевые

    Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

    1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
    2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
    3. Исток — вывод, через который в канал приходят электроны и дырки.

    Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

    Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

    Существует два вида приборов с изолированным затвором:

    • Со встроенным каналом.
    • С индуцированным каналом.

    Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

    Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

    Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

    1. Входное сопротивление.
    2. Амплитуда напряжения, которое необходимо подать на затвор.
    3. Полярность.

    Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

    Биполярные

    Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

    1. Электронная, далее n.
    2. Дырочная, далее p.

    Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

    Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

    1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
    2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
    3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

    Существует три схемы подключения биполярных транзисторов:

    1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
    2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
    3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

    Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

    Применение транзисторов в жизни

    Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

    1. Усилительные схемы.
    2. Генераторы сигналов.
    3. Электронные ключи.

    Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

    Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

    Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

    Литература по электронике

    Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

    1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
    2. Операционные системы. Разработка и реализация — Эндрю Т.
    3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

    В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

    Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

    Биполярные транзисторы. Назначение, виды, характеристики

    Транзисторы предназначены  для решения задач усиления  и переключения электрических сигналов. Время бурного развития транзисторов –  50 –  80 годы прошлого столетия. В настоящее время следует признать, что транзисторы как отдельные компоненты используются в схемах не так часто. Массово они применяются только внутри интегральных схем.

    Различают  транзисторы  двух  видов:  биполярные  и  униполярные  (полевые).

    В  биполярных транзисторах  в создании токов участвуют как электроны (отрицательно  заряженные  частицы),  так  и  дырки  (положительно  заряженные частицы). Отсюда название вида транзисторов.

    Биполярные транзисторы устроены сложнее полупроводниковых диодов, они имеют два pn-перехода и три вывода,  называемых  база,  эмиттер  и  коллектор.  Различают  два  вида  БТ:  NPN и PNP.

    Устройство, особенности и схемотехнику  будем рассматривать на при-мере  NPN-транзисторов  –  наиболее  используемых  в  современной  практике, для  PNP-транзисторов рассуждения аналогичны и различия заключаются толь-ко в подключении питающих напряжений.

    Устройство и принцип действия биполярных транзисторов

    Устройство и принцип действия  NPN-транзисторов  показаны  на  рисунке 2.19.

    NPN-транзистор  имеет  три  микроэлектронные  области:  две  –  с  N-проводимостью и одну  –  с  P  –  проводимостью. Каждая область имеет вывод с указанными на рисунке названиями.

    Структуру  NPN-БТ можно также представить в уже более понятных обозначениях: как два диода, соединённых анодами в области базы.

    На рисунке  2.20   показан наиболее распространённый способ использования биполярных транзисторов, когда на базу и коллектор подаются положительные (+) потенциалы  по отношению  к  эмиттеру.   При  этом  положительный  потенциал  коллектора выше потенциала базы!  Другими словами, коллекторный  pn-переход  смещён в обратном направлении  (смотрите,  коллекторный диод формально  закрыт), а базовый – в прямом.

    При этом если в базу задать ток, то в силу структурной особенности кристалла  биполярного транзистора,  этот  базовый  ток  Iб будет  «подсасывать»  из  коллекторной  области электроны и формировать коллекторный ток

    Iк= β*Iб ,  (2.7)

    где β> 1 называется коэффициентом усиления тока базы.

    Типовые паспортные значения β = 20÷500. Ток эмиттера, таким образом, в соответствии с первым законом Кирхгофа

    Iэ = (β +1)*Iб   (2.8)

    Линейный режим работы биполярных транзисторов

    В линейном режиме работы биполярный транзистор усиливает входные сигналы.

    Простейшие транзисторные схемы, с помощью которых можно усиливать малые напряжения  показаны на рисунке 2.21.  Схемы  такой конфигурации  принято называть схемами (каскадами) с общим эмиттером (схемы ОЭ), т. к. один из выводов БТ  –  эмиттер,  используется для  формирования как входного, так и выходного сигнала  –  является общим для них.  Поясним работу такого усилителя.

    Пусть  усиливаемый  сигнал  –  переменное  синусоидальное  напряжение, которое  подаётся  на  вход  схемы  общего эмиттера.  Усиленный  сигнал  снимается  с  выхода схемы ОЭ.  Усиленный сигнал имеет ту же форму синусоиды, но следует в противофазе с входным: когда входная синусоида возрастает, выходная синусоида спадает.

    Основная  характеристика  усилителя  –  коэффициент  усиления  входного напряжения, который рассчитывается как

    Кус=ΔUвых/ΔUвх ≈ R2/rэ,   (2.9)

    где  rэ  –  сопротивление  эмиттера.  Сопротивление  эмиттера  можно  подсчитать по формуле:

    rэ= ϕт/Iэ = k*T/q*Iэ ≈ k*T/q*Iк,    (2.10)

    где  k - постоянная Больцмана,

    Т – температура в кельвинах,

    q – заряд электрона.

    При температуре +25ºС (300 К) ϕт = 26 мВ.

    Примечания

    1. Существует графический  способ  оценки  rэ.  Для  этого  требуется  знание  входной вольт-амперной характеристики выбранного биполярного транзистора;
    2. Коэффициент усиления сигнала по напряжению, как видно из формулы, зависит от температуры. В том случае, когда диапазон работы усилительной схемы широк, применяют чуть более сложные модификации схемы объединенных эмиттеров, более устойчивые к изменению температуры.

    Следует иметь в виду, что выражение для  Кус приблизительное и оно будет тем более справедливо, чем больше β, хорошо, если β >100.

    Расчёт схемы ОЭ по постоянному току

    На этом этапе нам необходимо рассчитать значения  R1и  R2, которые  задают  режим по постоянному току, а  R2кроме  того входит в выражение для Кус.

    Работа биполярного транзистора описывается входными и выходными характеристиками (показано  на  рисунке  2. 22).  Входная  характеристика  Iб=ʄ(Uэ),  как  и  следовало  ожидать,  аналогична  характеристике  п/п  диода.  Однако  у  транзистора  поведение этой  характеристики  зависит  (несильно)  ещё  и  от  напряжения  Uкэ.  Поэтому  в технических  описаниях  на  выбранный  транзистор  даются  семейства  входных характеристик, где параметром является  Uкэ. Выходная характеристика ‒ также семейство зависимостей типа Iк= ʄ (Uкэ), параметром для которых является базовый ток Iб.

    Оба семейства имеют принципиально нелинейное поведение, однако, это не мешает их использовать для режима линейного усиления. Для этого надо построить  нагрузочную прямую  на выходном семействе,  рассчитать положение на ней рабочей точки (РТ) и определить из графика начальный ток базы.

    Нагрузочная прямая строится, как и раньше для диода, между двумя аналогичными точками: 

    Iк=  Eпит/R2  и  Uкэпит. В нашем расчёте  мы задались  значениями  Епит=15 В и  Iк =  Eпит/R2  =30 мА. Тогда  R2=15/0,03 = 500 Ом. Строим прямую и выбираем положение РТ  –  это середина  линейного участка    (показано  на  рисунке  2.22). Линейным участком  будем называть участок нагрузочной прямой  между  напряжением  насыщения  и  напряжением  отсечки.  Параметры РТ в нашем примере соответствуют следующим значениям (показано  на рисунке 2.23): 

    Uкэ.рт  ≈ 7 В,  Iк.рт  ≈ 16 мА,  Iб.рт ≈ 0,3 мА.

    Далее: выбираем из семейства входных ту характеристику, которая соответствует найденному значению Uкэ≈ 7,0 В, задаём Iб = 0,3 мА, и определяем Uбэ≈ 0,65 В. Строим актуальный участок входной нагрузочной прямой и рассчитываем R1= (15-0,65) В/ 0,3 мА = 45 кОм.

    Примечание   –  На практике расчёт проводиться несколько сложнее.

    Рассчитаем коэффициент усиления каскада при t°=25 °С.

    Кус = Iэ R2/ ϕт = 16 мА × 500 Ом/ 26 мВ ≈ 308.

    Важно  теперь  проверить:  не  превышает  ли  мощность,  рассеиваемая  на коллекторе, номинальное паспортное значение выбранного биполярного транзистора.

    Расчёт ведётся в рабочей точке:  Uкэ.рт  ×Iк.рт  = 7 В×16 мА=112 мВт. Это значение постоянно и не меняется в режиме усиления входного сигнала, когда напряжения и токи коллектора меняются в широком диапазоне. Это объясняется тем, что напряжение и ток коллектора меняются в этой схеме в  противофазе: когда ток увеличивается, напряжения уменьшается, и наоборот.

    Расчёт схемы ОЭ по переменному току

    Пример формирования выходных сигналов схемы с ОЭ под воздействием изменения тока базы показан на рисунке 2.23. Под воздействием синусоидально изменяющегося тока базы (синусоида, изображённая пунктиром)  РТ смещается вдоль нагрузочной прямой  сначала вверх до своего максимума, а затем вниз до своего минимума.

    По рисунку видим, что при изменении тока базы в диапазоне  от  0,05  до 0,55  мА  с  амплитудой  (0,55-0,05)/2  =  250  мкА,  ток  коллектора  изменяется  в диапазоне примерно от 3 мА до 29 мА с амплитудой (29-3)/2 =  13 мА. Имеем отсюда следующее значение коэффициента усиления по току:

    Кi= 13 000/250 = 52

    Напряжение коллектора изменяется в диапазоне примерно от 0,5 В до 13 В с амплитудой (13-0,5)/2 = 6,25 В. Ещё раз подчеркнём, что изменение напряжения коллектора осуществляется в противофазе  с изменением входного (усиливаемого) тока: при увеличении тока базы увеличивается коллекторный ток и уменьшается коллекторное напряжение!

    Пока мы ничего не говорили о конденсаторах  С1и  С2.  Это  так называемые    разделительные конденсаторы. Они не пропускают  постоянные составляющие усиливаемых напряжений  и пропускают только переменные. Их значения  должны  быть  достаточно  большими:  чем  больше  значения  ёмкостей,  тем меньше  ʄн –  минимальная  усиливаемая  частота.  Обычно  эти  конденсаторы имеют значения от 1 до 100 мкФ.

    Ключевой режим работы биполярных транзисторов

    Смотрим на выходные характеристики БТ.  При  подаче большого тока  в базу (>0,3 мА) напряжение  Uкэ уменьшается до своего минимального значения (типовое  значение  0,2  В).   Говорят  «транзистор  переходит  в  режим  насыщения».

    С  другой  стороны,  если  в  базу  ток  не  подавать  (Iб ~ 0),  то  коллекторный ток прерывается и напряжение на выходе каскада будет равно напряжению питания Епит ‒ биполярный транзистор будет находится в «режиме отсечки».

    Собственно эти два состояния БТ и описывают  ключевой режим его работы:  ключ (транзистор) включён или выключен, нагрузка подключена к питанию или отключена. Простейшие  ключевые схемы  на БТ показаны на рисунке 2.24.  На  представленных  принципиальных  схемах  показано,  что  управление схемами осуществляется с помощью цифровых сигналов: логического нуля  («0»)и  логической единицы  («1»). В современной практике такие сигналы формируются чаще всего микроконтроллерами.

    Обращаем внимание, что оба вида БТ используется в схемах с плюсовым (положительным) питанием (+Епит) и нагрузка  в обоих случаях расположена в коллекторной  цепи  БТ.  При  этом:  логическая  единица  в  одном  из  случаев (NPN-транзистор) замыкает ключ, а в другом (PNP-транзистор) – размыкает.

    Условие замыкания ключа: Iб  *  β  >Iк.нас  ≈  Епит/Rнагр. Ток базы приближённо можно рассчитать для обоих случаев так: Iб= (Епит-0,6)/R1.

    Зная  напряжение  питания,  сопротивление  нагрузки  и  коэффициент  усиления тока базы β, можно рассчитать по указанным формулам R1.

    Конструктивные разновидности биполярных транзисторов

    Конструктивные разновидности биполярных транзисторов показаны на рисунке 2.25.

    Проверка работоспособности биполярных транзисторов

    Многие  мультиметры  позволяют  измерять  коэффициент  усиления  тока базы (β; h21) транзисторов  с гибкими выводами.  На рисунке  2.26    показано типовое решение этой задачи. В специальный разъём, соблюдая указанный на лицевой панели порядок, подключается транзистор.  Значение  β  высвечивается на дисплее.

    Примечания 

    1. NPN- и PNP-транзисторы имеют раздельные гнёзда для подключения.
    2. Для обоих типов транзисторов предусмотрено по два гнезда для подключения эмиттера. Это связано с возможными конструктивными различиями в цоколёвках транзисторов.

    Транзисторы, виды, назначение. Купим транзисторы, по Украине

    Виды, назначение

    Транзистор представляет собой полупроводниковый триод, радиоэлектронный компонент, который производят из материалов, обладающих полупроводниковыми свойствами. Данная деталь имеет в основном три выхода. Применяют, чтобы управлять электротоком в электрической цепи, используя входной сигнал. Используют с целью порождения, усиления, преобразования, генерирования сигналов электрических. Раньше деталь называли «триодом», и только спустя некоторое время ее переименовали в транзистор.

    Само понятие «транзистор» включает в себя два слова, которые можно перевести с английского языка, как трансфер – передатчик и резистор – сопротивляться, сопротивление. Транзистор представляет собой некий монокристалл с тремя выходами, который помещается в пластмассовые или металлические корпуса, в зависимости от назначения. Кристалл транзисторный производят из полупроводниковых материалов. Изменяя процесс обработки кристалла, можно добиться значительных пределов для изменения электропроводности.

    Электровакуумные лампы против транзистора

    До тех пор, пока не разработали транзистор, основным компонентом (активным) в электрическом оборудовании были лампы ЭВЛ. Но так как транзистор обладает большими преимуществами перед ЭВЛ, то он и пришел на смену этим габаритным РЭК, заменив лампы в различном оборудовании и приборах.

    Преимущества транзистора перед ЭВЛ

    • Малый размер, небольшой вес – эти показатели позволяют использовать компонент в современных миниатюрных приборах, гаджетах, оборудовании.
    • Стоимость транзисторов невелика из-за высокой автоматизации изготовления, производства.
    • Невысокое напряжение при работе – это дает возможность использовать компонент в миниатюрных устройствах, работающих от маленьких батареек.
    • Нет необходимости в дополнительном времени нагревания катода при запуске прибора.
    • Деталь имеет высокую физическую прочность, надежность.
    • В схеме превосходно «уживается» с другими радиоэлектронными компонентами.

    Виды транзисторов

    На данный момент в электрических схемах применяют биполярный, полевой транзисторы, но распространение получил биполярный транзистор, который был создан раньше, чем полевой.

    Биполярные транзисторы

    В данном виде радиоэлектронного компонента ток электрический получается при помощи электрического заряда, имеющего двойную полярность – поэтому он и называется биполярным. В таком транзисторе электроны переносят отрицательные заряды, а положительный имеет название «дырка». Транзистор биполярный может состоять из кремниевого или из германиевого полупроводникового материала.

    Полевые транзисторы

    В полевых транзисторах электрический ток появляется при помощи движущейся «дырки», электрона, которые проходят между электродом с помощью электрополя, создаваемого третьим электродом.

    Применение транзисторов

    Наиболее применим на сегодняшний день биполярный транзистор, используемый в радиоэлектронном аналоговом оборудовании, как усилитель дискретных цепей в микросхемах (интегральных, аналоговых, цифровых). Позволяют усиливать слабые сигналы на выходе в схемах, не имеющих значительной мощности. Полевые транзисторы используют при изготовлении цифровых электронных устройств (память компьютера, процессор) из-за того, что такие полевые компоненты обладают высокой скоростью и экономичными свойствами.

    Естественно, наибольшей ценностью обладают транзисторы, который производились в СССР до 90-ых годов, так как в них содержится большее количество драгмета (золото, серебро). Современные транзисторы или вообще не содержат драгоценных металлов, или же их столь минимальное количество, что изымать драгмет из подобных деталей нет вообще никакой коммерческой выгоды.

    Наша компания купит транзисторы, бывшие в употреблении, производства Советского Союза в неограниченных количествах.

    Полевые транзисторы. Виды и устройство. Применение и особенности

    Полевые транзисторы являются полупроводниковыми приборами. Особенностью их является то, что ток выхода управляется электрическим полем и напряжением одной полярности. Регулирующий сигнал поступает на затвор и осуществляет регулировку проводимости перехода транзистора. Этим они отличаются от биполярных транзисторов, в которых сигнал возможен с разной полярностью. Другим отличительным свойством полевого транзистора является образование электрического тока основными носителями одной полярности.

    Разновидности

    Существует множество разных видов полевых транзисторов, действующих со своими особенностями:

    • Тип проводимости. От нее зависит полюсность напряжения управления.
    • Структура: диффузионные, сплавные, МДП, с барьером Шоттки.
    • Количество электродов: бывают транзисторы с 3-мя или 4-мя электродами. В варианте с 4-мя электродами подложка является отдельной частью, что дает возможность управлять прохождением тока по переходу.
    • Материал изготовления: наиболее популярными стали приборы на основе германия, кремния. В маркировке транзистора буква означает материал полупроводника. В транзисторах, производимых для военной техники, материал маркируется цифрами.
    • Тип применения: обозначается в справочниках, на маркировке не указан. На практике известно пять групп применения «полевиков»: в усилителях низкой и высокой частоты, в качестве электронных ключей, модуляторов, усилителей постоянного тока.
    • Интервал рабочих параметров: набор данных, при которых полевики могут работать.
    • Особенности устройства: унитроны, гридисторы, алкатроны. Все приборы имеют свои отличительные данные.
    • Количество элементов конструкции: комплементарные, сдвоенные и т. д.
    Кроме основной классификации «полевиков», имеется специальная классификация, имеющая принцип действия:
    • Полевые транзисторы с р-n переходом, который осуществляет управление.
    • Полевые транзисторы с барьером Шоттки.
    • «Полевики» с изолированным затвором, которые делятся:
      — с индукционным переходом;
      — со встроенным переходом.

    В научной литературе предлагается вспомогательная классификация. Там говорится, что полупроводник на основе барьера Шоттки необходимо выделить в отдельный класс, так как это отдельная структура. В один и тот же транзистор может входить сразу оксид и диэлектрик, как в транзисторе КП 305. Такие методы применяют для образования новых свойств полупроводника, либо для снижения их стоимости.

    На схемах полевики имеют обозначения выводов: G – затвор, D – сток, S – исток. Подложку транзистора называют «substrate».

    Конструктивные особенности

    Электрод управления полевым транзистором в электронике получил название затвора. Его переход выполняют из полупроводника с любым видом проводимости. Полярность напряжения управления может быть с любым знаком. Электрическое поле определенной полярности выделяет свободные электроны до того момента, пока на переходе не закончатся свободные электроны. Это достигается воздействием электрического поля на полупроводник, после чего величина тока приближается к нулю. В этом заключается действие полевого транзистора.

    Электрический ток проходит от истока к стоку. Разберем отличия этих двух выводов транзистора. Направление движения электронов не имеет значения. Полевые транзисторы обладают свойством обратимости. В радиотехнике полевые транзисторы нашли свою популярность, так как они не образуют шумов по причине униполярности носителей заряда.

    Главной особенностью полевых транзисторов является значительная величина сопротивления входа. Это особенно заметно по переменному току. Эта ситуация получается по причине управления по обратному переходу Шоттки с определенным смещением, или по емкости конденсатора возле затвора.

    Материалом подложки выступает нелегированный полупроводник. Для «полевиков» с переходом Шоттки вместо подложки закладывают арсенид галлия, который в чистом виде является хорошим изолятором.

    К нему предъявляются требования:
    • Отсутствие отрицательных факторов в соединении с переходом, стоком и истоком: гистерезис свойств, паразитное управление, чувствительность к свету.
    • Устойчивость к температуре во время изготовления: невосприимчивость к эпитаксии, отжигу. Отсутствие различных примесей в активных слоях.
    • Минимальное количество примесей.
    • Качественная структура кристаллической решетки с наименьшим количеством дефектов.

    На практике оказывается трудным создание структурного слоя со сложным составом, отвечающим необходимым условиям. Поэтому дополнительным требованием является возможность медленного наращивания подложки до необходимых размеров.

    Полевые транзисторы с р-n переходом

    В такой конструкции тип проводимости затвора имеет отличия от проводимости перехода. Практически применяются различные доработки. Затвор может быть изготовлен из нескольких областей. В итоге наименьшим напряжением можно осуществлять управление прохождением тока, что повышает коэффициент усиления.

    В разных схемах применяется обратный вид перехода со смещением. Чем больше смещение, тем меньше ширина перехода для прохождения тока. При определенной величине напряжения транзистор закрывается. Применение прямого смещения не рекомендуется, так как мощная цепь управления может оказать влияние на затвор. Во время открытого перехода проходит значительный ток, или повышенное напряжение. Работа в нормальном режиме создается путем правильного выбора полюсов и других свойств источника питания, а также подбором точки работы транзистора.

    Во многих случаях специально применяют непосредственные токи затвора. Такой режим могут применять и транзисторы, у которых подложка образует переход вида р-n. Заряд от истока разделяется на сток и затвор. Существует область с большим коэффициентом усиления тока. Этот режим управляется затвором. Однако, при возрастании тока эти параметры резко падают.

    Подобное подключение применяется в схеме частотного затворного детектора. Он применяет свойства выпрямления перехода канала и затвора. В таком случае прямое смещение равно нулю. Транзистор также управляется затворным током. В цепи стока образуется большое усиление сигнала. Напряжение для затвора изменяется по закону входа и является запирающим для затвора.

    Напряжение в стоковой цепи имеет элементы:
    • Постоянная величина. Не применяется.
    • Сигнал несущей частоты. Отводится на заземление с применением фильтров.
    • Сигнал с модулирующей частотой. Подвергается обработке для получения из него информации.

    В качестве недостатка затворного детектора целесообразно выделить значительный коэффициент искажений. Результаты для него отрицательные для сильных и слабых сигналов. Немного лучший итог показывает фазовый детектор, выполненный на транзисторе с двумя затворами. Опорный сигнал подается на один их электродов управления, а информационный сигнал, усиленный «полевиком», появляется на стоке.

    Несмотря на значительные искажения, этот эффект имеет свое назначение. В избирательных усилителях, которые пропускают определенную дозу некоторого спектра частот. Гармонические колебания фильтруются и не влияют на качество действия схемы.

    Транзисторы МеП, что означает – металл-полупроводник, с переходом Шоттки практически не отличаются от транзисторов с р-n переходом. Так как переход МеП имеет особые свойства, эти транзисторы могут функционировать на повышенной частоте. А также, структура МеП простая в изготовлении. Характеристики по частоте зависят от времени заряда затворного элемента.

    МДП-транзисторы

    База элементов полупроводников постоянно расширяется. Каждая новая разработка изменяет электронные системы. На их базе появляются новые приборы и устройства. МДП-транзистор действует путем изменения проводимости полупроводникового слоя с помощью электрического поля. От этого и появилось название – полевой.

    Обозначение МДП расшифровывается как металл-диэлектрик-полупроводник. Это дает характеристику состава прибора. Затвор изолирован от истока и стока тонким диэлектриком. МДП транзистор современного вида имеет размер затвора 0,6 мкм, через который может протекать только электромагнитное поле. Оно оказывает влияние на состояние полупроводника.

    При возникновении нужного потенциала на затворе возникает электромагнитное поле, которое оказывает влияние на сопротивление участка стока-истока.

    Достоинствами такого применения прибора является:
    • Повышенное сопротивление входа прибора. Это свойство актуально для применения в цепях со слабым током.
    • Небольшая емкость участка сток-исток дает возможность применять МДП-транзистор в устройствах высокой частоты. При передаче сигнала искажений не наблюдается.
    • Прогресс в новых технологиях производства полупроводников привел к разработке транзисторов IGBT, которые включают в себя положительные моменты биполярных и полевых приборов. Силовые модули на их основе широко применяются в приборах плавного запуска и преобразователях частоты.

    При разработке таких элементов нужно учесть, что МДП-транзисторы имеют большую чувствительность к повышенному напряжению и статическому электричеству. Транзистор может сгореть при касании к его выводам управления. Следовательно, при их установке необходимо применять специальное заземление.

    Такие полевые транзисторы обладают многими уникальными свойствами (например, управление электрическим полем), поэтому они популярны в составе электронной аппаратуры. Также следует отметить, что технологии изготовления транзисторов постоянно обновляется.

    Похожие темы:

    Что это - транзистор и каково его назначение

    Многим людям, которые так или иначе сталкиваются с электрическими и электронными схемами, интересно узнать, из чего же они состоят. Одним из наиболее часто встречающихся элементов является транзистор. Так что такое транзистор?

    Это такой полупроводниковый прибор, который предназначен для усиления и управления электрическим током. Но это определение не дает четкого понимания того, что такое транзистор.

    Это устройство выпускается виде дискретного компонента в различных индивидуальных корпусах либо в виде активного элемента в так называемых интегральных схемах. В них размер корпуса транзисторов может быть меньше чем несколько сотых миллиметра.

    Что такое транзистор с точки зрения его использования в различных сферах промышленности и электроники? Так как этот прибор довольно просто приспосабливается к самым разным условиям применения, то он уже полностью на сегодняшний день заменил старые электронные лампы, фактически оставив ламповую технику в далеком прошлом за редким исключением. На основе применения транзисторной техники образовалась целая широчайшая область технологической промышленности – полупроводниковая электротехника ( сюда входит производство и эксплуатация таких устройств, как газоразрядные и электровакуумные приборы, полупроводниковая аппаратура и прочее).

    Для полноценного понимания вопроса, что такое транзистор, необходимо заглянуть немного в историю его применения. Например, известно, что первым товаром для потребления, выпущенным на основе транзистора, был слуховой аппарат. Он появился в продаже в середине прошлого века. В плане промышленного применения изначально транзисторную технику применяли для телефонных коммутаций.

    Сегодня эти устройства используют повсюду благодаря тому, что параметры транзистора и его характеристики действительно уникальны и разнообразны. Необходимо упомянуть применение этих электронных приборов в многотранзисторных интегральных схемах, в радиотехнике, в телевизорах и магнитофонах, калькуляторах, в детских игрушках. Транзисторная техника получила широчайшее распространение в системах охранной и пожарной сигнализаций, в игровых приставках, в различных регуляторах (от регуляторов мощности в тяжелой промышленности и на локомотивах до регуляторов света).

    Что такое транзистор и его применение в современной цифровой технике? Это весьма передовое изобретение, которое используют, например, в транзисторированной системе впрыска топлива, зажигания, системе управления и регулирования на микросхемах ( микропроцессорная техника и микроконтроллеры), а также в цифровых часах и фотоаппаратах.

    Но самые впечатляющие изменения произвел транзистор в системах связи и обработки данных. Его используют на центральных АТС, в больших ЭВМ. Развитие космической техники и космические полеты просто были бы невозможны без использования транзисторной техники. Для них в военном деле ( для воздушного и наземного наблюдения) даже разработаны специальные полупроводниковые интерметаллические элементы.

    Транзистор

    | Определение и использование

    Полная статья

    Транзистор , полупроводниковый прибор для усиления, управления и генерации электрических сигналов. Транзисторы - это активные компоненты интегральных схем или «микрочипов», которые часто содержат миллиарды этих крохотных устройств, выгравированных на их блестящих поверхностях. Транзисторы, глубоко встроенные почти во все электронное, стали нервными клетками информационного века.

    Обычно в транзисторе есть три электрических вывода, которые называются эмиттером, коллектором и базой, или, в современных коммутационных приложениях, истоком, стоком и затвором. Электрический сигнал, подаваемый на базу (или затвор), влияет на способность полупроводникового материала проводить электрический ток, который течет между эмиттером (или истоком) и коллектором (или стоком) в большинстве приложений. Источник напряжения, такой как батарея, управляет током, а скорость тока, протекающего через транзистор в любой момент, регулируется входным сигналом на затворе - так же, как кран крана используется для регулирования потока воды через сад. шланг.

    Британская викторина

    Изобретатели и изобретения

    Наши самые ранние человеческие предки изобрели колесо, но кто изобрел шарикоподшипник, уменьшающий трение вращения? Позвольте колесам в вашей голове крутиться, проверяя свои знания об изобретателях и их изобретениях в этой викторине.

    Первые коммерческие применения транзисторов были в слуховых аппаратах и ​​«карманных» радиоприемниках в 1950-х годах. Благодаря их небольшому размеру и низкому энергопотреблению транзисторы были желанной заменой электронных ламп (известных как «клапаны» в Великобритании), которые затем использовались для усиления слабых электрических сигналов и создания слышимых звуков. Транзисторы также начали заменять электронные лампы в схемах генераторов, используемых для генерации радиосигналов, особенно после того, как были разработаны специализированные структуры для обработки более высоких частот и задействованных уровней мощности.Низкочастотные и мощные приложения, такие как инверторы источников питания, преобразующие переменный ток (AC) в постоянный (DC), также были транзисторными. Некоторые силовые транзисторы теперь могут выдерживать токи в сотни ампер при электрических потенциалах более тысячи вольт.

    На сегодняшний день транзисторы наиболее часто применяются в микросхемах памяти компьютеров, включая твердотельные мультимедийные запоминающие устройства для электронных игр, камеры и MP3-плееры, а также в микропроцессорах, где миллионы компонентов встроены в единую интегральную схему. Здесь напряжение, приложенное к электроду затвора, обычно несколько вольт или меньше, определяет, может ли ток течь от истока транзистора к его стоку. В этом случае транзистор работает как переключатель: если ток течет, задействованная цепь включена, а если нет, то она выключена. Эти два различных состояния, единственные возможности в такой схеме, соответствуют соответственно двоичным единицам и нулям, используемым в цифровых компьютерах. Подобные применения транзисторов встречаются в сложных коммутационных схемах, используемых в современных телекоммуникационных системах.Потенциальные скорости переключения этих транзисторов сейчас составляют сотни гигагерц, или более 100 миллиардов включений и выключений в секунду.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

    Разработка транзисторов

    Транзистор был изобретен в 1947–1948 годах тремя американскими физиками, Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли, в лабораториях Белла американской телефонной и телеграфной компании. Транзистор оказался жизнеспособной альтернативой электронной лампе и к концу 1950-х годов вытеснил последнюю во многих приложениях.Его небольшие размеры, низкое тепловыделение, высокая надежность и низкое энергопотребление сделали возможным прорыв в миниатюризации сложных схем. В течение 1960-х и 1970-х годов транзисторы были включены в интегральные схемы, в которых множество компонентов (например, диоды, резисторы и конденсаторы) сформированы на одной «микросхеме» из полупроводникового материала.

    Мотивация и ранние радиолокационные исследования

    Электронные лампы громоздкие и хрупкие, они потребляют большое количество энергии для нагрева своих катодных нитей и генерации потоков электронов; Кроме того, они часто сгорают после нескольких тысяч часов работы.Электромеханические переключатели или реле работают медленно и могут застревать во включенном или выключенном положении. Для приложений, требующих тысяч ламп или переключателей, таких как общенациональные телефонные системы, развивающиеся по всему миру в 1940-х годах, и первые электронные цифровые компьютеры, это означало, что требовалась постоянная бдительность, чтобы свести к минимуму неизбежные поломки.

    Альтернатива была найдена в полупроводниках, материалах, таких как кремний или германий, электрическая проводимость которых находится посередине между проводимостью изоляторов, таких как стекло, и проводников, таких как алюминий.Проводящими свойствами полупроводников можно управлять, «допируя» их избранными примесями, и несколько провидцев увидели потенциал таких устройств для телекоммуникаций и компьютеров. Однако именно военное финансирование разработки радаров в 1940-х годах открыло двери для их реализации. Для «супергетеродинных» электронных схем, используемых для обнаружения радиолокационных волн, требовался диодный выпрямитель - устройство, позволяющее току течь только в одном направлении, - которое могло бы успешно работать на сверхвысоких частотах более одного гигагерца.Электронных ламп просто было недостаточно, и твердотельные диоды на основе существующих полупроводников из оксида меди также были слишком медленными для этой цели.

    На помощь пришли

    Кристаллические выпрямители на основе кремния и германия. В этих устройствах вольфрамовая проволока вставлялась в поверхность полупроводникового материала, который был легирован крошечными количествами примесей, таких как бор или фосфор. Примесные атомы заняли позиции в кристаллической решетке материала, вытесняя атомы кремния (или германия) и тем самым создавая крошечные популяции носителей заряда (таких как электроны), способных проводить полезный электрический ток.В зависимости от природы носителей заряда и приложенного напряжения ток может течь от провода к поверхности или наоборот, но не в обоих направлениях. Таким образом, эти устройства служили столь необходимыми выпрямителями, работающими на гигагерцовых частотах, необходимых для обнаружения отраженного микроволнового излучения в военных радиолокационных системах. К концу Второй мировой войны миллионы кристаллических выпрямителей ежегодно производились такими американскими производителями, как Sylvania и Western Electric.

    Как работают транзисторы? - Объясни, что материал

    Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, - крошечных переключателей, которые позволяют вам думать и запоминать вещи. Компьютеры содержат миллиарды миниатюрных «клеток мозга». Их называют транзисторами и они сделаны из кремния, химического элемента, обычно встречающегося в песке. Транзисторы произвели революцию в электронике с момента их появления. изобретен более полувека назад Джоном Бардином, Уолтером Браттейном и Уильям Шокли. Но что это такое и как они работают?

    Фото: Насекомое с тремя ногами? Нет, типичный транзистор на электронной плате.Хотя простые схемы содержат отдельные транзисторы, подобные этому, сложные схемы внутри компьютеров также содержат микрочипы, каждый из которых может иметь тысячи, миллионы или сотни миллионов транзисторов, упакованных внутри. (Технически, если вас интересуют более необычные элементы, это кремниевый транзистор усилителя PNP 5401B. Я объясню, что все это означает сейчас.)

    Что на самом деле делает транзистор?

    Фото: Компактные слуховые аппараты были одними из первых применений транзисторов, а этот датируется концом 1950-х или 1960-х годов.Он был размером с колоду игральных карт, поэтому его можно было носить в кармане пиджака или на нем. С другой стороны корпуса есть микрофон, который улавливает окружающие звуки. Вы можете ясно видеть четыре маленьких черных транзистора внутри, усиливающих эти звуки, а затем выстреливающих их в маленький громкоговоритель, который находится у вас в ухе.

    Транзистор действительно прост - и действительно сложен. Давайте начнем с простая часть. Транзистор - это миниатюрный электронный компонент, который может выполнять две разные работы.Может работать как усилитель или как переключатель:

    • Когда работает как усилитель, нужно в крошечном электрическом токе на одном конце ( входной ток) и производит гораздо больший электрический ток (выходной ток) на другой. Другими словами, это своего рода усилитель тока. Это входит действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей люди использовали транзисторы для. В слуховом аппарате есть крошечный микрофон. который улавливает звуки из окружающего вас мира и превращает их в колеблющиеся электрические токи.Они подаются на транзистор, который усиливает их и приводит в действие крошечный громкоговоритель, так что вы слышите гораздо более громкую версию окружающих вас звуков. Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более подробном виде. юмористический способ: «Если взять тюк сена и привязать его к хвост мула, а затем чиркнуть спичкой и поджечь тюк сена, и если вы затем сравните энергию, израсходованную вскоре после этого, мул с энергией, затраченной вами на зажигание спички, вы поймете концепцию усиления.«
    • Транзисторы
    • также могут работать как переключатели. А крошечный электрический ток, протекающий через одну часть транзистора, может значительно увеличить ток течет через другую его часть. Другими словами, маленький ток переключается на больший. По сути, так работают все компьютерные микросхемы. Для например, микросхема памяти содержит сотни миллионов или даже миллиарды транзисторов, каждый из которых можно включать или выключать индивидуально. Поскольку каждый транзистор может находиться в двух различных состояниях, он может хранить два разных числа, ноль и единицу.С миллиардами транзисторов микросхема может хранить миллиарды нулей и единиц, и почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.

    Самое замечательное в машинах старого образца было то, что вы могли их отдельно, чтобы понять, как они работают. Это никогда не было слишком сложно, с немного толкать и тыкать, чтобы узнать, какой бит сделал что и как один вещь привела к другому. Но электроника совсем другая. Это все об использовании электронов для управления электричеством.Электрон - это минута частица внутри атома. Он такой маленький, весит чуть меньше 0. 000000000000000000000000000001 кг! Самые современные транзисторы работают контролируя движения отдельных электронов, чтобы вы могли представьте, насколько они маленькие. В современном компьютерном чипе размер ноготь, вы, вероятно, найдете от 500 миллионов и два миллиарда отдельных транзисторов. Нет шанса разобрать транзистор, чтобы узнать, как он работает, поэтому мы должны понять это с помощью теории и воображения.Во-первых, это помогает, если мы знаем, из чего сделан транзистор.

    Как делается транзистор?

    Фото: Кремниевая пластина. Фото любезно предоставлено Исследовательским центром NASA Glenn Research Center (NASA-GRC).

    Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит электричество (оно не позволяет электронам легко проходить через него). Кремний - это полупроводник, а это значит, что он ни на самом деле проводник (что-то вроде металла, пропускающего электричество), ни изолятор (что-то вроде пластика, не пропускающего электричество). Если мы обрабатываем кремний примесями (процесс, известный как легирование), мы можем заставить его вести себя по-другому способ. Если мы добавим в кремний химические элементы мышьяк, фосфор, или сурьмы, кремний получает дополнительные «свободные» электроны - те, которые может проводить электрический ток, поэтому электроны будут вытекать об этом более естественно. Поскольку электроны имеют отрицательный заряд, кремний обработанный таким образом, называется n-типом (отрицательный тип). Мы также можем легировать кремний другими примесями, такими как бор, галлий и алюминий.В кремнии, обработанном таким образом, меньше таких «свободные» электроны, поэтому электроны в близлежащих материалах будут стремиться втекать в него. Мы называем этот кремний p-типа (положительный тип).

    Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни p-типа на самом деле не имеет заряда сам по себе : оба электрически нейтральны. Это правда, что кремний n-типа имеет дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как кремний p-типа имеет меньше этих свободных электронов, что помогает увеличить его проводимость противоположным образом. В каждом случае дополнительная проводимость возникает из-за добавления нейтральных (незаряженных) атомов примесей к кремнию, что изначально было нейтральных - и мы не можем создавать электрические заряды из воздуха! Для более подробного объяснения мне потребуется представить идею под названием ленточная теория, что немного выходит за рамки данной статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают дополнительные свободных электронов - те, которые могут свободно перемещаться и помогать переносить электрический ток.

    Кремниевые бутерброды

    Теперь у нас есть два разных типа кремния. Если мы сложим их вместе слоями, делая бутерброды из материала p-типа и n-типа, мы можем сделать различные виды электронных компонентов, которые работают во всех видах способами.

    Предположим, мы присоединяем кусок кремния n-типа к куску p-типа. кремний и поместите электрические контакты с обеих сторон. Увлекательно и полезно вещи начинают происходить на стыке двух материалы. Если мы обратимся от тока, мы можем заставить электроны течь через переход от сторона n-типа к стороне p-типа и наружу через цепь.Этот происходит из-за отсутствия электронов на стороне p-типа переход притягивает электроны со стороны n-типа и наоборот. Но если мы меняем направление тока, электроны вообще не текут. Что мы сделанное здесь называется диодом (или выпрямителем). Это электронный компонент, который позволяет току течь через него только в одном направлении. Это полезно, если вы хотите превратить переменный (двусторонний) электрический ток в постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они испускали светится, когда через них проходит электричество.Вы могли видеть эти светодиоды на карманных калькуляторах и электронных дисплеи на стереооборудовании Hi-Fi.

    Как работает переходной транзистор

    Фотография: Типичный кремниевый PNP-транзистор (A1048, разработанный как усилитель звуковой частоты).

    Теперь предположим, что вместо этого мы используем три слоя кремния в нашем сэндвиче. из двух. Мы можем сделать бутерброд p-n-p (с ломтиком n-типа кремний в качестве заполнения между двумя пластинами p-типа) или n-p-n сэндвич (с p-типом между двумя плитами n-типа).Если мы присоединить электрические контакты ко всем трем слоям сэндвича, мы можем сделать компонент, который будет либо усиливать ток, либо включать его, либо выключен - другими словами, транзистор. Посмотрим, как это работает в случае n-p-n транзистор.

    Итак, мы знаем, о чем говорим, давайте дадим имена трем электрические контакты. Мы назовем два контакта, соединенных с двумя кусочки кремния n-типа эмиттер и коллектор, и контакт соединенный с кремнием p-типа, который мы будем называть базой.Когда нет ток протекает в транзисторе, мы знаем, что кремний p-типа не хватает электроны (показаны здесь маленькими знаками плюс, обозначающими положительные зарядов) и два куска кремния n-типа имеют лишние электроны (показаны маленькими знаками минус, обозначающими отрицательные заряды).

    Другой способ взглянуть на это - сказать, что в то время как n-тип имеет избыток электронов, p-тип имеет дырки, где электроны должно быть. Обычно отверстия в основании действуют как барьер, предотвращающий любые значительный ток от эмиттера к коллектору при транзистор находится в выключенном состоянии.

    Транзистор работает, когда электроны и дырки начинают двигаться через два перехода между кремнием n-типа и p-типа.

    Давай подключить транзистор к некоторой мощности. Допустим, мы прикрепляем небольшой положительное напряжение на базу, сделать эмиттер отрицательно заряженным и сделать коллектор положительно заряженным. Электроны вытягиваются из эмиттер в базу, а затем из базы в коллектор. А также транзистор переходит в состояние «включено»:

    Малый ток, который мы включаем на базе, создает большой ток. поток между эмиттером и коллектором.Повернув небольшой вход ток в большой выходной ток, транзистор действует как усилитель. Но в то же время он действует как переключатель. Когда нет тока база, между коллектором и эмиттер. Включите базовый ток, и течет большой ток. Итак, база ток включает и выключает весь транзистор. Технически это тип транзистора называется биполярным, потому что два разных вида (или "полярностей") электрического заряда (отрицательные электроны и положительные отверстия) участвуют в протекании тока.

    Мы также можем понять транзистор, представив его как пару диодов. С база положительная, а эмиттер отрицательная, переход база-эмиттер похож на прямое смещение диод, с электронами, движущимися в одном направлении через переход (слева направо в диаграмму) и отверстия, идущие в противоположную сторону (справа налево). База-коллектор переход похож на диод с обратным смещением. Положительное напряжение коллектора тянет большая часть электронов проходит через внешнюю цепь (хотя некоторые электроны рекомбинируют с дырками в основании).

    Как работает полевой транзистор (FET)

    Все транзисторы работают, управляя движением электронов, но не все из них делают это одинаково. Подобно переходному транзистору, полевой транзистор (полевой транзистор) имеет три разных контакта, но они иметь названия источник (аналог эмиттера), сток (аналогично коллектор), и затвор (аналог цоколя). В полевом транзисторе слои Кремний n-типа и p-типа устроен несколько иначе и покрытый слоями металла и оксида.Это дает нам устройство под названием MOSFET (Металлооксидное полупроводниковое поле) Эффектный транзистор).

    Хотя в истоке и стоке n-типа есть лишние электроны, они не могут перетекать от одного к другому из-за дыр в ворота p-типа между ними. Однако если приложить положительный напряжение на затвор, там создается электрическое поле, позволяющее электроны перетекают по тонкому каналу от истока к стоку. Этот «полевой эффект» позволяет току течь и включает транзистор:

    Для полноты картины отметим, что полевой МОП-транзистор является однополярным. транзистор потому что только один («полярность») электрического заряда участвует в его работе.

    Как работают транзисторы в калькуляторах и компьютерах?

    На практике вам не нужно ничего знать об этом электроны и дыры, если вы не собираетесь разрабатывать компьютерные чипы для заработка! Все, что вам нужно знать, это то, что транзистор работает как усилитель или переключатель, используя небольшой ток включить более крупный. Но есть еще одна вещь, которую стоит знать: как все это помогает компьютерам хранить информацию и принимать решения?

    Мы можем соединить несколько транзисторных ключей, чтобы что-то сделать. называется логическим вентилем, который сравнивает несколько входные токи и в результате дает другой выход.Логические ворота позволяют компьютерам создавать очень простые решения с использованием математической техники, называемой булевой алгеброй. Точно так же и ваш мозг принимает решения. Например, используя "входные данные" (то, что вы знаете) о погоде и о том, что у вас в коридоре, вы можете принять такое решение: "Если идет дождь И я есть зонтик, я пойду в магазины ". Это пример булевой алгебры, в которой используется так называемое И "оператор" (слово "оператор" - это просто математический жаргон, заставляют вещи казаться более сложными, чем они есть на самом деле).Ты можешь сделать аналогичные решения с другими операторами. "Если ветрено ИЛИ идет снег, тогда я надену пальто "- это пример использования оператора ИЛИ. Или как насчет «Если идет дождь, И я есть зонтик ИЛИ у меня есть пальто, тогда можно выйти на улицу ". Используя AND, ИЛИ и другие операторы, вызываемые Компьютеры NOR, XOR, NOT и NAND могут складывать или сравнивать двоичные числа. Эта идея является краеугольным камнем компьютерных программ: логическая серия инструкций, которые заставляют компьютеры действовать.

    Обычно переходной транзистор выключен, когда нет базы. ток и переключается в положение «включено», когда течет базовый ток.Это значит требует электрического тока для включения или выключения транзистора. Но такие транзисторы могут быть подключены к логическим элементам, чтобы их выход соединения возвращаются на свои входы. Транзистор затем остается включенным, даже если базовый ток отключен. Каждый раз новый база ток течет, транзистор «щелкает» или выключается. Остается в одном из эти стабильные состояния (включены или выключены) до тех пор, пока не появится другой ток приходит и переворачивает его в другую сторону. Такая аранжировка известен как триггер, и это превращает транзистор в простой запоминающее устройство, в котором хранится ноль (когда он выключен) или один (когда он на).Шлепанцы - это основная технология, лежащая в основе компьютерных микросхем памяти.

    Кто изобрел транзистор?

    Изображение: Оригинальный дизайн точечного транзистора, как изложено в Патент Джона Бардина и Уолтера Браттейна в США (2 524 035), поданный в июне 1948 г. (примерно через шесть месяцев после оригинальное открытие) и награжден 3 октября 1950 года. Это простой PN-транзистор с тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).Три контакта: эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый). Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

    транзисторов были изобретены в Bell Laboratories в Нью-Джерси в 1947 году. трех блестящих физиков США: Джона Бардина (1908–1991), Уолтера Браттейн (1902–1987) и Уильям Шокли (1910–1989).

    Команда, возглавляемая Шокли, пыталась разработать новый усилитель для телефонной системы США - но что собственно изобретенные они оказались гораздо более распространенными Приложения.Бардин и Браттейн создали первый практический транзистор (известный как точечный транзистор) во вторник, 16 декабря 1947 г. Хотя Шокли сыграл большую роль в этом проекте, он был разъяренный и взволнованный из-за того, что его оставили в стороне. Вскоре после этого во время остановиться в отеле на конференции по физике, единолично выяснил он теория переходного транзистора - устройство гораздо лучше, чем точечный транзистор.

    В то время как Бардин ушел из Bell Labs, чтобы стать академиком (он продолжил пользуются еще большим успехом при изучении сверхпроводников в Университете Иллинойса), Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.Шокли основал собственную компанию по производству транзисторов и помог вдохновить современный феномен «Силиконовая долина» (процветающий район вокруг Пало-Альто, Калифорния, где корпорации электроники собраны). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли чтобы основать Intel, крупнейшего в мире производителя микрочипов.

    Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда они поделились лучшими научными достижениями мира награда, Нобелевская премия по физике 1956 г., за их открытие.Их история захватывающий рассказ о интеллектуальный талант борется с мелкой ревностью, и это хорошо стоит прочтения больше о. Вы можете найти отличные отчеты об этом среди книг и веб-сайты, перечисленные ниже.

    ST Micro TIP36C BJT PNP-транзистор общего назначения, 100 В, 25 А, 3-контактный, 3+ выступа, трубка TO-247, 20,15 мм В x 15,75 мм Д x 5,15 мм Ш (упаковка из 3 шт.): Amazon.com: Industrial & Научный


    В настоящее время недоступен.
    Мы не знаем, когда и появится ли этот товар в наличии.
    • Убедитесь, что это подходит введя номер вашей модели.
    • Категория: биполярное питание
    • Конфигурация: одиночный
    • Максимальная рассеиваемая мощность: 125000 МВт
    • Макcимально допустимое напряжение коллектор-эмиттер: 100V
    • Максимальное напряжение базы эмиттера: 5 В
    ]]>
    Характеристики этого продукта
    Фирменное наименование СТ МИКРО
    Высота 20.15 миллиметров
    Вес изделия 0,480 унции
    Длина 15,75 миллиметра
    Номер модели TIP36C
    Количество позиций 3
    Номер детали TIP36C
    Размер 3 шт.
    Код UNSPSC 32111611
    Ширина 5.15 миллиметров

    Определение транзистора | PCMag

    В аналоговом мире непрерывно меняющихся сигналов транзистор - это устройство, используемое для усиления входного электрического сигнала. В цифровом мире транзистор - это двоичный ключ и фундаментальный строительный блок компьютерной схемы.Подобно выключателю на стене, транзистор либо предотвращает, либо пропускает ток. Один современный ЦП может иметь сотни миллионов или даже миллиарды транзисторов.

    Изготовлен из полупроводникового материала
    Активная часть транзистора сделана из кремния или другого полупроводникового материала, который может изменять свое электрическое состояние при импульсном воздействии. В нормальном состоянии материал может быть непроводящим или проводящим, препятствуя или пропуская ток. Когда на затвор подается напряжение, транзистор меняет свое состояние.Чтобы узнать больше о транзисторе, см. Понятие транзистора и микросхему. См. Активную область, фототранзистор и High-K / Metal Gate.

    От транзисторов к системам


    Транзисторы соединены схемами, составляющими логические вентили. Гейты составляют схемы, а схемы составляют электронные системы (подробнее см. Булеву логику и Булевы вентили).

    Концептуальный вид транзистора

    В цифровой схеме транзистор представляет собой двухпозиционный переключатель, который является проводящим при подаче электрического импульса.Транзисторы также используются в качестве усилителей, передавая низкое напряжение на базе высокому напряжению на коллекторе. В аудиоусилителях таким образом используются транзисторы.

    Создание транзистора

    Посредством нескольких этапов маскирования, травления и диффузии создаются подслои на кристалле. На заключительном этапе располагается верхний металлический слой (обычно алюминий), который соединяет транзисторы друг с другом и с внешним миром.

    В большинстве случаев создаются

    в то же время в то же время.Такая 300-миллиметровая пластина может содержать сотни и тысячи кристаллов (чипов), что означает одновременное изготовление миллиардов и триллионов транзисторов. Смотрите вафлю. (Изображение любезно предоставлено Intel Corporation.)

    Первый кремниевый транзистор


    В 1954 году компания Texas Instruments первой начала производство дискретных транзисторов в промышленных масштабах. Сегодня это пространство размером примерно четверть дюйма может вместить триллионы транзисторов. См. Концепцию транзистора. (Изображение любезно предоставлено Texas Instruments, Inc.)

    IBM "Solid Logic"


    Вместо одного транзистора в корпусе передовые инженерные разработки IBM разместили три транзистора в одном модуле для своего семейства System / 360 в 1964 году При снятой крышке все трое хорошо видны. См. Активную область. (Изображение любезно предоставлено IBM.)

    Как работают транзисторы? - Utmel

    Транзистор - это разновидность полупроводникового устройства, регулирующего ток.Его функция состоит в том, чтобы преобразовать слабый сигнал в электрический сигнал с большим значением амплитуды, и он также используется в качестве бесконтактного переключателя. Транзистор является одним из основных полупроводниковых компонентов, который выполняет функцию усиления тока и является основным компонентом электронной схемы. Транзистор состоит из двух PN-переходов, очень близко расположенных друг к другу на полупроводниковой подложке. Два PN-перехода делят весь полупроводник на три части. Средняя часть - это базовая область, а две стороны - области эмиттера и коллектора.PNP и NPN - это два типа договоренностей.

    Каталог

    Ⅰ Структура ядра транзисторов

    транзистор

    Ядром транзистора является переход « PN », который представляет собой два встречных PN перехода. PN-переход может быть комбинацией NPN или комбинацией PNP. Поскольку кремниевый тип NPN является основным потоком транзисторов, в следующем материале в качестве примера в основном используется кремниевый транзистор типа NPN.

    Принципиальная схема структуры транзистора NPN

    Процесс производства кремниевого транзистора NPN:

    Вид структуры кристалла в разрезе:

    Ⅱ Рабочее состояние транзисторов

    1 Состояние отсечки

    Когда напряжение, приложенное к эмиттерному переходу транзистора, меньше, чем напряжение проводимости PN перехода, ток базы, ток коллектора и ток эмиттера равны нулю.Транзистор теряет эффект усиления тока, а коллектор и эмиттер равны в выключенном состоянии переключателя, мы называем транзистор в состоянии отсечки.

    2 Активное состояние

    Транзистор работает в активной области, когда эмиттерный переход транзистора смещен в прямом направлении, а коллекторный переход смещен в обратном направлении. В активной области напряжение, приложенное к эмиттерному переходу транзистора, больше, чем напряжение включения PN перехода.И базовый ток управляет током коллектора, так что транзистор действует как усилитель, а его коэффициент усиления тока β = ΔIc / ΔIb. Мы называем транзистор в активном состоянии.

    3 Состояние насыщения

    Когда напряжение, приложенное к эмиттерному переходу транзистора, больше, чем напряжение проводимости PN перехода, и когда базовый ток увеличивается до определенной степени, ток коллектора больше не увеличивается с увеличение базового тока.В это время транзистор теряет эффект усиления тока. Напряжение между коллектором и эмиттером очень мало, а коллектор и эмиттер эквивалентны включенному состоянию переключателя. Это состояние транзистора называется состоянием насыщенной проводимости.

    По уровню напряжения каждого электрода, когда транзистор работает, можно судить о рабочем состоянии транзистора. Персонал по обслуживанию электроники часто использует мультиметр для измерения напряжения на каждом выводе транзистора в процессе обслуживания, чтобы определить рабочее состояние и рабочее состояние транзистора.

    Ⅲ Теоретический принцип работы транзисторов

    Существует два типа транзисторов по материалам: германиевые трубки и кремниевые трубки. Каждый из них имеет две структурные формы, NPN и PNP, но наиболее часто используются кремниевые NPN и германиевые транзисторы PNP. Полупроводники N-типа добавляют фосфор в кремний высокой чистоты, чтобы заменить некоторые атомы кремния, чтобы создать стимуляцию свободной электронной проводимости под напряжением. P означает положительный. В полупроводниках P-типа вместо кремния добавляется бор, который создает большое количество дырок для облегчения проводимости.За исключением разницы в полярности источника питания, два принципа работы одинаковы. Следующее только знакомит с принципом усиления тока кремниевых трубок NPN.

    Транзистор NPN и транзистор PNP

    Транзистор NPN, он состоит из двух полупроводников N-типа и полупроводника P-типа посередине. PN-переход, сформированный между эмиттерной областью и базовой областью, называется эмиттерным переходом, а PN-переход, образованный коллекторной областью и базовой областью, называется коллекторным переходом.Эти три вывода называются эмиттер e, база b и коллектор c.

    Когда потенциал в точке b выше потенциала в точке e на несколько вольт, эмиттерный переход находится в прямом смещенном состоянии. Когда потенциал в точке C на несколько вольт выше, чем потенциал в точке b, коллекторный переход находится в состоянии обратного смещения, и коллекторная мощность Ec выше, чем базовая мощность Eb.

    При изготовлении транзистора основная концентрация носителей в области эмиттера сознательно делается больше, чем в базовой области.При этом базовая область делается очень тонкой, а содержание примесей необходимо строго контролировать. Таким образом, после включения питания эмиттерный переход смещается положительно. Основные носители (электроны) в эмиттерной области и основные носители (дырки) в базовой области легко диффундируют друг к другу через эмиттерный переход. Концентрационная база первого больше, чем второго, поэтому ток через эмиттерный переход в основном представляет собой поток электронов, который называется потоком электронов эмиттера.

    Из-за тонкой области базы и обратного смещения коллекторного перехода большая часть электронов, инжектированных в область базы, пересекает коллекторный переход и попадает в область коллектора, чтобы сформировать ток коллектора Ic, оставляя только несколько (1-10 %) электроны. Эти электроны рекомбинируются в отверстиях базовой области, и рекомбинированные дырки в базовой области перезаряжаются базовым источником питания Eb, образуя, таким образом, базовый ток Ibo. По принципу непрерывности тока:

    Ie = Ib + Ic

    Это означает, что добавлением небольшого Ib к базе можно получить больший Ic на коллекторе.Это так называемое усиление тока. Ic и Ib поддерживают определенное пропорциональное соотношение, а именно:

    β1 = Ic / Ib

    В формуле: β1 - коэффициент усиления постоянного тока,

    Отношение изменения тока коллектора △ Ic к изменению тока базы. △ Ib:

    β = △ Ic / △ Ib

    В формуле β называется коэффициентом усиления переменного тока. Поскольку значения β1 и β не сильно различаются на низких частотах, иногда для удобства их не различают строго, и значение β составляет от десятков до более чем сотни.

    α1 = Ic / Ie (Ic и Ie - токи в цепи постоянного тока)

    Формула: α1 также называется коэффициентом усиления постоянного тока, который обычно используется в схеме усилителя общей базовой конфигурации для описания взаимосвязи. между током эмиттера и током коллектора.

    α = △ Ic / △ Ie

    α в выражении - это увеличение переменного тока общей базы. Точно так же нет большой разницы между α и α1, когда на вход подается слабый сигнал.

    Для двух увеличений, описывающих соотношение тока, соотношение следующее:

    Эффект усиления тока транзистора на самом деле заключается в использовании небольшого изменения тока базы для управления огромным изменением тока коллектора. Транзистор является своего рода устройством усилителя тока, но на практике эффект усилителя тока транзистора часто преобразуется в эффект усилителя напряжения через резистор.

    Ⅳ Принцип усиления транзисторов

    1 Эмиттер излучает электроны на базу

    Источник питания Ub добавлен к эмиссионному переходу через резистор Rb.Эмиссионный переход смещен в прямом направлении, и большинство носителей (свободных электронов) в эмиссионной области непрерывно пересекают эмиссионный переход и входят в базовую зону, образуя эмиттерный ток Ie. В то же время основные носители в базовой области диффундируют в область излучения, но поскольку концентрация основных носителей намного ниже, чем концентрация носителей в области излучения, этим током можно пренебречь, поэтому можно считать, что излучение переход представляет собой в основном поток электронов.

    2 Диффузия и рекомбинация электронов в базе

    После того, как электроны попадают в область базы, они сначала концентрируются около эмиттерного перехода, постепенно образуя разницу концентраций электронов. Из-за разницы концентраций поток электронов продвигается к диффузии в основании к коллекторному переходу и втягивается в коллектор электрическим полем коллекторного перехода. Он называется коллекторным током Ic. Также существует небольшая часть электронов (поскольку базовая область очень тонкая) рекомбинирована с дырками в базовой области, и отношение диффузного электронного потока к составному электронному потоку определяет усилительную способность транзистора.

    3 Сбор электронов в коллекторе

    Поскольку обратное напряжение, приложенное к коллекторному переходу, очень велико, сила электрического поля, создаваемая этим обратным напряжением, будет препятствовать диффузии электронов в области коллектора в базовую область. В то же время электроны, диффундирующие около коллекторного перехода, будут втягиваться в коллекторную область, чтобы сформировать основной ток коллектора Icn. Кроме того, неосновные носители (дырки) в области коллектора также будут дрейфовать и течь в базовую область, образуя обратный ток насыщения, который представлен Icbo.Его величина очень мала, но он чрезвычайно чувствителен к температуре.

    Ⅴ Схема усилителя на транзисторах

    1 Базовая структура

    Базовая схема усилителя - это базовый блок, который составляет сложную схему усилителя. Он использует характеристики входного тока биполярного полупроводникового транзистора для управления выходным током или характеристики входного напряжения полевого полупроводникового транзистора для управления выходным током для реализации усиления сигнала.

    Базовая схема усилителя

    Базовая схема усилителя обычно относится к схеме усилителя, состоящей из транзистора или полевой трубки. С точки зрения схемы, базовая схема усилителя может рассматриваться как двухпортовая сеть. Роль усиления отражается в следующих аспектах:

    1) Схема усилителя в основном использует функцию управления транзистора или полевой трубки для усиления слабого сигнала. Выходной сигнал усиливается по амплитуде напряжения или тока, а энергия выходного сигнала усиливается.

    2) Энергия выходного сигнала фактически обеспечивается источником питания постоянного тока, но она преобразуется в энергию сигнала посредством управления транзистором и подается на нагрузку.

    2 Состав схемы

    Существует три различных конфигурации схемы транзистора: общий эмиттер, общая база и общий коллектор. Эти три схемы конфигурации имеют разные характеристики. Возможны различные конфигурации одиночного транзисторного усилителя.

    Цепь общего эмиттера, входной цикл и выходной цикл прошли эмиттер транзистора

    Цепь с общей базой, входной цикл и выходной цикл прошли базу транзистора

    Схема общего коллектора, входная цепь и выходная цепь прошли коллектор транзистора

    Схема усилителя с общим эмиттером

    Базовая схема усилителя конфигурации с общим эмиттером состоит в том, что входной сигнал добавляется между базой и эмиттер, а разделительные конденсаторы C1 и Ce считаются закорачивающими сигнал переменного тока.Выходной сигнал выводится с коллектора на землю, постоянный ток отделяется разделительным конденсатором C2, и только сигнал переменного тока добавляется к сопротивлению нагрузки RL. Общая конфигурация излучения схемы усилителя фактически относится к общей конфигурации излучения транзистора в схеме усилителя.

    Схема усилителя с общим эмиттером

    Когда входной сигнал равен нулю, источник постоянного тока обеспечивает постоянный ток базы и постоянный ток коллектора для транзистора через каждый резистор смещения и формирует определенное постоянное напряжение между тремя полюсами транзистор.Из-за блокирующего действия конденсатора связи постоянного тока напряжение постоянного тока не может достигать входных и выходных клемм схемы усилителя.

    Когда входной сигнал переменного тока добавляется к переходу передатчика транзистора через разделительные конденсаторы C1 и Ce, напряжение на переходе передатчика становится суперпозицией переменного и постоянного тока. Ситуация с сигналом в схеме усилителя более сложная. Обозначения каждого сигнала обозначены следующим образом: из-за эффекта усиления тока транзистора ic в десятки раз больше, чем ib.Вообще говоря, если параметры схемы установлены правильно, выходное напряжение может быть намного выше входного. Часть входного переменного тока достигает сопротивления нагрузки через конденсатор связи и формирует выходное напряжение.

    Можно видеть, что сигнал постоянного тока коллектора транзистора в схеме усилителя не изменяется с входным сигналом, а сигнал переменного тока изменяется с входным сигналом. В процессе усиления сигнал переменного тока коллектора накладывается на сигнал постоянного тока, и только сигнал переменного тока извлекается с выходного контакта через разделительный конденсатор.Следовательно, при анализе схемы усилителя можно использовать метод разделения сигналов переменного и постоянного тока, которые можно разделить на путь постоянного тока и путь переменного тока для анализа.

    Статьи по теме:

    Структура и принцип работы полевых транзисторов

    Характеристики и принцип работы IGBT

    Купите 2N3904 NPN транзистор общего назначения в Интернете - QuartzComponents

    Политика возврата в связи с типом продукции

    мы продаем, мы принимаем ограниченный возврат.Ниже приведены условия, при которых мы можем принять запрос на возврат.

    1. Производственный брак
    Если вы получили продукт с производственным дефектом, сообщите нам об этом в течение 3 дней с момента получения продукта, приложив соответствующие фотографии и описание. Как только наша служба поддержки примет возврат, мы предоставим замену или полный возврат средств, включая стоимость обратной доставки.
    2. Отправлен неправильный товар

    Если вы получили продукт, отличный от заказанного, свяжитесь с нами в течение 3 дней с момента получения продукта, приложив соответствующие фотографии и описание.Как только наша служба поддержки примет возврат, мы предоставим замену или полный возврат средств, включая стоимость обратной доставки.

    Ограничение возврата
    Мы не принимаем возврат товаров, поврежденных в результате неправильного использования. Кроме того, мы не принимаем возврат, если заказанный товар не подходит для какого-либо конкретного применения. Пожалуйста, прочтите спецификации продукта и техническое описание перед выбором и заказом продукта.
    Доставка

    Мы отправляем по всей Индии с фиксированной ставкой 45 индийских рупий для всех заказов на сумму менее 599 индийских рупий.Для всех заказов на сумму свыше 599 индийских рупий мы предлагаем бесплатную доставку. По любым вопросам, связанным с доставкой, обращайтесь в нашу службу поддержки по адресу [email protected]

    Политика возврата

    В связи с типом продукции, которую мы продаем, мы принимаем ограниченный возврат. Ниже приведены условия, при которых мы можем принять запрос на возврат.

    1. Производственный брак
    Если вы получили продукт с производственным дефектом, сообщите нам об этом в течение 3 дней с момента получения продукта, приложив соответствующие фотографии и описание.Как только наша служба поддержки примет возврат, мы предоставим замену или полный возврат средств, включая стоимость обратной доставки.
    2. Отправлен неправильный товар

    Если вы получили продукт, отличный от заказанного, свяжитесь с нами в течение 3 дней с момента получения продукта, приложив соответствующие фотографии и описание. Как только наша служба поддержки примет возврат, мы предоставим замену или полный возврат средств, включая стоимость обратной доставки.

    Ограничение возврата
    Мы не принимаем возврат товаров, поврежденных в результате неправильного использования.Кроме того, мы не принимаем возврат, если заказанный товар не подходит для какого-либо конкретного применения. Пожалуйста, прочтите спецификации продукта и техническое описание перед выбором и заказом продукта.
    Доставка

    Мы отправляем по всей Индии с фиксированной ставкой 45 индийских рупий для всех заказов на сумму менее 599 индийских рупий. Для всех заказов на сумму более 599 индийских рупий мы предлагаем бесплатную доставку. По любым вопросам, связанным с доставкой, обращайтесь в нашу службу поддержки по адресу [email protected]

    Транзистор - Энциклопедия Нового Света

    Транзистор представляет собой полупроводниковое устройство, которое использует небольшое количество напряжения или электрического тока для управления большим изменением напряжения или тока.Благодаря быстрому отклику и точности он может использоваться в самых разных приложениях, включая усиление, переключение, стабилизацию напряжения, модуляцию сигнала и в качестве генератора. Транзистор является фундаментальным строительным блоком как цифровых, так и аналоговых схем - схемы, которая управляет работой компьютеров, сотовых телефонов и всей другой современной электроники. Транзисторы могут быть упакованы индивидуально или как часть интегральной схемы, которая может содержать тысячи транзисторов на очень небольшой площади.

    Введение

    Современные транзисторы делятся на две основные категории: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET). Приложение тока в транзисторах BJT и напряжения в полевых транзисторах между входными и общими клеммами увеличивает проводимость между общей и выходной клеммами, тем самым контролируя протекание тока между ними.

    Термин «транзистор» первоначально относился к типу точечного контакта, но он имел очень ограниченное коммерческое применение, будучи замененным гораздо более практичным типом биполярного перехода в начале 1950-х годов.По иронии судьбы и сам термин «транзистор», и наиболее широко используемое для него сегодня схематическое обозначение - это именно те, которые конкретно относятся к этим давно устаревшим устройствам; [1] попыток представить более точные версии ни к чему не привели.

    В аналоговых схемах транзисторы используются в усилителях (усилители постоянного тока, усилители звука, усилители радиочастоты) и источниках питания с линейной регулировкой. Транзисторы также используются в цифровых схемах, где они функционируют как электронные переключатели, но редко как дискретные устройства, почти всегда включаемые в монолитные интегральные схемы.Цифровые схемы включают логические элементы, оперативную память (RAM), микропроцессоры и процессоры цифровых сигналов (DSP).

    История

    Первые три патента на принцип полевого транзистора были зарегистрированы в Германии в 1928 году физиком Юлиусом Эдгаром Лилиенфельдом, но Лилиенфельд не опубликовал исследовательских статей о своих устройствах, и они были проигнорированы промышленностью. В 1934 году немецкий физик доктор Оскар Хайль запатентовал еще один полевой транзистор. Нет прямых доказательств того, что эти устройства были построены, но более поздние работы в 1990-х годах показывают, что одна из разработок Лилиенфельда работала, как описано, и дала значительную выгоду.Юридические документы из патента Bell Labs показывают, что Шокли и Пирсон построили операционные версии на основе патентов Лилиенфельда, но они никогда не ссылались на эту работу ни в одной из своих более поздних исследовательских работ или исторических статей. [2]

    16 декабря 1947 года Уильям Шокли, Джон Бардин и Уолтер Браттейн построили первый практический точечный транзистор в Bell Labs. Эта работа была результатом их усилий во время войны по производству сверхчистых германиевых "кристаллических" смесительных диодов, используемых в радиолокационных устройствах в качестве элемента частотного смесителя в микроволновых радиолокационных приемниках.Ранняя ламповая технология не использовалась достаточно быстро для этой роли, что вынудило команду Bell использовать вместо нее твердотельные диоды. Обладая этими знаниями, они обратились к проектированию триода, но обнаружили, что это совсем не просто. В конце концов Бардин разработал новую ветвь физики поверхности, чтобы объяснить «странное» поведение, которое они наблюдали, и Бардин и Браттейн в конце концов сумели построить работающее устройство.

    Bell Telephone Laboratories требовалось общее название для нового изобретения: «Полупроводниковый триод», «Твердый триод», «Триод с поверхностными состояниями», «Кристаллический триод» и «Иотатрон» все рассматривались, но «транзистор» придумал Джон Р.Пирс выиграл внутреннее голосование. Обоснование названия описано в следующей выдержке из Технического меморандума компании, призывающей к голосованию:

    Транзистор. Это сокращенная комбинация слов «крутизна» или «передача» и «варистор». Устройство логически принадлежит к семейству варисторов и имеет крутизну или передаточный импеданс устройства с усилением, так что эта комбинация является описательной.

    Bell Telephone Laboratories - Технический меморандум (28 мая 1948 г.)

    Пирс вспомнил название несколько иначе:

    Название, которое я дал, заключалось в том, чтобы думать о том, что делает устройство.И в то время это должен был быть двойник вакуумной лампы. Электронная лампа имела крутизну, поэтому транзистор имел «трансрезистентность». И название должно совпадать с названиями других устройств, таких как варистор и термистор. И… я предложил название «транзистор».

    Джон Р. Пирс дал интервью для шоу PBS "Transistorized!"

    Bell немедленно запустила ограниченное производство точечных транзисторов в Western Electric в Аллентауне, штат Пенсильвания.Были продемонстрированы прототипы полностью транзисторных AM-радиоприемников, но на самом деле это были лишь лабораторные диковинки. Однако в 1950 году Шокли разработал принципиально другой тип твердотельного усилителя, который стал известен как «транзистор» с биполярным переходом. Хотя он работает по совершенно иному принципу, чем точечный «транзистор», это устройство, которое сегодня чаще всего называют «транзистором». Они также были лицензированы ряду других компаний-производителей электроники, включая Texas Instruments, которые производили ограниченную серию транзисторных радиоприемников в качестве инструмента продаж.Ранние транзисторы были химически «нестабильными» и подходили только для маломощных низкочастотных приложений, но по мере развития конструкции транзистора эти проблемы постепенно преодолевались.

    Первым коммерческим транзисторным радиоприемником в мире, который часто ошибочно приписывают Sony, был Regency TR-1, созданный Regency Division I.D.E.A. (Industrial Development Engineering Associates) из Индианаполиса, штат Индиана, о котором было объявлено 18 октября 1954 года. Он был выставлен на продажу в ноябре 1954 года за 49 долларов.95 (что эквивалентно 361 доллару в долларах 2005 года) и было продано около 150 000 единиц. Он использовал четыре NPN-транзистора и питался от батареи на 22,5 В.

    Акио Морита, соучредитель японской фирмы Tokyo Tsushin Kogyo, находился с визитом в США, когда Bell Labs объявила о наличии производственных лицензий, включая подробные инструкции по производству переходных транзисторов. Morita получил специальное разрешение от Министерства финансов Японии на оплату лицензионного сбора в размере 50 000 долларов, а в 1955 году компания представила собственное «карманное» радио под торговой маркой Sony.(Термин «карман» был предметом некоторой интерпретации, поскольку Sony, как известно, делала специальные рубашки с большими карманами для своих продавцов). Вскоре за этим продуктом последовали более амбициозные разработки, но, как правило, он считается началом роста Sony в производственную сверхдержаву.

    В течение следующих двух десятилетий транзисторы постепенно вытеснили более ранние электронные лампы в большинстве приложений, а позже сделали возможным появление многих новых устройств, таких как интегральные схемы и персональные компьютеры.

    Шокли, Бардин и Браттейн были удостоены Нобелевской премии по физике «за исследования полупроводников и открытие транзисторного эффекта». Бардин впоследствии получил вторую Нобелевскую премию по физике, один из двух человек, получивших более одного в той же дисциплине, за свою работу по исследованию сверхпроводимости.

    В августе 1948 года немецкие физики Герберт Ф. Матаре (1912–) и Генрих Велкер (около 1912–1981), работавшие в Compagnie des Freins et Signaux Westinghouse в Париже, Франция, подали заявку на патент на усилитель на основе неосновной несущей. процесс впрыска, который они назвали «транзистроном».«Поскольку Bell Labs не объявляла о транзисторе публично до июня 1948 года, транзистрон считался разработанным независимо. Матаре впервые наблюдал эффекты крутизны при производстве германиевых дуодиодов для немецкого радиолокационного оборудования во время Второй мировой войны. Транзистроны производились для коммерческих целей. французской телефонной компании и военных, а в 1953 году на Дюссельдорфской радиоярмарке был продемонстрирован твердотельный радиоприемник с четырьмя транзистронами.

    Типы

    Транзисторы

    подразделяются на:

    • Материал полупроводника: германий, кремний, арсенид галлия, карбид кремния
    • Структура: BJT, JFET, IGFET (MOSFET), IGBT, «другие типы»
    • Полярность: NPN, PNP, N-канал, P-канал
    • Максимальная мощность: низкая, средняя, ​​высокая
    • Максимальная рабочая частота: низкая, средняя, ​​высокая, радиочастота (RF), микроволновая печь (максимальная эффективная частота транзистора обозначается термином fT {\ displaystyle f _ {\ mathrm {T}}}, сокращенным от слова "частота перехода."Частота перехода - это частота, при которой транзистор дает единичное усиление).
    • Применение: переключатель, общего назначения, аудио, высокое напряжение, супер-бета, согласованная пара
    • Физическая упаковка: металл сквозного отверстия, пластик сквозного отверстия, поверхностный монтаж, решетка шариков

    Таким образом, конкретный транзистор может быть описан как: кремний , поверхностный монтаж, BJT, NPN, маломощный, высокочастотный переключатель.

    Переходный биполярный транзистор

    Биполярный транзистор (BJT) был первым типом транзистора, который производился серийно.Биполярные транзисторы названы так потому, что они проводят с использованием как мажоритарных, так и неосновных носителей. Три клеммы BJT названы эмиттером , базой , , и коллектором. Два p-n перехода существуют внутри BJT: переход база / эмиттер , и переход база / коллектор . BJT обычно описывается как устройство, работающее от тока, потому что ток коллектора / эмиттера регулируется током, протекающим между выводами базы и эмиттера.В отличие от полевого транзистора, BJT представляет собой устройство с низким входным сопротивлением. Из-за этой экспоненциальной зависимости BJT имеет более высокую крутизну, чем FET.

    Биполярные транзисторы можно сделать проводящими светом, так как поглощение фотонов в основной области генерирует фототок, который действует как базовый ток; ток коллектора примерно в бета раз больше фототока. Устройства, предназначенные для этой цели, имеют в корпусе прозрачное окошко и называются фототранзисторами.

    Транзистор полевой

    Полевой транзистор (FET), иногда называемый униполярным транзистором , использует для проводимости электроны (N-канальный FET) или дырки (P-канальный FET).Четыре вывода полевого транзистора имеют названия исток, затвор, сток, и корпус (подложка). На большинстве полевых транзисторов корпус подключен к источнику внутри корпуса, и это предполагается в следующем описании.

    Напряжение, приложенное между затвором и истоком (корпусом), управляет током, протекающим между стоком и истоком. По мере увеличения напряжения затвор / исток (Vgs) ток стока / истока (Ids) увеличивается параболически.В полевых транзисторах ток стока / истока протекает через проводящий канал около затвора . Этот канал соединяет область стока с областью истока . Проводимость канала изменяется электрическим полем, создаваемым напряжением, приложенным между выводами затвор / исток. Таким образом регулируется ток, протекающий между стоком и истоком.

    Полевые транзисторы

    делятся на два семейства: полевые транзисторы с переходом (JFET) и полевые транзисторы с изолированным затвором (IGFET).IGFET более известен как металл-оксид-полупроводниковый полевой транзистор (MOSFET) из-за их первоначальной конструкции как слой металла (затвор), слой оксида (изоляция) и слой полупроводника. В отличие от IGFET, затвор JFET образует PN-диод с каналом, который находится между истоком и стоком. Функционально это делает N-канальный полевой транзистор JFET твердотельным эквивалентом триода для электронных ламп, который аналогично образует диод между своей сеткой и катодом. Кроме того, оба устройства работают в режиме истощения , , оба имеют высокий входной импеданс, и оба они проводят ток под контролем входного напряжения.

    MESFET - это полевые транзисторы JFET, в которых обратносмещенный PN-переход заменен переходом Шоттки полупроводник-металл. Они, а также HEMFET (полевые транзисторы с высокой подвижностью электронов), в которых для переноса заряда используется двумерный электронный газ с очень высокой подвижностью носителей, особенно подходят для использования на очень высоких частотах (микроволновые частоты; несколько ГГц).

    В отличие от биполярных транзисторов, полевые транзисторы не усиливают фототок. Тем не менее, есть способы использовать их, особенно JFET, в качестве светочувствительных устройств, используя фототоки в переходах канал-затвор или канал-тело.

    Полевые транзисторы

    дополнительно делятся на типы с режимом истощения, и , с режимом улучшения, , в зависимости от того, включен или выключен канал с нулевым напряжением затвор-исток. Для режима улучшения канал отключен при нулевом смещении, и потенциал затвора может «улучшить» проводимость. В режиме истощения канал включен при нулевом смещении, и потенциал затвора (противоположной полярности) может «истощить» канал, уменьшая проводимость. Для любого режима более положительное напряжение затвора соответствует более высокому току для N-канальных устройств и более низкому току для P-канальных устройств.Почти все полевые транзисторы JFET работают в режиме истощения, поскольку диодные переходы имели бы прямое смещение и проводимость, если бы они были устройствами в режиме улучшения; большинство IGFET являются типами расширенного режима.

    Другие типы транзисторов

    • Биполярный транзистор с гетеропереходом (HBT) - это усовершенствованный биполярный транзистор (BJT), который может обрабатывать сигналы очень высоких частот до нескольких сотен ГГц. Это распространено в современных сверхбыстрых цепях, в основном в радиочастотных (RF) системах.
    • Однопереходные транзисторы могут использоваться как простые генераторы импульсов.Они состоят из основного корпуса полупроводника P-типа или N-типа с омическими контактами на каждом конце (клеммы Base1 и Base2 ). Переход с полупроводником противоположного типа формируется в точке по длине корпуса для третьего вывода (эмиттер).
    • полевые транзисторы с двумя затворами имеют один канал с двумя затворами в каскоде; конфигурация, оптимизированная для высокочастотных усилителей, смесителей и генераторов.
    • Матрицы транзисторов
    • используются для приложений общего назначения, генерации функций и низкоуровневых малошумящих усилителей.Они включают в себя два или более транзисторов на общей подложке для обеспечения точного согласования параметров и теплового отслеживания, характеристик, которые особенно важны для усилителей с длинными хвостовиками.
    • Транзисторы Дарлингтона
    • содержат биполярный транзистор средней мощности, подключенный к силовому биполярному транзистору. Это обеспечивает высокий коэффициент усиления по току, равный произведению коэффициентов усиления по току двух транзисторов. Силовые диоды часто подключаются между определенными клеммами в зависимости от конкретного использования.
    • Биполярный транзистор
    • с изолированным затвором (IGBT-транзистор) использует IGFET средней мощности, аналогично подключенный к силовому BJT, чтобы обеспечить высокий входной импеданс.Силовые диоды часто подключаются между определенными клеммами в зависимости от конкретного использования. БТИЗ особенно подходят для тяжелых промышленных приложений.
    • Одноэлектронные транзисторы (SET) состоят из островка затвора между двумя туннельными переходами. Туннельный ток регулируется напряжением, подаваемым на затвор через конденсатор. [1] [2]
    • Нанофлюидный транзистор Управляет движением ионов через субмикроскопические каналы, заполненные водой. Нанофлюидный транзистор - основа будущих химических процессоров.
    • В триггерных транзисторах
    • (прототип от Intel, также известные как трехмерные транзисторы) используется один затвор, который уложен поверх двух вертикальных затворов, что позволяет электронам перемещаться по поверхности в три раза больше.
    • Лавинные транзисторы способны переключать очень высокие токи с временем нарастания и спада менее наносекунд (время перехода).
    • Баллистический транзистор. Электроны проносятся сквозь лабиринт.
    • Спиновые транзисторы
    • являются магниточувствительными устройствами.
    • Тонкопленочные транзисторы используются в ЖК-дисплеях.
    • Транзисторы с плавающим затвором используются для энергонезависимой памяти.
    • Фототранзисторы реагируют на свет
    • Полевой транзистор Inverted-T, часть устройства проходит вертикально из горизонтальной плоскости в виде перевернутой T-образной формы, отсюда и название.
    • Ионочувствительные полевые транзисторы для измерения концентрации ионов в растворе.
    • FinFET Область истока / стока образует ребра на поверхности кремния.
    • Быстро-реверсивный эпитаксальный диодный полевой транзистор FREDFET
    • EOSFET Полевой транзистор электролит-оксид-полупроводник (нейрочип)

    Полупроводниковые материалы

    Первые БЮТ были сделаны из германия (Ge), и некоторые мощные типы до сих пор таковыми. Типы кремния (Si) в настоящее время преобладают, но в некоторых усовершенствованных микроволновых и высокопроизводительных версиях теперь используется составной полупроводник , арсенид галлия (GaAs) и полупроводниковый сплав , кремний-германий (SiGe).Одноэлементные полупроводниковые материалы (Ge или Si) описываются как «элементные».

    Упаковка

    Транзисторы со сквозным отверстием (сантиметровая рулетка) Транзисторы

    выпускаются в разных корпусах (микросхемах). Две основные категории: для сквозного монтажа (или с выводами ) и для поверхностного монтажа, также известное как устройство для поверхностного монтажа (технология поверхностного монтажа, SMD). «Ball grid array» (BGA) - это новейший корпус для поверхностного монтажа (в настоящее время только для больших транзисторных массивов).Он имеет припойные «шарики» на нижней стороне вместо выводов. Поскольку они меньше по размеру и имеют более короткие межсоединения, SMD имеют лучшие высокочастотные характеристики, но более низкую номинальную мощность.

    Корпуса транзисторов изготавливаются из стекла, металла, керамики или пластика. Пакет часто диктует номинальную мощность и частотные характеристики. Силовые транзисторы имеют большие корпуса, которые можно прикрепить к радиаторам для улучшения охлаждения. Кроме того, у большинства силовых транзисторов коллектор или сток физически соединены с металлической банкой / металлической пластиной.С другой стороны, некоторые «микроволновые» транзисторы для поверхностного монтажа размером с песчинки.

    Часто транзисторы данного типа доступны в разных корпусах. Пакеты транзисторов в основном стандартизированы, но назначение функций транзистора клеммам нет: разные типы транзисторов могут назначать разные функции клеммам корпуса. Назначение выводов может меняться даже для одного и того же типа транзистора (обычно обозначается буквой суффикса к номеру детали, например, BC212L и BC212K).

    Использование

    На заре разработки схем транзисторов биполярный переходной транзистор (или BJT) был наиболее часто используемым транзистором. Даже после того, как полевые МОП-транзисторы стали доступны, BJT оставался предпочтительным транзистором для цифровых и аналоговых схем из-за простоты их изготовления и скорости. Тем не менее, полевой МОП-транзистор имеет несколько желаемых свойств для цифровых схем, и крупные достижения в области цифровых схем подтолкнули конструкцию МОП-транзистора к современному уровню техники. MOSFET теперь широко используются как для аналоговых, так и для цифровых функций.

    Переключатели

    Транзисторы

    обычно используются в качестве электронных переключателей как для приложений большой мощности, включая импульсные источники питания, так и для приложений с низким энергопотреблением, таких как логические вентили.

    Усилители

    От мобильных телефонов до телевизоров - огромное количество товаров включает усилители для воспроизведения звука, радиопередачи и обработки сигналов. Первые дискретные транзисторные усилители звука едва выдавали несколько сотен милливатт, но мощность и точность воспроизведения звука постепенно увеличивались по мере появления лучших транзисторов и развития архитектуры усилителя.

    Транзисторы обычно используются в усилителях современных музыкальных инструментов, где схемы мощностью до нескольких сотен ватт являются обычными и относительно дешевыми. Транзисторы в значительной степени заменили клапаны в инструментальных усилителях. Некоторые производители усилителей для музыкальных инструментов смешивают в одной цепи транзисторы и электронные лампы, чтобы использовать преимущества обоих устройств.

    Компьютеры

    Электронные компьютеры «первого поколения» использовали вакуумные лампы, которые выделяли большое количество тепла, были громоздкими и ненадежными.Разработка транзистора была ключом к миниатюризации и надежности компьютера. Компьютеры «второго поколения», существовавшие в конце 1950-х и 1960-х годах, имели платы, заполненные отдельными транзисторами и сердечниками магнитной памяти. Впоследствии транзисторы, другие компоненты и их необходимая проводка были объединены в единый массовый компонент: интегральную схему. Транзисторы, встроенные в интегральные схемы, заменили большинство дискретных транзисторов в современных цифровых компьютерах.

    Важность

    Многие считают транзистор одним из величайших изобретений в современной истории, занимающим важное место в печатном станке, автомобиле и телефоне. Это ключевой активный компонент практически во всей современной электронике. Его важность в современном обществе основывается на его способности массового производства с использованием высокоавтоматизированного процесса (изготовления), который позволяет достичь исчезающе низких затрат на транзистор.

    Хотя до сих пор используются миллионы отдельных (известных как дискретных ) транзисторов, подавляющее большинство транзисторов изготавливается в виде интегральных схем (часто сокращенно IC и также называемых микрочипами или просто микросхемами ) вместе с диодами. , резисторы, конденсаторы и другие электронные компоненты для изготовления законченных электронных схем.Логический вентиль состоит примерно из двадцати транзисторов, тогда как усовершенствованный микропроцессор, по состоянию на 2006 год, может использовать до 1,7 миллиарда транзисторов (MOSFET) [3].

    Низкая стоимость, гибкость и надежность транзистора сделали его универсальным устройством для немеханических задач, таких как цифровые вычисления. Транзисторные схемы также заменили электромеханические устройства для управления приборами и механизмами. Часто дешевле и эффективнее использовать стандартный микроконтроллер и написать компьютерную программу для выполнения функции управления, чем разработать эквивалентную функцию механического управления.

    Из-за низкой стоимости транзисторов и, следовательно, цифровых компьютеров, существует тенденция к оцифровке информации. Поскольку цифровые компьютеры предлагают возможность быстро находить, сортировать и обрабатывать цифровую информацию, все больше и больше усилий прилагается к тому, чтобы сделать информацию цифровой. В результате сегодня большая часть мультимедийных данных доставляется в цифровой форме, а затем конвертируется и представляется в аналоговой форме компьютерами. Сферы, на которые повлияла цифровая революция, включают телевидение, радио и газеты.

    Преимущества транзисторов перед лампами

    До разработки транзисторов электронные лампы (или в Великобритании термоэлектронные лампы или просто клапаны ) были основными активными компонентами в электронном оборудовании. Ключевые преимущества, которые позволили транзисторам заменить своих предшественников на электронных лампах в большинстве приложений:

    • Меньший размер (несмотря на продолжающуюся миниатюризацию электронных ламп)
    • Высокоавтоматизированное производство
    • Более низкая стоимость (при серийном производстве)
    • Более низкие возможные рабочие напряжения (но вакуумные лампы могут работать и при более высоких напряжениях)
    • Нет периода прогрева (большинству электронных ламп для правильной работы требуется от 10 до 60 секунд)
    • Меньшее рассеивание мощности (отсутствие мощности нагревателя, очень низкое напряжение насыщения)
    • Более высокая надежность и большая физическая устойчивость (хотя вакуумные лампы более прочны в электрическом отношении.Кроме того, вакуумная трубка намного более устойчива к ядерным электромагнитным импульсам (NEMP) и электростатическому разряду (ESD))
    • Намного более длительный срок службы (катоды вакуумных ламп в конечном итоге израсходуются, и вакуум может загрязняться)
    • Доступны дополнительные устройства (допускаются схемы с комплементарной симметрией : вакуумные лампы с полярностью, эквивалентной PNP BJT или полевым транзисторам P-типа, недоступны)
    • Способность управлять большими токами (доступны силовые транзисторы для управления сотнями ампер, электронные лампы для управления даже одним ампером большие и дорогостоящие)
    • Гораздо менее микрофонный (вибрация может модулировать характеристики вакуумной лампы, хотя это может способствовать звучанию гитарных усилителей)

    " Природа ненавидит вакуумную лампу " Майрон Гласс (см. John R.Пирс), Bell Telephone Laboratories, около 1948 года.

    Галерея

    С 1960-х годов доступен широкий спектр транзисторов, и производители постоянно вводят улучшенные типы. Ниже приведены несколько примеров из основных семейств. Если не указано иное, все типы изготавливаются из кремниевых полупроводников. Дополнительные пары показаны как канал NPN / PNP или N / P. Ссылки ведут к таблицам данных производителя, которые находятся в формате PDF. (В некоторых таблицах данных точность указанной категории транзисторов вызывает споры.)

    • 2N3904 / 2N3906, BC182 / BC212 и BC546 / BC556: универсальные, BJT, универсальные, маломощные, дополнительные пары. У них есть пластиковые корпуса, и они стоят примерно десять центов США в небольших количествах, что делает их популярными среди любителей.
    • AF107: германий, 0,5 Вт, 250 МГц, PNP BJT.
    • BFP183: низкое энергопотребление, микроволновая печь, 8 ГГц, NPN BJT.
    • LM394: «пара суперматч» с двумя NPN BJT на одной подложке.
    • 2N2219A / 2N2905A: BJT, общего назначения, средней мощности, дополнительная пара.В металлических корпусах они рассчитаны примерно на один ватт.
    • 2N3055 / MJ2955: В течение многих лет уважаемый NPN 2N3055 был «стандартным» силовым транзистором. Его дополнение, PNP MJ2955, прибыло позже. Эти BJT 1 МГц, 15 А, 60 В, 115 Вт используются в усилителях мощности звука, источниках питания и системах управления.
    • 2SC3281 / 2SA1302: Эти BJT, изготовленные Toshiba, имеют характеристики с низким уровнем искажений и используются в мощных усилителях звука. Они широко подделывались [4].
    • BU508: NPN, питание 1500 В, BJT. Разработанный для горизонтального отклонения телевизионных сигналов, его способность к высоковольтному напряжению также делает его пригодным для использования в системах зажигания.
    • MJ11012 / MJ11015: 30 А, 120 В, 200 Вт, мощные биполярные биполярные транзисторы Дарлингтона с дополнительной парой. Используется в усилителях звука, управлении и переключении мощности.
    • 2N5457 / 2N5460: JFET (режим истощения), общего назначения, малой мощности, комплементарная пара.
    • BSP296 / BSP171: IGFET (режим улучшения), средняя мощность, пара почти комплементарная.Используется для преобразования логического уровня и управления силовыми транзисторами в усилителях.
    • IRF3710 / IRF5210: IGFET (режим улучшения), 40 А, 100 В, 200 Вт, пара, близкая к комплементарной. Для мощных усилителей и переключателей мощности, особенно в автомобилях.

    См. Также

    • Электронные компоненты
    • Полупроводник
    • Ширина запрещенной зоны
    • Крутизна
    • Трансрезистанс
    • Очень крупномасштабная интеграция
    • Количество транзисторов
    • Закон Мура

    Список литературы

    Книги

    • Амос, С.W. & M. R. Джеймс. Принципы транзисторных схем. Butterworth-Heinemann, 1999. ISBN 0750644273
    • Карсон, Ральф С. Принципы прикладной электроники. Бью-Йорк: Макгроу-Хилл 1961.
    • Горовиц, Пол и Уинфилд Хилл. Искусство электроники. Cambridge University Press, 1989.

    ISBN 0521370957

    • Риордан, Майкл и Ходдсон, Лилиан. Хрустальный огонь. W.W Norton & Company, Limited.1998. ISBN 0393318516 Изобретение транзистора и рождение информационного века
    • Варнес, Лайонел. Аналоговая и цифровая электроника. Macmillan Press Ltd. 1998. ISBN 0333658205

    Прочие

    • Роберт Г. Арнс (октябрь 1998 г.). Другой транзистор: ранняя история металлооксидного полупроводникового полевого транзистора. [5] Журнал технических наук и образования 7 (5): 233-240 ISSN 0963-7346
    • Armand Van Dormael.«Французский транзистор» Труды конференции IEEE 2004 г. по истории электроники, Блетчли-Парк, июнь 2004 г. [6].
    • У Герберта Ф. Матаре, изобретателя транзистора, настал момент. 24 февраля 2003 г. The New York Times . [7].
    • Майкл Риордан. Как Европа упустила транзистор.

    IEEE Spectrum 42 (11) (ноябрь 2005 г.): 52–57 ISSN | 0018-9235

    • К. Д. Ренмор. 1980 "Кремниевые чипсы и ты". Полное руководство по полупроводниковым приборам, 2-е издание.Wiley-IEEE Press.

    Внешние ссылки

    Все ссылки получены 25 марта 2020 г.

    Кредиты

    Энциклопедия Нового Света писателей и редакторов переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia . Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, участников, так и на самоотверженных добровольцев Фонда Викимедиа.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *