Устройство ксеноновой лампы: Принцип работы ксеноновых ламп

Содержание

Принцип работы ксеноновых ламп

Ксенон на сегодняшнее время используется во многих автомобилях, то ли штатно, то ли при переоборудовании оптики. Не многие знают принципы работы ксеноновой лампы, хотя это очень важно. Именно поэтому данный материал мы посвятили именно принципу работы ксеноновых ламп. Ксеноновая лампа – это электрическое газоразрядное устройство, которое может создавать внутри колбы мощные, интенсивные импульсы белого цвета.

Конструкция ксеноновой автомобильной лампы

Лампа сконструирована из специальной трубки, хорошо запаянной, состоящей из прочного стекла или же надежного кварца. Внутри этой трубки находится смесь инертных газов под большим давлением. Большая часть всей смеси газов припадает на ксенон.

Внутри колбы также находится два электрода, обеспечивающие пропуск электрического тока и образование электрической дуги для розжига газа. Чтобы активизировать газ понадобится огромное количество энергии, превращающейся в последствии в высоковольтный импульс, благодаря специальному устройству – блоку розжига, принцип работы которого схож с трансформатором.

Стеклянный корпус изделия – это и есть трубка, которая может быть разной формы. Именно в трубку по обе вертикальные стороны впаиваются электроды, между которыми при подаче высоковольтного импульса от 23000 В дол 30000 В и активизируется электрическая дуга. В колбе есть и еще один электрод, сделанный в виде тонкой металлической дорожки, которая проходит вертикально сквозь всю трубку. Этот электрод необходим для ионизации газового состава и запуска разряда.

Принцип работы ксеноновых ламп

Принцип работы ксеноновых излучателей достаточно непростой и состоит из нескольких этапов.

  • Этап 1.
    Подача высоковольтного импульса от 23000 В до 30000 В, благодаря блоку розжига, который поступает в лампу.
  • Этап 2. Активизация электрической дуги.
  • Этап 3. Ионизация газа и пропуск через него тока под большим напряжением, что создает мощную вспышку белого света. Этот процесс является важным и обязательным, ведь он необходим для сокращения электрического сопротивления газа внутри колбы лампы. Ионизация активизируется путем той же подачи высоковольтного импульса от блока розжига, что активизирует электроды и выпускает ионы.
  • Этап 4. Проходящий ток через газ возбуждает атомы ксенона.
  • Этап 5. Активизированные атомы ксенона вынуждают переходить электроны на орбиты с характеристикой более высокой энергии.
  • Этап 6. Затем электроны возвращаются к первоначальным орбитам и при этом образуют энергию, выраженную в форме фотона, а это и обеспечивает выдачу насыщенного и интенсивного света.

Отметим, что газы в лампе находятся под высоким давлением, что и обеспечивает повышенную яркость. Степень давления зависит от размеров колбы лампы.

Спектр ксеноновых излучателей

Как и многие другие газы, благодарённый ксенон также имеет спектры.  Принцип свечения ксенона максимально схож с неонами. Излучение от такого источника человеку кажется идеально белоснежным, поскольку спектральные лини цвета распределяются по всей видимой полосе спектра для ксенона.

Цветность лампы очень важна и измеряется она в Кельвинах:

3000 Кельвинов Насыщенный желтый свет, идеальный для использования в ПТФ.
4300 Кельвинов Теплый белый свет, который максимально схож с солнечным, эффективен для использования в головной оптике.
5000 Кельвинов Насыщенно белоснежный свет, разрешенный для использования в головной оптике автомобилей.
6000 Кельвинов Белоснежный свет, имеющий небольшой оттенок голубого цвета, что стильно смотрится в головной оптике автомобилей.
7000 Кельвинов Голубой свет, который не используются для повседневной езды, поскольку обеспечивают низкую освещенность дороги.
8000 Кельвинов Синий цвет, также используемый в целях тюнинга автомобиля для шоу-каров.

Стандартная цветность ксенона, используемая на наших дорогах:


  • Цветность стандартного ксенона составляет 4300 Кельвинов. Это самый оптимальный тепло-белый свет, который необходим для качественного освещения дорожного полотна. Данный спектр обеспечивает освещение дороги, обочины. Не рассеивается и не кристаллизируется, что важно в плохих метеорологических условиях при дожде или же мокром асфальте.
  • Ксенон на 5000 Кельвинов также часто используется водителями, и обладает достаточно высокой эффективностью, хотя интенсивность света и освещенность дороги немного снижена, по сравнению со стандартным бело-теплым свечением в 4300 кельвинов. Такие лампы используются для ночных поездок, но не имеют максимального эффекта при сильном дожде или же туманности.
  • Ксенон на 6000 Кельвинов очень редко используется на наших дорогах, поскольку голубой – это спектр приближенный к синему, а поэтому он не обеспечивает качественное освещение дорожного полотна ни ночью, ни при погоде.
    Его яркость максимально снижена, по сравнению с предыдущими цветностями, что не может в полной мере гарантировать качественную и насыщенную видимость дороги для водителя.

Ксеноновые лампы – конструкция, преимущества и другие особенности

Конструкция автомобилей с времен изобретения непрерывно претерпевала изменения, направленные на всевозможное усовершенствование. При этом менялась и автомобильная светотехника. Сперва лампы были газовыми, затем фары представляли собой лампы накаливания, с 50-х гг. прошедшего века появились в обиходе фары газонаполненные и галогеновые. А относительно недавно автомобилисты познакомились с газоразрядными ксеноновыми лампами.

Разработали лампы с ксеноном конкретно для автотранспорта. Свет тут выдается за счет ксенона, а он светится за счет пары электродов. Колбу накачивают ксеноном под сильным давлением. В компании с инертным газом имеются и соли металлов.


Изменение давления, обладающего диапазоном 30-120 атм, зависит непосредственно от режима работы светотехнического изделия.

Заметим, что внутри колбочки, когда лампочка работает, чрезвычайно жарко – порядка 4500 К (градусов кельвина). На солнышке и то прохладнее — 5000-6000 К, в галогеновой вообще «холод» – примерно 2500 К.

Температура цвета в целом может именоваться единицей яркости светового источника. Чем «внутриламповая» температура больше смахивает на солнечную, тем сильнее на свет солнца будет похоже и качество освещения пути-дороги. Значит, собираясь купить ксеноновые лампы для авто, подбирайте температуру – 4-5 тыс. Кельвинов дадут прекрасный желтый свет, а вот 6 тысяч и выше – уже голубой.


Сравним лампы разного устройства. №5-ваттная ксеноновая лампа выдаст вдвое сильный световой пучок, нежели лампа накаливания с 55 Вт мощности. Стандартной же лампой в 45Вт излучается поток света чуть выше 500 люменов, а галоген 55 Вт этих люменов даст 1500. Но! Ксеноновая лампа, которой мощности надо гораздо меньше, выдаст целых 3000 люменов. Правда, глаза людские к красному и желтому цветам сильно чувствительны, потому при увеличении температуры цвета видимость ухудшится.

Соответственно, оптимальной в ксеноновых лампах будет яркость порядка 5000 кельвинов, автопроизводители оснащают машины ксеноном в 4500-5200 кельвинов. Сильной стороной ксенона признано отсутствие привычной нити накаливания – перегореть нечему. Правда, лампы запрещено мочить и даже руками трогать.

При ночной езде именно ксенон дает наибольшую, лучше в 2,5 раза галогеновых ламп, яркость. Обзорность улучшается существенно, а спектральный состав, приближенный максимально к солнечному, водителю позволит рассмотреть на трассе людей, разные объекты и ямы гораздо раньше, что снижает, безусловно, вероятность ДТП и утомляет водителя многократно меньше.


Да, ксенон греется, но лишь 7% энергии теряется на этот нагрев. Значит, оплавления и перегрева не произойдет. Ресурс ламп с ксеноном – порядка 3 тыс. часов. О чем вещает гарантия производителей. Галогены, кстати, работают приблизительно 500 часов.

Каково устройство ксеноновых ламп? — Блог о строительстве

Ксеноновые фары стали очередной ступенью в эволюции автомобильных осветительных приборов. Их появление было обусловлено необходимостью сделать фары автомобиля более мощными и яркими, а также увеличить срок их службы.

История

Своим появлением ксеноновые фары обязаны технологиям газонаполненных и галогеновых ламп.

Ксеноновые лампы получили распространение в середине XX века и использовались для кинопроекторов. В качестве автомобильных фар такие лампы стали использовать в 1991 году. Сложно установить кто первым начал производить ксеноновые фары: по одним сведениям — это фирма Philips, по другим -Bosch .

Устройство

Ксеноновая лампа выглядит как стеклянная колба. Внутри нее находится под большим давлением смесь инертных газов, состоящая из ксенона и солей металла. Помимо этого в колбе расположены два электрода.

Для того чтобы разжечь между ними дугу, на электроды подается высоковольтный импульс напряжения (порядка 25000 В). Горящая лампа требует напряжения намного меньше – 85 В. Собственно, разряд между двумя электродами нужен для того, чтобы вызвать свечение газов.

Кроме того, существуют так называемые биксеноновые фары. Они способны излучать не только ближний или дальний свет, а оба.

Устройство таких фар бывает двух типов. В первом случае, колба двигается под действием электромагнитов(в разных лампах движение происходит либо вверх и вниз, либо вперед и назад), за счет чего образуется два типа освещения. Во втором, между самой лампой и линзой находится заслонка, которая регулирует световой поток, изменяя тем самым параметры излучения.

На автомобиль, который оборудован ксеноновыми фарами, устанавливают специальный блок управления. Он обеспечивает лампы необходимым для них напряжением, в то время как штатное электрооборудование не может с этим справиться.

Вообще, яркость источника света характеризуется цветовой температурой. Например, у Солнца цветовая температура 5000 К, у ксеноновых ламп — 4300 К, а у галогеновых всего лишь 2800 К. Спектр свечения ксеноновых ламп ближе к спектру свечения Солнца, т.

е. дневному свету. Поэтому цвет ксеноновых фар имеет слегка голубоватый оттенок, а у обычных галогеновых — желтоватый.

Достоинства и недостатки

Достоинством ксеноновых ламп является их долговечность. Их срок службы примерно в шесть раз больше, чем у галогеновых, и составляет примерно 3000 часов. Таким образом, эти лампы приходят в негодность после трех-четырех лет использования, в то время как «галогенки» перегорают каждые пол-года.

Еще одно преимущество ксеноновых фар в том, что они значительно лучше освещают дорогу при дожде и тумане. Кроме того, ксенон, в отличие от галогена значительно лучше рассеивается, а значит в меньшей степени ослепляет водителей других автомобилей.

В довершении всего, ксеноновые фары выгодно отличаются от других количеством потребляемой мощности.

К примеру, галогеновая лампа требует минимум 55 Вт, в то время как ксеноновой нужно всего 35Вт. При этом сила света ксенона в два раза больше. Низкая потребляемая мощность влияет на такой бытовой факт как загрязнение стекол фар.

Дело в том, что при длительном свечении фары ее стекло сильно нагревается. На горячем стекле дорожная грязь лучше подсушивается, и соответственно, ее тяжелее потом отмывать. Ксеноновые лампы не допускают перегревания стекла фары и возникновения на нем трещин.

Однако, помимо очевидных преимуществ, ксеноновые лампы обладают и рядом недостатков. Основным минусом “ксенона” является высокая цена.

На цену главным образом влияет необходимость установки дополнительного электрического блока. Сами лампы тоже стоят несколько дороже остальных. Ко всему прочему, меняют их только в паре, так как спектр лампы в ходе эксплуатации изменяется, и если одна будет новой, а другая старой, то светить они будут по-разному.

Еще одним фактором, влияющим на цену, является необходимость установки автоматического корректора угла фар и омывателя. Наличие этих устройств способно обезопасить других водителей от ослепления мощным светом ксенона.

Штраф за ксенон в фарах и противотуманках

Сам по себе ксенон в автомобильных фарах не является основанием для штрафа. Если речь идет о штатных световых приборах, то никаких претензий к владельцу автомобиля, естественно, не будет – наказание предусмотрено только за нештатный и кустарно установленный ксенон в фарах и противотуманках.

Техническое состояние автомобиля (в том числе и его световых приборов) в России регламентируется Основным положением по допуску транспортных средств к эксплуатации.

В этом документе прописан перечень условий и неисправностей, при которых эксплуатация авто запрещена. К ним, в частности, относится и использование «рассеивателей и ламп, не соответствующих типу данного светового прибора» (п. 3.4 Перечня).

Согласно статье 12. 5 ч. 3 КоАП РФ, в 2015 году за нарушение этого требования Основных положений предусмотрено лишение прав на срок от 6 месяцев до 1 года. Таким образом, за нештатный ксенон и желание поразить окружающих своими яркими фарами водитель может поплатиться полугодом или даже годом «пешеходной» жизни.

На противотуманки распространяются те же требования, что и на фары головного света. Ксенон в туманках также может закончиться 6-12 месяцами лишения прав.

Обратите внимание, что наличие нештатных и неправильно установленных ксеноновых ламп в фарах и ПТФ (как и светопропускную способность стекол с тонировкой) проверяют инспекторы технического надзора. Выполнить эту проверку они могут только на стационарном посту ГИБДД.

Полезно? Лайкаем и делимся со своими подписчиками!

За последние годы получают все более широкое рас­пространение газоразрядные лампы сверхвысокого дав­ления, в которых используются не пары металлов, а тя­желые газы, в частности ксенон.

Применение ксенона вносит существенные изменения в характеристики этих ламп. Период разгорания в ксеноновых лампах практи­чески отсутствует, так как плотность газа в лампе не зависит от температуры колбы. Поэтому сразу же после зажигания в лампе разряда она начинает работать в но­минальном режиме.

Это удобно с точки зрения эксплуа­тации. Разряд в ксеноне имеет хорошие спектральные характеристики излучения, близкие к спектру солнеч­ного света. В связи с этим ксеноновые лампы имеют хо­рошую цветопередачу.Схема подключения ксеноновой лампы.Излучение ксеноновых ламп бо­гато ультрафиолетовыми и инфракрасными лучами.При некоторых значениях тока лампы приобретают положительную вольт-амперную характеристику, что позволяет питать лампы определенной мощности без балласта (безбалластные лампы).

Использование таких ламп экономически выгодно, так как при их включении в сеть отсутствуют непроизводительные потери в балласте. Ксеноновые лампы имеют относительно низкие рабочие на­пряжения при горении, но для достижения большой яркости разряда и повышения их световой отдачи при­ходится увеличивать ток лампы. Поэтому характерной особенностью этих ламп является относительно большой ток.По своей экономичности ксеноновые лампы занимают среднее положение между лампами накаливания и ртутно-кварцевыми лампами высокого давления.

Световая отдача ксеноновых ламп в зависимости от мощности в среднем составляет от 20 до 50 лм/вт. Срок службы, гарантируемый заводами, колеблется от 200 до 1000 ч.Рисунок 1. Схема дуговых ксеноновых ламп типа ДКСШ-1000.Может показаться, что при указанных экономических параметрах ламп их применение не является целесообразным.

Однако проведенные расчеты и имеющаяся практика использования ксеноновых ламп дают основа­ние утверждать, что применение ксеноновых ламп в ряде случаев весьма целесообразно и экономически выгодно. Наивыгоднейшими областями применения ксеноновых ламп в настоящее время можно считать наруж­ное освещение больших площадей в городах, освещение спортивных сооружений, освещение карьеров при разработке открытым способом, освещение открытых строительных площадок и монтажных площадок производ­ственных предприятий, а также внутреннее освещение производственных цехов больших размеров и высотой более 20-25 м. Значительное применение находят ксеноновые лампы в кинопроекторах, при съемке цветных кинофильмов, в телевидении и театральном освещении и ряде других специальных установок.Конструкция ксеноновых лампРазличают два основ­ных типа ксеноновых ламп: лампы в шаровых колбах с короткой дугой, с расстоянием между электродами в несколько миллиметров с естественным или воздуш­ным охлаждением и лампы в трубчатых колбах с длин­ной дугой с естественным или водяным охлаждением.Лампа с шаровой колбой (рис.

1) представляет со­бой толстостенный баллон из кварца с впаянными в него двумя электродами, изготовленными из торированного вольфрама. Токопроводящими контактами слу­жат цилиндрические выводы, конструкция которых предусматривает как возможность крепления ламп, так и присоединение питающих проводов. Баллон лампы на­полняется ксеноном до давления 8-9 ат, которое при работе лампы возрастает до 20-25 ат.Лампы могут работать на постоянном и переменном токе.

Отличие этих ламп – в конструкции электродов. При постоянном токе лампа имеет очень массивный анод (рис. 1а), располагаемый вверху.

При переменном токе оба электрода имеют одинаковую конструкцию (рис. 1б).Рисунок 2. Схема дуговых ксеноновых ламп типа ДКСТ: 1 – разрядная трубка; 2 — корпус охлаждающей рубашки; 3 — электрод; 4 — втулка; 5 – вывод; 6 — цилиндр из молибденовой фольги; 7 —вкладыш; 8 – стеклянный цилиндр; 9 – гайка; 10 — уплотняющий вкладыш; 11 – уплотняющие прокладки.Трубчатая ксеноновая лампа с естественным охлаж­дением (рис.

2а). представляет собой толстостенную трубку из кварцевого стекла, по концам которой вварены электроды из торированного вольфрама. Вводы лампы изготовляются из молибденовой фольги.

Вне­ние выводы изготовлены из стали, а переходные втулки – из титана. Колба лампы заполняется ксеноном, его давление составляет от 15 до 350 мм рт. ст.Величина давления ксенона определяется напряжением зажига­ния пускового устройства, а также зависит от выбранного внутреннего радиуса трубки и падения напряжения на единицу длины разряда.

В лампах с водяным охлаждением разрядная трубка из кварца помещается внутри стеклянного цилиндра (рис. 2б). В зазоре между разрядной трубкой и ци­линдром циркулирует вода, которой придается винто­образное движение благодаря некоторому сдвигу вход­ного патрубка по отношению к плоскости, проходящей через ось лампы.

Концы стеклянного цилиндра помещаются в сборные латунные муфты и уплотняются резиновыми прокладками.Для охлаждения ламп используется дистиллированная вода, циркулирующая в замкнутой системе. Нормальная работа лампы возможна, если стеклянный цилиндр полностью заполняется водой. Ма­ксимальная температура охлаждающей воды не должна превышать температуры, при которой образуется сплош­ная паровая рубашка (не более 50°С на выходе из лампы).

Из этих соображений определяется расход охлаж­дающей воды. Приме­нение водяного охлаж­дения позволяет увели­чить почти в 10 раз удельную нагрузку на кварц по сравнению с естественным охлаж­дением, что дает воз­можность уменьшить размеры лампы и при этом повысить на 30-40% их световую отда­чу. Зажигание ксеноно­вых лампНапряжение зажигания ксеноновых ламп значительно пре­вышает напряжение питающей сети, поэто­му поджигающее уст­ройство основано на принципе искрового генератора. На рис.

3 приведены схемы зажигания лампы с помощью искрового генератора. Для зажигания ламп имеют важное значе­ние не только величина поджигающего импульса и число подаваемых на лампу импульсов, но и сдвиг фаз между напряжением питания лампы и пускового устрой­ства. При питании лампы и пускового устройства от одной и той же фазы сети напряжение зажигания лампы выше, чем при питании от различных фаз.

Поэтому к пусковому устройству и к лампе подаются различные фазы сети. Контактами контактора R1 в случае автоматического управления зажиганием ламп на пер­вичную обмотку трансформатора Т1 подается сетевое на­пряжение.Рисунок 3. Схемы включения ксеноновых ламп.Конденсатор С1, включенный во вторичную обмотку трансформатора, заряжается, и, когда на нем напряжение достигает величины напряжения пробоя воздушного разрядника Р, он почти мгновенно разря­дится на первичную обмотку импульсного трансформа­тора Т2.

Во вторичной обмотке трансформатора Т2 индуктируется высоковольтный, высокочастотный им­пульс, который будет приложен к электродам лампы. Под воздействием этого импульса разрядный промежу­ток лампы пробьется, что вызовет его первоначальную ионизацию.Если величина и число подаваемых импуль­сов оказываются достаточными, то в лампе создаются необходимые условия для развития дугового разряда, и лампа зажигается. После того как лампа зажглась, необходимо, чтобы искровой генератор продолжал рабо­тать в течение некоторого промежутка времени.

Если отключить искровой генератор раньше положенного вре­мени, то лампа может погаснуть. Время, в течение ко­торого искровой генератор должен продолжать рабо­тать, зависит от напряжения и полного сопротивления сети. Необходимая выдержка времени обеспечивается введением в схему реле времени(на схеме не показано).http://fazaa.ru/www.youtube.com/watch?v=oAURMvlKCjsКогда процесс зажигания лампы закончится, поджи­гающее устройство отключается от лампы.

Для этого размыкается кнопка К1, а вторичная обмотка импульс­ного трансформатора замыкается накоротко кнопкой К2. В случае автоматического управления реле времени включает контактор (не показан на схеме), который своими контактами отключает трансформатор Т1 и за­мыкает накоротко вторичную обмотку трансформа­тора Т2. Конденсатор С2 служит для защиты сети от по­падания в нее высокого напряжения.Лампы мощностью до 6 кВт могут включаться по две последовательно на напряжение 220 В и зажигаться одним поджигающим устройством.Следует обратить внимание на размещение пуско­вого устройства.

Оно должно размещаться не далее 30 м от лампы, в противном случае это будет снижать величину высоковольтного импульса. Так как величина этого импульса составляет 20-50 кВ, то изо­ляция провода, соединяющего лампу с пусковым устройством, должна быть выбрана из расчета на номинальное напряжение 15-20 кВ.http://fazaa.ru/www.youtube.com/watch?v=vxKiPfELn6cПри отключении лампы от сети ее повторное включение возможно только после доста­точного остывания, на что требуется 5-10 мин. Повтор­ное включение неостывшей лампы может вывести ее из строя, поэтому его следует избегать.Поделитесь полезной статьей:

Что же многие из нас с вами ставят на свои автомобили ксеноновые лампы, или просто так называемый «КСЕНОН». Оно и понятно с одной стороны это очень мощный источник света, который «разрезает» туман и прочую непогоду, позволяя намного увереннее чувствовать себя за рулем. Но с другой стороны, кустарный (то есть который не идет с завода) запрещен законом РФ и этому есть вполне вменяемое объяснение – он слепит встречных водителей, что увеличивает число ДТП на дорогах, зачастую летальных.

Так почему он слепит, как работает в фаре? И что такое блок его розжига. Разбираем подробно …

СОДЕРЖАНИЕ СТАТЬИ

Не данный период времени, ксенон это одна из самых передовых технологий, которая позволяет добиться высоких показателей светового потока. Зачастую его эффективность превышает галогеновые лампы в 2 – 4 раза.

Есть еще один оппонент, это светодиоды, сейчас они вплотную приблизились к ксеноновым лампам, но пока их надежность реально хромает, про это думали здесь. Но за счет чего достигается такое свечение, как работает? И что такое ксенон вообще?

Что такое ксенон?

Для начала я предлагаю вам поговорить про само вещество, из чего состоит? Оказывается все просто – это одноатомный, инертный газ. Которые не имеет не цвета, не запаха, без вкуса, полностью безопасен для человека.

Этого газа в чистом виде очень мало в земной атмосфере, в основном он образуется около радиоактивных источников.

Однако в промышленности его научились выделять из воздуха, когда получают кислород и азот. Путем сложных преобразований выделяется чистый ксенон без примесей именно его и закачивают в колбу лампы.

Устройство ксеноновой лампы и системы

Это так называемая газоразрядная лампа. В ней под высоким давлением закачан наш газ в специальную колбу.

    Есть основная стеклянная колба, с достаточно толстыми стенками. То есть, я хочу отметить — что лампа не хрупкая.Колба заполнена нашим инертным газом – ксеноном, однако некоторые производители рядом могут «разместить» пары ртути. Они также зажигаются от нашего ксенона, однако она находятся в другой, внешней колбеТакже внутрь помещаются два электрода, которые располагаются рядом друг с другом, на достаточно близком расстоянии.С внешней части к этим электродам подходят два контакта, как у обычной лампы это плюс и минус.За лампой стоит высоковольтный «блок розжига», который является важным элементом системы.Ну и собственно «жгут проводов» который подсоединяется к системе питания автомобиля и соединяет лампу и блог розжига.

ru/wp-content/uploads/2016/06/shema-1.jpg 600w»>

Собственно это вся система, как видите ничего сложного, абсолютно! Просто многие из моих читателей, думаю — что это просто «заоблачные технологии».

Как работает лампа?

Процесс достаточно простой, его можно назвать горением электрической дуги в инертном газе. НА контакты, которые находятся внутри и располагаются друг напротив друга, подается очень высокий электрический разряд, под напряжением в 25 000 Вольт! Между контактами возникает электрическая дуга, которая в газе-ксеноне начинает гореть ярким светом. По сути можно сравнить с дугой от сварочного аппарата, некоторые это называют «плазмой», хотя я не уверен.

Так как газ инертный он никак не влияет на контакты — то есть дуга не разрушает их, а как бы проходит между ними. Ведь внутри колбы больше нет никаких газов, ни кислорода, ни азота, ни водорода.Дуга горит недолго, и поэтому ее нужно постоянно подпитывать определенным напряжением, чем собственно и занимается «блок розжига». Именно он формирует такое напряжение, зачастую после розжига оно составляет 60 – 80 Вольт.Внутри колбы могут устанавливаться специальные отражатели, которые могут направлять свет в нужную сторону.Питание блока, я еще раз повторяюсь — происходит от стандартной системы питания автомобиля.Многие задают вопрос – а почему ксенон загорается не сразу, а постепенно?

Все просто – потому что нужно небольшой промежуток времени, чтобы дуга «зажглась» в газе. Обычно это от 5 до 7 секунд не больше.Как видите ничего сложного! Но зачастую многих интересует — а как образовывается такой высоковольтный разряд в 25 000 Вольт? Как работает блок?

Как работает блок розжига ксенона?

Если взять характеристики блока розжига, то зачастую составляют:

Напряжение от 8 до 16 Вольт.

Сила потребляемого тока – от 3 до 6 Ампер.

Среднее потребление около 35 – 55 Ватт.

Но постойте, а где же напряжение в 25000 Вольт?

Ведь это очень большой показатель. Спокойно ребята, такое напряжение действительное есть – то есть с одной стороны заходит низкое, а выходит очень высокое, но лишь на какие-то миллисекунды, именно они нужны для того чтобы поджечь наш газ. Это и есть принцип высоковольтного бока питания.

Если копнуть в строение (кому интересно) то становится понятно, что у нас от бортовой сети 12 Вольт, забирается первоначальная энергия — дальше она поступает в импульсный трансформатор, который преобразует напряжение уже до 250 Вольт.

После чего он отдает напряжение конденсатору, где оно накапливается (обычно его напряжение около 400 – 500 Вольт, а емкость от 0,2 до 0,5 Микрофарада). Дальше импульс, от конденсатора, поступает на высоковольтную катушку, и уже она методом индукции первичной и вторичной катушек выдает очень высокое напряжение, которое в десятки раз, может превышать напряжение на конденсаторе.Дальше напряжение, которое требуется для дальнейшего «горения» как я уже писал, составляет всего 60 – 80 Вольт, все зависит от мощности лампы.Поэтому конечное потребление всего 35 – 55 Ватт энергии, что вполне соизмеримо с обычной галогеновой лампой. Как видите достаточно простая конструкция.

Световой поток

Если сравнивать работу ксенона и работу обычной галогеновой лампы, то наш «технологичный претендент» намного опережает в силе светового потока.

Обычный галоген– выдает поток в 1500 Lm (Люмен)

Ксенон– примерно от 3000 до 6000 Lm (не верьте китайским производителям, которые указывают по 10 – 20 000 Lm, такие системы очень редкие и для конечного потребителя практически не используются)

Светодиодные варианты– сейчас выдают практически одинаковые потоки с ксеноновыми элементами – от 2500 до 4500 Lm (правда стоит оговориться нужно выбирать именно с специальным драйвером)

Как вы видите ксенон очень яркий, он работает с высоким потоком света, что с одной стороны является благом – хорошо освещает дорогу, с другой стороны – губителен, потому как он очень часто ослепляет встречных водителей.

Срок службы ксенона

НУ и в заключении хочется отметить — что на данный период времени, ксеноновая лампа самая долговечная из оппонентов.

В среднем работает около 200 000 часов, что примерно 4 – 5 лет использования по два – три часа в день. Да и потом он может не перегореть, однако его свечение кардинально меняется, то есть лампа как бы выцветает. Ее нужно срочно заменить, для восстановления изначальных характеристик.

Сейчас небольшое полезное видео, смотрим.

НА этом заканчиваю, думаю, я вам подробно объяснил — как работает лампа и сам блок розжига. Искренне ваш АВТОБЛОГГЕР.

Источники:

  • www.drive2.ru
  • fazaa.ru
  • avto-blogger.ru

Самостоятельная установка ксенона




Ксеноновые фары обеспечивают яркое и эффективное освещение проезжей части. Считается, что это – самый надежный, экономичный и прогрессивный вид автомобильной оптики.

При замене ламп в фарах на ксенон:
  • Значительно повышается эффективная видимость, обеспечивается безопасность движения;
  • Во время тумана или дождя фары автомобиля освещают именно дорогу, а не частицы воды;
  • Примерно на треть снижается энергопотребление, уменьшается нагрузка на генератор авто;
  • Ксеноновый свет напоминает дневной, не утомляет глаза и не ослепляет участников движения;
  • Ксеноновые лампы рассчитаны более чем на 3 тысячи часов работы и не ломаются от сотрясений.

До последнего времени ксеноновые фары были привилегией автомобилей лишь высшего класса, но сейчас это – вполне доступная опция. А если установить ксенон самостоятельно, можно получить все преимущества современной оптики намного дешевле.

Конструкция и принцип работы ксеноновой оптики

Чтобы выполнить установку ксенона в фары своими руками, надо знать принцип его работы. Ксеноновая лампа – это небольшая колба с двумя электродами, изготовленная из кварцевого стекла. Колба заполнена хлоридами нескольких металлов и ксеноном – инертным газом, который излучает яркое свечение, если через него начинают пропускать ток.

Чтобы лампа зажглась, через ксенон по технологии нужно пропустить ток напряжением 25000 В, потом достаточно поддерживать напряжение 80 В и выше. Но штатное оборудование не может обеспечить таких условий. Поэтому при переходе на ксенон требуется установка специального предпускового блока. По новым правилам также требуется установка корректора фар и омывателя.

Виды ксеноновых ламп

Произвести установку ксенона самостоятельно не очень трудно, но важно выбрать подходящую оптику. Цоколи ксеноновых ламп отличаются и подходят для фар определенных моделей машин. Чаще всего используются лампы с цоколем на h2, h5, H7, HB4. Чтобы узнать, каким цоколем оборудованы фары, надо обратиться в сервис. Но можно произвести проверку фар и самостоятельно, просто сравнив штатный цоколь с представленной здесь таблицей.

Отличается и цветовая температура разных ксеноновых ламп. От данного параметра зависит цвет и яркость света, излучаемого автомобильными фарами.

Внешне эффектнее всего смотрится голубой ксенон, но свет, максимально приближенный к дневному, дают белые лампы с цветовой температурой от 5 до 5,5 тыс. К. Именно они считаются наиболее щадящими для глаз и лучше всего освещают дорогу в тумане. Это обязательно надо учитывать при установке ксенона в противотуманные фары.

Производители ксенона

Прежде, чем рассказать, как установить ксенон в фары самому, предлагаем обзор производителей предпусковых блоков и газоразрядных ламп:
  • Лучшими считаются блоки розжига Osram, Hella, Philips. Изделия Bosch и Matsushita практически им не уступают, к тому же их проще установить. Блоки PIAA имеют высокое качество, но стоят дороже других.
  • Ксеноновые лампы Osram и Philips считаются самыми надежными (замена ксенона требуются крайне редко), но выбор цоколей у этих производителей ограничен. Корейские компании Eagleye, Alpha Optima, ZZX Pro, Berus выпускают лампы высокого качества с любыми цоколями.

Схема подключения ксенона своими руками

Процесс монтажа ксенона на разные авто отличается, но здесь представлена универсальная схема, которая применима для большинства моделей. В инструкции на ксеноновый комплект есть информация, касающаяся особенностей подключения конкретного оборудования.

Самостоятельная установка ксенона в ближний свет

Полная замена штатной оптики на ксенон стоит недешево. Поэтому многие устанавливают газоразрядные лампы только в ближний свет. Это несложно, а инструкция по самостоятельной установке ксенона позволит правильно произвести монтаж:
  • Итак, надо приобрести подходящий комплект ксенона.
  • Откинуть или полностью снять передний бампер.
  • Открутить и разобрать штатную фару.
  • Вынуть старую лампу.
  • Если цоколь газоразрядной лампы немного другой, можно использовать специальный переходник (иногда переходники входят в комплект ксенона).
  • Далее устанавливаем ксенон сами (помещаем в фару лампу с переходником и прижимаем пружиной).
  • Потом лампу надо прижать резинкой.
  • Продеть через провода лампы резиновую заглушку.
  • Установить в подходящее место блок розжига.
  • Вставить провода из блока ксенона в штатный разъем ближнего света.
  • Чтобы провода со временем не выпали, их можно дополнительно зафиксировать изолентой.
  • Ксенон установлен.

Самостоятельная установка ксенона в дальний свет

Для установки в дальний свет потребуется отдельный комплект ксенона. А выполнить монтаж газоразрядных ламп просто, ниже описывается, как поставить ксенон самому:

  • Сначала надо демонтировать бампер и фары.
  • Разобрать фару, вынуть галогеновую лампочку.
  • Поставить ксеноновую лампу, вернуть на место герметичную заглушку фары. Предварительно в ней надо сделать подходящие отверстия для проводов.
  • Установить ксенон во вторую фару.
  • Выбрать место для монтажа блоков розжига.
  • Подключить провода, закрепить обе фары.
  • После монтажа надо выполнить регулировку ксенона.

Как установить блок розжига ксенона своими руками?

Блок розжига – это устройство, которое обеспечивает старт ксеноновой лампы за счет создания высоковольтных импульсов (до 30 тыс. Вольт). Предпусковые блоки (на обе фары) входят в каждый комплект ксенона.

Жестких требований к размещению балластов нет, но надо учитывать, что высокая влажность – основная причина поломок и ремонта блоков ксенона. Чаще всего устройства устанавливаются в подкапотном пространстве, недалеко от фар:
  • В этом примере один блок установлен под нижним креплением усилителя бампера, а второй прикреплен к ребру за бачком омывателя.
  • Также можно нарастить провода и закрепить блоки в более подходящих местах.
  • У блоков розжига Bosch и Matsushita высоковольтная часть (игнитор) вынесена за пределы самого устройства. Она крепится непосредственно на фару.

Что такое биксенон?

Многие автомобили имеют раздельную оптику, при которой ксенон можно установить в любой свет (ближний или дальний). Для полного оснащения фары ксеноном нужно два разных комплекта.

Но у некоторых моделей всего одна лампа, которая работает в обоих режимах (ближнего и дальнего света). Оптимальный вариант для таких фар – установка биксенона.

Биксенон – это световое оборудование, способное переключаться между этими режимами. Смена спектра свечения обеспечивается за счет конструкции биксеноновой лампы.

Биксеноновая линза включает газоразрядную лампу, светоотражатель и металлическую шторку, которая создает четкую «ступеньку» светового потока. Такая конструкция исключает появление паразитарных засветок, ослепляющих водителей встречных машин.

Многих интересует, как сделать биксенон самостоятельно. Это несложно, но надо учитывать, что биксеноновые лампы можно поставить лишь в цоколи h5 (самые распространенные), HB-1, HB-5, h23.

Установка биксенона своими руками

Вместо двух комплектов ксенона можно установить биксенон. Если на автомобиле имеется штатный блок розжига, монтаж будет совсем несложным, но потребуется доработка самой фары. Итак, устанавливаем биксенон сами:
  • Сначала надо полностью снять передний бампер или хотя бы отогнуть его (нижние крепления можно не откручивать).
  • Разобрать фары.
  • Снять все пружинки и скобы.
  • Обломать два выступа (посадочное место под лампу трогать не нужно).
  • Выскоблить весь штатный герметик (можно слегка подогревать его феном). Далее надо просто высверлить на дефлекторе отверстие под проводку. Это отверстие расположено за штатной шторкой, и после установки линз в фары его не будет видно.
  • Вставить лампу, протянуть в отверстие провода (в инструкции по установке биксенона есть подробная схема).
  • Выровнять линзу и зафиксировать гайкой с обратной стороны. Залить в щель между посадочным местом лампы и шайбой специальный термоклей, склеить плафон и фару герметиком.
  • Завершив монтаж биксенона, можно выполнить установку переднего бампера.

Как сделать ксенон в противотуманки своими руками?

Чтобы противотуманные фары машины обеспечивали лучшую видимость в непогоду и хорошо освещали обочины дороги, их целесообразно оборудовать ксеноном. Да и смотрятся ксеноновые ПТФ намного эффектнее штатных фар. Итак, чтобы установить ксенон, надо:
  • Извлечь штатную лампу (на некоторые модели ксенон ставится без снятия противотуманной фары).
  • Взять из комплекта ксеноновую лампу.
  • Вставить ее в фару на место штатной.
  • Чтобы завершить установку ксенона в туманки своими руками, надо разместить два блока розжига (от левой и правой фары).
  • Если ранее ксенон был установлен в ближний и дальний свет, найти место для дополнительных блоков не так-то просто, но есть неплохой вариант. Надо взять блок розжига и прикрутить к нему изолентой железный крепеж.
  • Потом дрелью высверлить отверстие для крепления блока где-нибудь недалеко от фар.
  • Аккуратно прикрутить предстартовый блок.
  • Установить проводку легко, там просто невозможно подключить что-нибудь не так.
  • По такому же принципу ксеноном оснащается вторая фара. Наконец, надо выполнить установку противотуманных фар (если они были демонтированы).

Самостоятельная установка ксенона в фонари заднего хода

Ксенон часто используется для тюнинга задней оптики. Чтобы оборудовать газоразрядными лампами фонари заднего хода, надо:
  • Купить подходящий комплект ксенона.
  • Демонтировать оба фонаря заднего хода.
  • Срезать разъем от штатной лампы и подпаять его к лампе ксенона.
  • Чтобы вставить в плафон ксеноновую лампу, может потребоваться сточить отверстие в фонаре и намотать изоленту (чтобы лампа не проваливалась глубже).
  • Вместо изоленты можно использовать герметик.
  • Минусовой провод от предпускового блока подключить к общему минусу.
  • Желательно использовать круглую клемму, тогда монтаж будет аккуратнее.
  • Плюсовой провод от блока подключить к красному проводу (здесь также можно использовать подходящие клеммы).
  • Заизолировать участок, где соединяются провода.
  • Провод, который идет от предпускового блока к ксеноновой лампе, просунуть через специальную резинку (при необходимости ее можно разрезать).
  • Замотать новую проводку изолентой.
  • Лишние отверстия можно залить клеем.
  • Выполнить установку задних фар.

Меры безопасности при самостоятельной установке ксенона

Выполняя установку или ремонт ксенона, надо соблюдать осторожность:
  • Нельзя производить монтаж замасленными или влажными руками, прикасаться к лампам, высоковольтным проводам и предпусковым блоками после включения.
  • Все электрические соединения комплекта ксенона нужно как следует заизолировать, так как при окислении они будут нагреваться, и может произойти возгорание электропроводки.
  • Не следует смотреть на работающие ксеноновые фары без затемненных очков, иначе можно травмировать зрение.

Как отрегулировать ксеноновые фары своими руками?

После установки ксеноновых фар их надо отрегулировать. Тогда яркий свет газоразрядных ламп не будет создавать дискомфорт другим водителям и обеспечит наилучшее освещение дороги. Для регулировки положения фар надо:
  • Выбрать ровную стену и поставить машину так, чтобы расстояние между «экраном» и фарами было 5 м. Измерить расстояние от центров автомобильных фар до земли и на такой высоте провести горизонтальную линию (линия 1). Отступить вниз 75 мм и провести параллельно ей еще одну линию (линия 2). Начертить вертикальную линию, на одинаковом расстоянии от нее провести еще две линии (А и В), обозначающие центры фар.
  • Включить фары (регулировка производится в режиме ближнего света). Закрыть одну фару куском фанеры и отрегулировать вторую, потом наоборот. Для настройки фар конструкцией предусмотрены регулировочные винты с пластмассовыми головками.
  • Чтобы выполнить регулировку ближнего света фар авто в вертикальной плоскости, надо подкручивать винт А, а в горизонтальной плоскости – винт Б.
  • Фары считаются отрегулированными правильно, если верхние границы пятен света совпадают с нижней линией, а излом светового пучка происходит там, где проходит вертикальная линия (А или В).
Примерно так же выполняется регулировка противотуманных фар:
  • Поставить машину на расстоянии 5 м от ровной стены. Измерить расстояние от центров противотуманок до земли и на такой же высоте провести горизонтальную линию. Отступить вниз 50 мм и провести линию.
  • При вращении регулировочных винтов противотуманных фар будет меняться наклон пучков света. Таким образом надо отрегулировать сначала одну, а потом другую фару.
  • Нужно добиться, чтобы верхние края световых пятен совпадали с нижней линией. При таком положении противотуманные фонари смогут хорошо освещать обочины, но при этом не будут ослеплять других водителей.

Ксеноновые фары — Устройство, принцип работы, преимущества и недостатки

Еще недавно ксеноновый автомобильный свет считался чем-то уникальным, возможным к применению исключительно в топовых моделях, которые обычным среднестатистическим автолюбителям были не по карману. Развитие технологий позволило значительно снизить стоимость его установки, что предопределило широчайшее распространение среди огромного количества автомашин, гораздо более доступных для потребителей. Сегодняшняя статья будет посвящена устройству, принципам работы и основным преимуществам и недостаткам ксеноновых фар.

Устройство и принцип работы ксеноновых фар автомобиля

Лампы, используемые в ксеноновом освещении, принадлежат к газоразрядному типу. Их англоязычное название «HID-Lamp» переводится как «лампы высокоинтенсивного разряда». Их конструкция основана на двух герметичных колбах, изготовленных из кварцевой разновидности стекла. Главное назначение стеклянной оболочки – защита от загрязнения и температурных перепадов. Внутренний стеклянный контур заполняется газом, основной частью которого выступает ксенон. От его количества зависит цветовой оттенок светового луча и скорость включения фар. Обязательным компонентом ксеноновых фонарей является управляющий блок, называемый также блоком розжига. Он подает необходимый для работы высоковольтный заряд и контролирует стабильность напряжения, избавляя его от скачков и чрезмерных просадок. Одной из особенностей HID-освещения является характерная постепенность его запуска. Время задержки отводится на разогрев газовой смеси, чтобы она смогла обрести максимальный яркую степень свечения. Рабочий температурный уровень внутри ламп составляет 4 тысячи градусов. Она может быть и выше, вплоть до 8 тысяч, однако продуктивность работы такого света крайне низкая. Что же определяет световой оттенок луча, исходящего от фар? Именно температура. В зависимости от её величины цвет изменяется от бело-желтого, до ярко-голубого.

Основные преимущества ксенона

  • Главным «плюсом» применения ксеноновых фонарей, безусловно, является качество исходящего от них свечения. Луч HID-осветителей невероятно яркий, с великолепной интенсивностью и охватом.
  • Выделим и срок службы самих ламп. Он в несколько раз превышает функциональный ресурс галогенов, пусть и слегка проигрывая светодиодным модулям. Почему это возможно? Прежде всего, из-за отсутствия в конструктивном устройстве основной нити. Это исключает возможность перегорания ламп в результате перепадов напряжения, которые отфильтровывает управляющий блок, и по причине постоянной вибрации во время эксплуатации.
  • Не можем оставить без внимания отличные показатели продуктивности работы.
  • Невысокое потребление бортового тока облегчает «жизнь» генератору, что прямым образом сказывается на экономичном топливном потреблении.

Основные недостатки ксенона

  • Основным недостатком HID-фар является сравнительно высокая стоимость установочных комплектов в целом и самих ламп в частности. Однако отдельно оговоримся, что эта дороговизна касается сравнения лишь со штатными галогенными фарами. Ни светодиодные фонари, ни, тем более, лазерные технологии, начинающиеся применяться в некоторых моделях «БМВ», ничуть не дешевле, а в большинстве случаев значительно дороже.

Насколько законна самостоятельная установка ксенона?

В российских автомобильных ГОСТах вопрос законности именно самостоятельной установки ксенонового освещения никак не отражен. Единственная оговорка касается допуска производителями автомобиля штатной замены. Дело в том, что не все фары имеют возможность монтажа ксенона. Для его установки обязательно наличие линз, собирающих луч в единый пучок и препятствующий хаотично направленному свету, ослепляющему всех водителей встречного направления. Если заводом-изготовителем транспортного средства допускается установка ксенона в штатные фары, автолюбитель имеет полное право законно замену осветителей. Причем совершенно неважно, куда оборудование будет смонтировано – в фары ближнего света, дальнего или вовсе в противотуманные фонари.

Подведем итоги

Подводя итоги статьи, отметим, что ксеноновое освещение является одним из наиболее качественных решений, общепринятом в автомобильной промышленности в настоящее время. Да, он несколько дороже галогенных фар, зато все их недостатки полностью устранены, а его работа, в том числе КПД использования, находится на великолепном уровне. Что касается основных конкурентов, то для ксенона наиболее «опасны светодиодные модули». Они значительно более экономичные, хотя их интенсивность и качество функционирования ничем не уступает ксенону. Нам – рядовым автолюбителям, такая конкуренция только на руку. Это прямым образом влияет на развитие направления, в том числе и на его ценовой уровень.

Как устроена ксеноновая лампа — MOREREMONTA

Ксеноновые фары стали очередной ступенью в эволюции автомобильных осветительных приборов. Их появление было обусловлено необходимостью сделать фары автомобиля более мощными и яркими, а также увеличить срок их службы.

Своим появлением ксеноновые фары обязаны технологиям газонаполненных и галогеновых ламп. Ксеноновые лампы получили распространение в середине XX века и использовались для кинопроекторов. В качестве автомобильных фар такие лампы стали использовать в 1991 году. Сложно установить кто первым начал производить ксеноновые фары: по одним сведениям — это фирма Philips, по другим -Bosch .

Ксеноновая лампа выглядит как стеклянная колба. Внутри нее находится под большим давлением смесь инертных газов, состоящая из ксенона и солей металла. Помимо этого в колбе расположены два электрода. Для того чтобы разжечь между ними дугу, на электроды подается высоковольтный импульс напряжения (порядка 25000 В). Горящая лампа требует напряжения намного меньше – 85 В. Собственно, разряд между двумя электродами нужен для того, чтобы вызвать свечение газов.

Кроме того, существуют так называемые биксеноновые фары. Они способны излучать не только ближний или дальний свет, а оба. Устройство таких фар бывает двух типов. В первом случае, колба двигается под действием электромагнитов(в разных лампах движение происходит либо вверх и вниз, либо вперед и назад), за счет чего образуется два типа освещения. Во втором, между самой лампой и линзой находится заслонка, которая регулирует световой поток, изменяя тем самым параметры излучения.

На автомобиль, который оборудован ксеноновыми фарами, устанавливают специальный блок управления. Он обеспечивает лампы необходимым для них напряжением, в то время как штатное электрооборудование не может с этим справиться.

Вообще, яркость источника света характеризуется цветовой температурой. Например, у Солнца цветовая температура 5000 К, у ксеноновых ламп — 4300 К, а у галогеновых всего лишь 2800 К. Спектр свечения ксеноновых ламп ближе к спектру свечения Солнца, т.е. дневному свету. Поэтому цвет ксеноновых фар имеет слегка голубоватый оттенок, а у обычных галогеновых — желтоватый.

Достоинства и недостатки

Достоинством ксеноновых ламп является их долговечность. Их срок службы примерно в шесть раз больше, чем у галогеновых, и составляет примерно 3000 часов. Таким образом, эти лампы приходят в негодность после трех-четырех лет использования, в то время как «галогенки» перегорают каждые пол-года.

Еще одно преимущество ксеноновых фар в том, что они значительно лучше освещают дорогу при дожде и тумане. Кроме того, ксенон, в отличие от галогена значительно лучше рассеивается, а значит в меньшей степени ослепляет водителей других автомобилей.

В довершении всего, ксеноновые фары выгодно отличаются от других количеством потребляемой мощности. К примеру, галогеновая лампа требует минимум 55 Вт, в то время как ксеноновой нужно всего 35Вт. При этом сила света ксенона в два раза больше. Низкая потребляемая мощность влияет на такой бытовой факт как загрязнение стекол фар. Дело в том, что при длительном свечении фары ее стекло сильно нагревается. На горячем стекле дорожная грязь лучше подсушивается, и соответственно, ее тяжелее потом отмывать. Ксеноновые лампы не допускают перегревания стекла фары и возникновения на нем трещин.

Однако, помимо очевидных преимуществ, ксеноновые лампы обладают и рядом недостатков. Основным минусом «ксенона» является высокая цена. На цену главным образом влияет необходимость установки дополнительного электрического блока. Сами лампы тоже стоят несколько дороже остальных. Ко всему прочему, меняют их только в паре, так как спектр лампы в ходе эксплуатации изменяется, и если одна будет новой, а другая старой, то светить они будут по-разному.

Еще одним фактором, влияющим на цену, является необходимость установки автоматического корректора угла фар и омывателя. Наличие этих устройств способно обезопасить других водителей от ослепления мощным светом ксенона.

Штраф за ксенон в фарах и противотуманках

Сам по себе ксенон в автомобильных фарах не является основанием для штрафа. Если речь идет о штатных световых приборах, то никаких претензий к владельцу автомобиля, естественно, не будет – наказание предусмотрено только за нештатный и кустарно установленный ксенон в фарах и противотуманках.

Техническое состояние автомобиля (в том числе и его световых приборов) в России регламентируется Основным положением по допуску транспортных средств к эксплуатации. В этом документе прописан перечень условий и неисправностей, при которых эксплуатация авто запрещена. К ним, в частности, относится и использование «рассеивателей и ламп, не соответствующих типу данного светового прибора» (п. 3.4 Перечня).

Согласно статье 12.5 ч. 3 КоАП РФ, в 2015 году за нарушение этого требования Основных положений предусмотрено лишение прав на срок от 6 месяцев до 1 года. Таким образом, за нештатный ксенон и желание поразить окружающих своими яркими фарами водитель может поплатиться полугодом или даже годом «пешеходной» жизни.

На противотуманки распространяются те же требования, что и на фары головного света. Ксенон в туманках также может закончиться 6-12 месяцами лишения прав.

Обратите внимание, что наличие нештатных и неправильно установленных ксеноновых ламп в фарах и ПТФ (как и светопропускную способность стекол с тонировкой) проверяют инспекторы технического надзора. Выполнить эту проверку они могут только на стационарном посту ГИБДД.

Полезно? Лайкаем и делимся со своими подписчиками!

Что же многие из нас с вами ставят на свои автомобили ксеноновые лампы, или просто так называемый «КСЕНОН». Оно и понятно с одной стороны это очень мощный источник света, который «разрезает» туман и прочую непогоду, позволяя намного увереннее чувствовать себя за рулем. Но с другой стороны, кустарный (то есть который не идет с завода) запрещен законом РФ и этому есть вполне вменяемое объяснение – он слепит встречных водителей, что увеличивает число ДТП на дорогах, зачастую летальных. Так почему он слепит, как работает в фаре? И что такое блок его розжига. Разбираем подробно …

СОДЕРЖАНИЕ СТАТЬИ

Не данный период времени, ксенон это одна из самых передовых технологий, которая позволяет добиться высоких показателей светового потока. Зачастую его эффективность превышает галогеновые лампы в 2 – 4 раза. Есть еще один оппонент, это светодиоды, сейчас они вплотную приблизились к ксеноновым лампам, но пока их надежность реально хромает, про это думали здесь. Но за счет чего достигается такое свечение, как работает? И что такое ксенон вообще?

Что такое ксенон?

Для начала я предлагаю вам поговорить про само вещество, из чего состоит? Оказывается все просто – это одноатомный, инертный газ. Которые не имеет не цвета, не запаха, без вкуса, полностью безопасен для человека.

Этого газа в чистом виде очень мало в земной атмосфере, в основном он образуется около радиоактивных источников.

Однако в промышленности его научились выделять из воздуха, когда получают кислород и азот. Путем сложных преобразований выделяется чистый ксенон без примесей именно его и закачивают в колбу лампы.

Устройство ксеноновой лампы и системы

Это так называемая газоразрядная лампа. В ней под высоким давлением закачан наш газ в специальную колбу.

  • Есть основная стеклянная колба, с достаточно толстыми стенками. То есть, я хочу отметить — что лампа не хрупкая.
  • Колба заполнена нашим инертным газом – ксеноном, однако некоторые производители рядом могут «разместить» пары ртути. Они также зажигаются от нашего ксенона, однако она находятся в другой, внешней колбе
  • Также внутрь помещаются два электрода, которые располагаются рядом друг с другом, на достаточно близком расстоянии.
  • С внешней части к этим электродам подходят два контакта, как у обычной лампы это плюс и минус.
  • За лампой стоит высоковольтный «блок розжига», который является важным элементом системы.
  • Ну и собственно «жгут проводов» который подсоединяется к системе питания автомобиля и соединяет лампу и блог розжига.

Собственно это вся система, как видите ничего сложного, абсолютно! Просто многие из моих читателей, думаю — что это просто «заоблачные технологии».

Как работает лампа?

Процесс достаточно простой, его можно назвать горением электрической дуги в инертном газе. НА контакты, которые находятся внутри и располагаются друг напротив друга, подается очень высокий электрический разряд, под напряжением в 25 000 Вольт! Между контактами возникает электрическая дуга, которая в газе-ксеноне начинает гореть ярким светом. По сути можно сравнить с дугой от сварочного аппарата, некоторые это называют «плазмой», хотя я не уверен.

Так как газ инертный он никак не влияет на контакты — то есть дуга не разрушает их, а как бы проходит между ними. Ведь внутри колбы больше нет никаких газов, ни кислорода, ни азота, ни водорода.

Дуга горит недолго, и поэтому ее нужно постоянно подпитывать определенным напряжением, чем собственно и занимается «блок розжига». Именно он формирует такое напряжение, зачастую после розжига оно составляет 60 – 80 Вольт.

Внутри колбы могут устанавливаться специальные отражатели, которые могут направлять свет в нужную сторону.

Питание блока, я еще раз повторяюсь — происходит от стандартной системы питания автомобиля.

Многие задают вопрос – а почему ксенон загорается не сразу, а постепенно? Все просто – потому что нужно небольшой промежуток времени, чтобы дуга «зажглась» в газе. Обычно это от 5 до 7 секунд не больше.

Как видите ничего сложного! Но зачастую многих интересует — а как образовывается такой высоковольтный разряд в 25 000 Вольт? Как работает блок?

Как работает блок розжига ксенона?

Если взять характеристики блока розжига, то зачастую составляют:

Напряжение от 8 до 16 Вольт.

Сила потребляемого тока – от 3 до 6 Ампер.

Среднее потребление около 35 – 55 Ватт.

Но постойте, а где же напряжение в 25000 Вольт? Ведь это очень большой показатель. Спокойно ребята, такое напряжение действительное есть – то есть с одной стороны заходит низкое, а выходит очень высокое, но лишь на какие-то миллисекунды, именно они нужны для того чтобы поджечь наш газ. Это и есть принцип высоковольтного бока питания.

Если копнуть в строение (кому интересно) то становится понятно, что у нас от бортовой сети 12 Вольт, забирается первоначальная энергия — дальше она поступает в импульсный трансформатор, который преобразует напряжение уже до 250 Вольт. После чего он отдает напряжение конденсатору, где оно накапливается (обычно его напряжение около 400 – 500 Вольт, а емкость от 0,2 до 0,5 Микрофарада). Дальше импульс, от конденсатора, поступает на высоковольтную катушку, и уже она методом индукции первичной и вторичной катушек выдает очень высокое напряжение, которое в десятки раз, может превышать напряжение на конденсаторе.

Дальше напряжение, которое требуется для дальнейшего «горения» как я уже писал, составляет всего 60 – 80 Вольт, все зависит от мощности лампы.

Поэтому конечное потребление всего 35 – 55 Ватт энергии, что вполне соизмеримо с обычной галогеновой лампой. Как видите достаточно простая конструкция.

Световой поток

Если сравнивать работу ксенона и работу обычной галогеновой лампы, то наш «технологичный претендент» намного опережает в силе светового потока.

Обычный галоген – выдает поток в 1500 Lm (Люмен)

Ксенон – примерно от 3000 до 6000 Lm (не верьте китайским производителям, которые указывают по 10 – 20 000 Lm, такие системы очень редкие и для конечного потребителя практически не используются)

Светодиодные варианты – сейчас выдают практически одинаковые потоки с ксеноновыми элементами – от 2500 до 4500 Lm (правда стоит оговориться нужно выбирать именно с специальным драйвером)

Как вы видите ксенон очень яркий, он работает с высоким потоком света, что с одной стороны является благом – хорошо освещает дорогу, с другой стороны – губителен, потому как он очень часто ослепляет встречных водителей.

Срок службы ксенона

НУ и в заключении хочется отметить — что на данный период времени, ксеноновая лампа самая долговечная из оппонентов. В среднем работает около 200 000 часов, что примерно 4 – 5 лет использования по два – три часа в день. Да и потом он может не перегореть, однако его свечение кардинально меняется, то есть лампа как бы выцветает. Ее нужно срочно заменить, для восстановления изначальных характеристик.

Сейчас небольшое полезное видео, смотрим.

НА этом заканчиваю, думаю, я вам подробно объяснил — как работает лампа и сам блок розжига. Искренне ваш АВТОБЛОГГЕР.

(9 голосов, средний: 4,11 из 5)

Похожие новости

Как проверить предохранитель в машине. Применяем мультиметр (тес.

Ручейковый (поликлиновый) ремень. Что это такое? Как улучшил раб.

Светодиодные лампы в фары головного света – Разрешены? Или полаг.

Ксенон на сегодняшнее время используется во многих автомобилях, то ли штатно, то ли при переоборудовании оптики. Не многие знают принципы работы ксеноновой лампы, хотя это очень важно. Именно поэтому данный материал мы посвятили именно принципу работы ксеноновых ламп. Ксеноновая лампа – это электрическое газоразрядное устройство, которое может создавать внутри колбы мощные, интенсивные импульсы белого цвета.

Конструкция ксеноновой автомобильной лампы

Лампа сконструирована из специальной трубки, хорошо запаянной, состоящей из прочного стекла или же надежного кварца. Внутри этой трубки находится смесь инертных газов под большим давлением. Большая часть всей смеси газов припадает на ксенон.

Внутри колбы также находится два электрода, обеспечивающие пропуск электрического тока и образование электрической дуги для розжига газа. Чтобы активизировать газ понадобится огромное количество энергии, превращающейся в последствии в высоковольтный импульс, благодаря специальному устройству – блоку розжига, принцип работы которого схож с трансформатором.

Стеклянный корпус изделия – это и есть трубка, которая может быть разной формы. Именно в трубку по обе вертикальные стороны впаиваются электроды, между которыми при подаче высоковольтного импульса от 23000 В дол 30000 В и активизируется электрическая дуга. В колбе есть и еще один электрод, сделанный в виде тонкой металлической дорожки, которая проходит вертикально сквозь всю трубку. Этот электрод необходим для ионизации газового состава и запуска разряда.

Принцип работы ксеноновых ламп

Принцип работы ксеноновых излучателей достаточно непростой и состоит из нескольких этапов.

  • Этап 1. Подача высоковольтного импульса от 23000 В до 30000 В, благодаря блоку розжига, который поступает в лампу.
  • Этап 2. Активизация электрической дуги.
  • Этап 3. Ионизация газа и пропуск через него тока под большим напряжением, что создает мощную вспышку белого света. Этот процесс является важным и обязательным, ведь он необходим для сокращения электрического сопротивления газа внутри колбы лампы. Ионизация активизируется путем той же подачи высоковольтного импульса от блока розжига, что активизирует электроды и выпускает ионы.
  • Этап 4. Проходящий ток через газ возбуждает атомы ксенона.
  • Этап 5. Активизированные атомы ксенона вынуждают переходить электроны на орбиты с характеристикой более высокой энергии.
  • Этап 6. Затем электроны возвращаются к первоначальным орбитам и при этом образуют энергию, выраженную в форме фотона, а это и обеспечивает выдачу насыщенного и интенсивного света.

Отметим, что газы в лампе находятся под высоким давлением, что и обеспечивает повышенную яркость. Степень давления зависит от размеров колбы лампы.

Спектр ксеноновых излучателей

Как и многие другие газы, благодарённый ксенон также имеет спектры. Принцип свечения ксенона максимально схож с неонами. Излучение от такого источника человеку кажется идеально белоснежным, поскольку спектральные лини цвета распределяются по всей видимой полосе спектра для ксенона.

Каково устройство ксеноновых ламп?

Опубликовано:

24.06.2012

За последние годы получают все более широкое рас­пространение газоразрядные лампы сверхвысокого дав­ления, в которых используются не пары металлов, а тя­желые газы, в частности ксенон. Применение ксенона вносит существенные изменения в характеристики этих ламп. Период разгорания в ксеноновых лампах практи­чески отсутствует, так как плотность газа в лампе не зависит от температуры колбы. Поэтому сразу же после зажигания в лампе разряда она начинает работать в но­минальном режиме. Это удобно с точки зрения эксплуа­тации. Разряд в ксеноне имеет хорошие спектральные характеристики излучения, близкие к спектру солнеч­ного света. В связи с этим ксеноновые лампы имеют хо­рошую цветопередачу.

Схема подключения ксеноновой лампы.

Излучение ксеноновых ламп бо­гато ультрафиолетовыми и инфракрасными лучами.

При некоторых значениях тока лампы приобретают положительную вольт-амперную характеристику, что позволяет питать лампы определенной мощности без балласта (безбалластные лампы). Использование таких ламп экономически выгодно, так как при их включении в сеть отсутствуют непроизводительные потери в балласте. Ксеноновые лампы имеют относительно низкие рабочие на­пряжения при горении, но для достижения большой яркости разряда и повышения их световой отдачи при­ходится увеличивать ток лампы. Поэтому характерной особенностью этих ламп является относительно большой ток.

По своей экономичности ксеноновые лампы занимают среднее положение между лампами накаливания и ртутно-кварцевыми лампами высокого давления. Световая отдача ксеноновых ламп в зависимости от мощности в среднем составляет от 20 до 50 лм/вт. Срок службы, гарантируемый заводами, колеблется от 200 до 1000 ч.

Рисунок 1. Схема дуговых ксеноновых ламп типа ДКСШ-1000.

Может показаться, что при указанных экономических параметрах ламп их применение не является целесообразным. Однако проведенные расчеты и имеющаяся практика использования ксеноновых ламп дают основа­ние утверждать, что применение ксеноновых ламп в ряде случаев весьма целесообразно и экономически выгодно. Наивыгоднейшими областями применения ксеноновых ламп в настоящее время можно считать наруж­ное освещение больших площадей в городах, освещение спортивных сооружений, освещение карьеров при разработке открытым способом, освещение открытых строительных площадок и монтажных площадок производ­ственных предприятий, а также внутреннее освещение производственных цехов больших размеров и высотой более 20-25 м. Значительное применение находят ксеноновые лампы в кинопроекторах, при съемке цветных кинофильмов, в телевидении и театральном освещении и ряде других специальных установок.

Конструкция ксеноновых ламп

Различают два основ­ных типа ксеноновых ламп: лампы в шаровых колбах с короткой дугой, с расстоянием между электродами в несколько миллиметров с естественным или воздуш­ным охлаждением и лампы в трубчатых колбах с длин­ной дугой с естественным или водяным охлаждением.

Лампа с шаровой колбой (рис. 1) представляет со­бой толстостенный баллон из кварца с впаянными в него двумя электродами, изготовленными из торированного вольфрама. Токопроводящими контактами слу­жат цилиндрические выводы, конструкция которых предусматривает как возможность крепления ламп, так и присоединение питающих проводов. Баллон лампы на­полняется ксеноном до давления 8-9 ат, которое при работе лампы возрастает до 20-25 ат.

Лампы могут работать на постоянном и переменном токе. Отличие этих ламп – в конструкции электродов. При постоянном токе лампа имеет очень массивный анод (рис. 1а), располагаемый вверху. При переменном токе оба электрода имеют одинаковую конструкцию (рис. 1б).

Рисунок 2. Схема дуговых ксеноновых ламп типа ДКСТ: 1 – разрядная трубка; 2 — корпус охлаждающей рубашки; 3 — электрод; 4 — втулка; 5 – вывод; 6 — цилиндр из молибденовой фольги; 7 —вкладыш; 8 – стеклянный цилиндр; 9 – гайка; 10 — уплотняющий вкладыш; 11 – уплотняющие прокладки.

Трубчатая ксеноновая лампа с естественным охлаж­дением (рис. 2а). представляет собой толстостенную трубку из кварцевого стекла, по концам которой вварены электроды из торированного вольфрама. Вводы лампы изготовляются из молибденовой фольги. Вне­ние выводы изготовлены из стали, а переходные втулки – из титана. Колба лампы заполняется ксеноном, его давление составляет от 15 до 350 мм рт.ст.

Величина давления ксенона определяется напряжением зажига­ния пускового устройства, а также зависит от выбранного внутреннего радиуса трубки и падения напряжения на единицу длины разряда. В лампах с водяным охлаждением разрядная трубка из кварца помещается внутри стеклянного цилиндра (рис. 2б). В зазоре между разрядной трубкой и ци­линдром циркулирует вода, которой придается винто­образное движение благодаря некоторому сдвигу вход­ного патрубка по отношению к плоскости, проходящей через ось лампы. Концы стеклянного цилиндра помещаются в сборные латунные муфты и уплотняются резиновыми прокладками.

Для охлаждения ламп используется дистиллированная вода, циркулирующая в замкнутой системе. Нормальная работа лампы возможна, если стеклянный цилиндр полностью заполняется водой. Ма­ксимальная температура охлаждающей воды не должна превышать температуры, при которой образуется сплош­ная паровая рубашка (не более 50°С на выходе из лампы). Из этих соображений определяется расход охлаж­дающей воды. Приме­нение водяного охлаж­дения позволяет увели­чить почти в 10 раз удельную нагрузку на кварц по сравнению с естественным охлаж­дением, что дает воз­можность уменьшить размеры лампы и при этом повысить на 30-40% их световую отда­чу.

Зажигание ксеноно­вых ламп

Напряжение зажигания ксеноновых ламп значительно пре­вышает напряжение питающей сети, поэто­му поджигающее уст­ройство основано на принципе искрового генератора. На рис. 3 приведены схемы зажигания лампы с помощью искрового генератора. Для зажигания ламп имеют важное значе­ние не только величина поджигающего импульса и число подаваемых на лампу импульсов, но и сдвиг фаз между напряжением питания лампы и пускового устрой­ства. При питании лампы и пускового устройства от одной и той же фазы сети напряжение зажигания лампы выше, чем при питании от различных фаз. Поэтому к пусковому устройству и к лампе подаются различные фазы сети. Контактами контактора R1 в случае автоматического управления зажиганием ламп на пер­вичную обмотку трансформатора Т1 подается сетевое на­пряжение.

Рисунок 3. Схемы включения ксеноновых ламп.

Конденсатор С1, включенный во вторичную обмотку трансформатора, заряжается, и, когда на нем напряжение достигает величины напряжения пробоя воздушного разрядника Р, он почти мгновенно разря­дится на первичную обмотку импульсного трансформа­тора Т2. Во вторичной обмотке трансформатора Т2 индуктируется высоковольтный, высокочастотный им­пульс, который будет приложен к электродам лампы. Под воздействием этого импульса разрядный промежу­ток лампы пробьется, что вызовет его первоначальную ионизацию.

Если величина и число подаваемых импуль­сов оказываются достаточными, то в лампе создаются необходимые условия для развития дугового разряда, и лампа зажигается. После того как лампа зажглась, необходимо, чтобы искровой генератор продолжал рабо­тать в течение некоторого промежутка времени. Если отключить искровой генератор раньше положенного вре­мени, то лампа может погаснуть. Время, в течение ко­торого искровой генератор должен продолжать рабо­тать, зависит от напряжения и полного сопротивления сети. Необходимая выдержка времени обеспечивается введением в схему реле времени (на схеме не показано).

http://fazaa.ru/www.youtube.com/watch?v=oAURMvlKCjs

Когда процесс зажигания лампы закончится, поджи­гающее устройство отключается от лампы. Для этого размыкается кнопка К1, а вторичная обмотка импульс­ного трансформатора замыкается накоротко кнопкой К2. В случае автоматического управления реле времени включает контактор (не показан на схеме), который своими контактами отключает трансформатор Т1 и за­мыкает накоротко вторичную обмотку трансформа­тора Т2. Конденсатор С2 служит для защиты сети от по­падания в нее высокого напряжения.

Лампы мощностью до 6 кВт могут включаться по две последовательно на напряжение 220 В и зажигаться одним поджигающим устройством.

Следует обратить внимание на размещение пуско­вого устройства. Оно должно размещаться не далее 30 м от лампы, в противном случае это будет снижать величину высоковольтного импульса. Так как величина этого импульса составляет 20-50 кВ, то изо­ляция провода, соединяющего лампу с пусковым устройством, должна быть выбрана из расчета на номинальное напряжение 15-20 кВ.

http://fazaa.ru/www.youtube.com/watch?v=vxKiPfELn6c

При отключении лампы от сети ее повторное включение возможно только после доста­точного остывания, на что требуется 5-10 мин. Повтор­ное включение неостывшей лампы может вывести ее из строя, поэтому его следует избегать.

Ксеноновая лампа — обзор

7.4 ИЗЛУЧЕНИЕ: ПОДАЧА, МОНИТОРИНГ И КОНТРОЛЬ

Система доставки и контроля излучения в современном устройстве с ксеноновой лампой состоит из лампы, светомонитора и микропроцессора. На рисунке 7.30 показана ксеноновая лампа с комплектом фильтров. Лампа на рис. 7.30 — это лампа с водяным охлаждением, которая широко используется в Weather-Ometer. Обычно в устройстве используется одна или несколько ламп (например, Xenotest Beta LM использует 3 лампы). Лампы также могут охлаждаться воздухом, как в Xenotest.

Рисунок 7.30. Ксеноновая лампа с фильтрами.

Предоставлено Atlas Material Testing Solutions.

На рис. 7.31 показана лампа, собранная внутри камеры. Справа виден конический элемент светового монитора. Прежде чем попасть на фотоприемник, свет проходит через фильтр. Используются несколько типов радиационных фильтров, включая 340, 300-400, 420 нм и контроль люкс. В зависимости от выбора фильтра прибор управляется определенной длиной волны или ее диапазоном.В Северной Америке более популярно управление прибором на длине волны 340 нм, в отличие от Европы, где наиболее часто используется диапазон 300-400 нм. Фотодетектор измеряет энергию входящего излучения и посылает сигнал на микропроцессор, который выполняет необходимые настройки регулятора мощности.

Рисунок 7.31. Ксеноновая лампа вмонтирована в камеру и световой монитор.

Предоставлено Atlas Material Testing Solutions.

В Xenotest, который оснащен мультисенсором (рис. 7.32), УФ-излучение измеряется на длине волны 300-400 нм.Мультисенсор устанавливается непосредственно на штативе для образцов (рис. 7.33). В небольших настольных устройствах, таких как Suntest, освещенность измеряется датчиком освещенности, называемым XenoCal, который можно вручную регулировать с помощью ручки управления. XenoCal измеряет освещенность либо в УФ (300–400 нм), либо в глобальном (300–800 нм) диапазоне. Данные измерений можно отправить на компьютер.

Рисунок 7.32. Мультисенсор, Xenosensiv (XSV) для измерения УФ.

Предоставлено Atlas Material Testing Solutions.

Рисунок 7.33. Xenosensiv (XSV) установлен на штативе с открытыми образцами в Xenotest Beta LM.

Предоставлено Atlas Material Testing Solutions.

Плановая ротация и замена люминесцентных ламп являются наиболее распространенной практикой при обслуживании люминесцентных устройств. Технически возможно использовать балласт (пускатель и устройство ограничения тока), который обеспечивает переменную мощность для регулировки освещенности, но это сокращает срок службы лампы и требует ламп, для которых спектр излучения не изменяется при изменении входной мощности.Добавление таких функций изменяет концепцию этих устройств, которые были разработаны как недорогие устройства для проверки. Теперь некоторые флуоресцентные устройства оснащены измерителем освещенности, например, солнечной освещенностью глаза, производимой Q-Lab (модели QUV / se и QUV / spray). Аналогичный УФ-контроллер также используется в настольной ксеноновой дуге Q-Lab (Q-Sun Xe-1) и автономной ксеноновой дуге (Q-Sun Xe-2 и Q-Sun Xe-3). Флуоресцентная лампа Atlas UVTest обеспечивает контроль температуры и калибратор освещенности. Освещенность регулируется диммирующим балластом.

Равномерность распределения света — важный фактор в получении воспроизводимых результатов. Устройства с вращающейся стойкой, измерения в реальном времени, контроля освещенности — самые надежные и точные инструменты. 27 Благодаря высокой воспроизводимости данные могут быть получены быстрее, для этого требуется меньше копий образцов, а также снижаются затраты на тестирование. 27

Разработана технология калибровки погодного оборудования, которая позволяет проводить калибровку, мониторинг и контроль полного спектра. 28 В случае калибровки устанавливается калибровочная лампа, погодное оборудование работает на фиксированном уровне мощности, собирается и сохраняется полный спектр распределения мощности, данные сравниваются с результатами аналогичного испытания на эталонном оборудовании, определяя коэффициент отклика системы, используемый для калибровки погодоустойчивого устройства клиента. Мониторинг прибора выполняется аналогично. 28

Часто радиацию необходимо контролировать на открытом воздухе, чтобы избежать чрезмерного воздействия излучения на поверхность или чрезмерного повреждения некоторых чувствительных материалов или продуктов.Одно изобретение 29 касается мониторинга излучения для предотвращения чрезмерного облучения кожи человека. Он действует на основе изменения цвета разлагаемого под действием УФ-излучения вещества, которое используется в составе одежды. 29 Индикаторное устройство было разработано для определения степени старения пластмассового предмета, такого как защитная каска. 30 Индикаторное устройство, включающее разлагаемый пигмент, крепится к защитной каске и помогает определять временной интервал в соответствии с законодательством или другими нормативными актами. 30

Купите ксеноновые дуговые лампы у ведущих брендов

Сегодня многие технологии требуют чистых газов или стандартных газовых смесей для безопасной и эффективной работы. Производительность СО2-лазера не в последнюю очередь зависит от качества используемого рабочего газа. Инертный газ в лампах увеличивает срок их службы и увеличивает производительность. Другими примерами, в которых использование (инертных) газов помогает достичь определенных свойств, являются ксеноновые или аргоновые лампы или окна с изоляцией из криптона.

Источники излучения в AAS:

В атомно-абсорбционной спектрометрии используются два разных типа источников излучения: линейный источник и непрерывный источник.

Линейный источник:

Линейные источники излучают линейчатый спектр и используются в качестве источника измерительного света, поглощение которого измеряется в пламени и используется для определения аналита.

Источник континуума в AAS:

Лампы Continuum излучают непрерывный спектр. В обычных ААС дейтериевые и галогенные лампы служат для компенсации подполья. Для измерения света большинство доступных источников не подходят, потому что их интенсивность недостаточно высока.

Ксеноновые лампы как источник излучения в AAS:

Поскольку появление ксеноновых ламп с короткой дугой (XKBL) представляет собой доступный новый тип ламп с такой высокой плотностью излучения во всей соответствующей спектральной области, что позволяет использовать их в качестве источника света для измерения в атомной абсорбции. спектроскопия. Это привело к появлению нового варианта AAS, который получил название CS-AAS (Continuous Source AAS). Обычные устройства, реализующие AAS, называются LS AAS (от Line Source).Часто в CS-AAS по сравнению с LS AAS также используются новые типы детекторов.

Принцип работы Ксеноновая лампа:

Ксеноновая лампа с короткой дугой (XKBL) включает ксенон под начальным давлением от 5 до 20 бар, что в три раза увеличивает время работы за счет повышения температуры. Между двумя электродами, которые находятся на расстоянии всего нескольких миллиметров друг от друга, образуется небольшая, очень яркая, интенсивная дуга. Он излучает непрерывный спектр с цветовой температурой 5500-6000 К, который подобен солнечному спектру.

Здесь вы можете вернуться к товарам.

Ксеноновая дуговая лампа для испытания на старение на ускорение


Характеристики машины для ускорения старения ксеноновой дуговой лампы

1. Камера для испытаний на атмосферостойкость ксеноновой лампы марки ASLi с передовой технологией и концепцией дизайна.

2. Камера для испытания атмосферостойкости ксеноновой лампы марки ASLi с превосходной технологией производства и выдающейся

система менеджмента качества.

3. Камера для испытания атмосферостойкости ксеноновой лампы марки ASLi может быть наиболее реалистичным моделированным солнечным спектром.

включая ультрафиолетовое, видимое и инфракрасное.

4. Камера для испытаний на атмосферостойкость ксеноновой лампы марки ASLi прошла испытания в диапазоне полного спектра, необходимого для

большинство текстильных тестов на солнце и устойчивость окраски.

5. Камера для испытаний на устойчивость к атмосферным воздействиям ксеноновой лампы марки ASLi может определять стойкость цвета и старение к солнечному свету,

атмосферостойкость и др.

Применение машины для испытания на ускорение старения ксеноновой дуговой лампы:

Оборудование для испытаний на старение ксеноновым светом — это комплексная машина для климатических испытаний, она может выполнять климатические испытания на старение и

также можно выполнить тест на ускорение выцветания при изменении цвета или изменении цвета. Диапазон испытаний, в том числе: покраска и отделка,

печать, кожа, пластик, плиссированное стекло, живопись, текстиль, печатная краска, резина, а также цвет, относящийся к отрасли.Скорость света

и степень выцветания можно узнать за короткое время. Эти материалы подвергались воздействию искусственного солнечного света, чтобы оценить свет материала.

быстродействие. Для имитации и усиления теста в зависимости от энергии света, температуры, дождя или конденсации,

влажность и т. д. эти основные климатические факторы. Используйте ксеноновую дуговую лампу с имитацией спектра солнечного света для создания разрушительных

волны в другой среде.Его можно использовать для выбора новых материалов, улучшения существующих материалов или оценки изменения долговечности после составления материала.

Компактная ксеноновая лампа | USHIO INC.

Компактный и легкий.

Вы можете выбрать широкий диапазон длин волн.

Устойчивое к разрыву сапфировое окно.

Принята «конструкция, предотвращающая грязь / царапины», которая делает возможной замену лампы через запатентованную оконную структуру Ushio.

Основные характеристики (исходные электрические характеристики) Вход лампы 300 Вт
Номинальное напряжение лампы * 1 15 В
Номинальный ток лампы 20A
Диапазон тока от 18 до 21 A
Технические характеристики Расстояние между электродами 1.5 мм
Тип длины волны Без озона
Диаметр выходного окна диам. 25,4
Зеркало Параболический
Расчетный срок службы * 3 500 часов
Начальная интенсивность излучения * 2 Общая мощность облучения 50 Вт
Общий световой поток 4500 лм
Световой поток через апертуру 5 мм 1830 лм
Цветовая температура 6100 К
Требования к использованию (источник питания) Тип блока питания Контроль постоянного тока / Контроль постоянной мощности
Допустимая пульсация тока (P-P) 5% или менее
Выход зажигания 23 кВ переменного тока или выше
Возможное напряжение питания 140 В или больше
Требования к использованию (лампа) Направление освещения Горизонтальное освещение
Требования к охлаждению Керамические компоненты 150 ℃ или ниже
Металлические детали 200 ℃ или ниже
Принудительное воздушное охлаждение Требуется
* 1 Напряжение при работе от 20 А.
* 2 Результат при работе на 20 А.
* 3 Когда световой поток через апертуру 5 мм достигает 50% от начального значения.

Разработка устройства импульсной ксеноновой ультрафиолетовой дезинфекции для обеззараживания воздуха в режиме реального времени в машинах скорой помощи

Цели . Мы разработали систему обеззараживания воздуха в режиме реального времени на основе импульсного ксенонового ультрафиолетового света с быстрой и эффективной дезинфекцией с использованием высокоинтенсивного импульсного бактерицидного УФ-излучения. Дезинфекция помещения машины скорой помощи имеет решающее значение для предотвращения перекрестного инфекционного заражения. Методы . В этом исследовании была создана система обеззараживания воздуха на основе импульсного ксенонового ультрафиолетового света для обеззараживания воздуха в машинах скорой помощи в режиме реального времени. В этой системе импульсный ксеноновый ультрафиолет (PX-UV) использовался для генерации широкого спектра (200–320 нм) высокоинтенсивного ультрафиолетового света для дезактивации и уничтожения бактерий и вирусов. Результаты показали, что использование PX-UV может быть эффективным для снижения уровня E. coli , Staphylococcus albus и патогенов окружающей среды в машинах скорой помощи (снижение на ≥90% за 30 минут). Результатов . Это устройство было относительно простым и удобным в использовании, не оставляло химических остатков и не подвергало пациентов и рабочих воздействию токсичных химикатов. Выводы . Это, по-видимому, практическая альтернативная технология для достижения автоматизированной дезинфекции воздуха в машинах скорой помощи.

1. Введение

Сотни миллионов пациентов во всем мире ежегодно страдают от инфекций, связанных с оказанием медицинской помощи (ИСМП), и, несмотря на наличие многих методов дезинфекции, микробное заражение остается серьезной проблемой для здоровья во всем мире [1 , 2].Скорая помощь — один из самых распространенных и важных видов медицинского транспорта в системе скорой помощи больниц. Он несет ответственность за передачу лиц, получивших тяжелые травмы или больных. Из-за особой конструкции и узкого внутреннего пространства машины скорой помощи часто заражаются патогенными микроорганизмами, выделяемыми пациентами во время догоспитальной транспортировки, которые передаются последующим пациентам и работникам скорой медицинской помощи. Предыдущие исследования показали, что машины скорой помощи, работающие в системе скорой медицинской помощи (EMS), могут иметь значительную степень заражения MRSA [3, 4].Эти результаты продемонстрировали, что машины скорой помощи представляют собой важный резервуар для инфекционных микроорганизмов во время пандемии инфекционных заболеваний, когда будет транспортироваться большое количество очень заразных пациентов. Дезинфекция помещения машины скорой помощи имеет решающее значение для предотвращения перекрестного инфекционного заражения. Такие химические вещества, как диоксид хлора и дезинфицирующее средство на основе перекиси водорода, традиционно использовались для дезинфекции машин скорой помощи после того, как их использовали инфекционные пациенты. Однако ручная химическая дезинфекция утомительна, требует много времени и опасна для рабочих и окружающей среды.Несколько исследований показали, что стойкое загрязнение обычно обнаруживается в отделении пациента даже после очистки [5, 6]. Во время пандемии инфекционного заболевания необходимо перевозить большое количество очень заразных пациентов, и это требует скорейшего возвращения машин скорой помощи в строй. В этом случае отдельной рутинной очистки недостаточно для устранения этих болезнетворных микроорганизмов. Для борьбы с перекрестной инфекцией в машинах скорой помощи обязательными требованиями являются надлежащие процедуры дезинфекции, основанные на очистке и дезинфекции машин скорой помощи, зараженных высокозаразными микроорганизмами.

Ультрафиолетовое (УФ) облучение было предложено в качестве метода окончательной дезинфекции в различных областях. УФ-излучение охватывает диапазон длин волн от 100 до 380 нм. При определенных длинах волн механизм уничтожения микроорганизмов УФ-излучением в первую очередь связан с разрывом молекулярных связей в ДНК и РНК за счет поглощения фотонов, что приводит к образованию димеров пиримидина из тимина и цитозина [7]. В частности, предыдущие исследования показали, что УФ-излучение, испускаемое на длине волны 254 нанометра (нм), было наиболее эффективным [8, 9].В большинстве устройств для дезинфекции помещений УФ-излучением в качестве источника света используются газовые ртутные лампы с характерной длиной волны 254 нм [10]. Ультрафиолетовое излучение, испускаемое ртутными лампами низкого давления, доставляется непрерывным потоком, который постепенно накапливается до смертельных доз в зависимости от продолжительности воздействия и удаленности от основного поля излучения [11]. Импульсный ксеноновый ультрафиолет (PX-UV) является привлекательной альтернативой традиционным УФ-методам, предлагая импульсное бактерицидное УФ-излучение высокой интенсивности. Он испускается короткими импульсами высокой интенсивности, что, возможно, требует более короткого воздействия для достижения смертельных доз.PX-УФ-свет может иметь большую эффективность, чем другие формы УФ-излучения, такие как ртутный УФ-свет, из-за широкого спектра и большей интенсивности [11]. Haddad et al. показали, что использование PX-UV в качестве дополнительной стандартной процедуры очистки помогло снизить уровень бактериального загрязнения [12]. Джинадатха и др. показали, что использование PX-UV было более эффективным, чем стандартная ручная очистка терминала помещения в снижении уровней известных патогенов [13–15]. Насколько нам известно, ранее не сообщалось об устройстве для дезинфекции на основе PV-УФ для дезинфекции воздуха в машинах скорой помощи в реальном времени.

Целью настоящего исследования была проверка устройства для импульсной ксеноновой ультрафиолетовой дезинфекции для дезинфекции воздуха в режиме реального времени в машинах скорой помощи и оценка эффективности этого устройства с точки зрения снижения загрязнения окружающей среды патогенами в машинах скорой помощи.

2. Экспериментальная часть
2.1. Настройка устройства

Конфигурация устройства для дезинфекции воздуха в реальном времени показана на рисунке 1. Устройство представляет собой закрытое устройство для дезинфекции воздуха, встроенное в приспособление для скорой помощи, где импульсная ксеноновая УФ-лампа используется в качестве источника света, который может излучать широкий спектр 200–320 нм.Лампа питалась от импульсного источника питания. Система PX-UV производит импульсную вспышку с частотой 30 Гц с приблизительной мощностью 270 Дж на импульс и длительностью менее 360 мс. Импульсная ксеноновая УФ-лампа была помещена в центр отражающей камеры с алюминиевым покрытием для непрерывной очистки воздуха. Воздух проходит через рабочую камеру с внутренним перекрестным вентилятором с расходом 5,4 м 3 / мин. В этом случае вентилятор с поперечным потоком выполняет две функции: (1) нагнетание воздуха в устройство и (2) охлаждение импульсной ксеноновой УФ-лампы.Отражательная способность алюминия предлагается для повышения эффективности отражения света и увеличения времени, в течение которого импульсный свет находится в контакте с воздухом, тем самым улучшая бактерицидную активность устройства. Воздуховыпускное отверстие выполнено в виде заслонок для защиты от УФ-излучения.


2.2. Приготовление бактериальной суспензии

E. coli (ATCC 8099) и Staphylococcus albus (ATCC 8799) использовали в качестве модельных бактерий для оценки эффекта стерилизации. E. coli (ATCC 8099) и Staphylococcus albus (ATCC 8799) были получены из Пекинского биотехнологического института Beina Chuanglian и выращены в питательном бульоне и питательном агаре при 36 ° C ± 1 ° C в течение 24 часов с последующим центрифугированием. при 3300 × g в течение 30 мин. Бактерии ресуспендировали в 0,1 М фосфатном буфере. С помощью турбидиметра приготовили бактериальную суспензию с концентрацией от 1,5 × 10 8 КОЕ / мл до 3,0 × 10 8 КОЕ / мл. Приготовленная бактериальная суспензия будет готова к употреблению.

2.3. Бактериальная суспензия

Бактериальная суспензия была разбавлена ​​буферным раствором PBS (концентрация суспензии E. coli и Staphylococcus составляла 1,20 × 10 6 КОЕ / мл и 1,40 × 10 6 КОЕ / мл соответственно) . Разбавленную бактериальную суспензию загружали в генератор аэрозоля (эффект распыления> 90%, размер частиц <5 мкм мкм). Это квазиэкспериментальное исследование проводилось в двух шкафах биобезопасности. Генератор микробных аэрозолей помещали в шкафы биобезопасности (NUAIRE NU 437 600S).Распыление воздуха проводили при следующих условиях: температура в помещении составляет от 20 ° C до 25 ° C, а относительная влажность составляет от 50% до 70%. Время распыления составляло 5 мин, время стационарного — 1 мин. Популяции переносимых по воздуху бактерий отбирали путем импакции непосредственно на чашки с питательным агаром, используя пробоотборник воздуха Merck MAS-100. За этим последовало использование системы PX-UV для 30-минутной экспозиции. Замените чашку с агаром в пробоотборнике и возьмите второй образец через 30 минут. Контрольный эксперимент был проведен, как описано выше, но без воздействия системы PX-UV.Все чашки инкубировали при 36 ° C ± 1 ° C в течение 24 часов, где N t — естественная скорость исчезновения бактерий в воздухе, а также количество бактерий в воздухе в разное время до и. во время эксперимента, и — количество бактерий в воздухе в разное время до и во время процесса дезинфекции экспериментальной группы, а K t — степень дезинфекции бактерий в воздухе.

2.4. Тест на дезинфекцию воздуха в полевых условиях

Чтобы проверить способность системы PX-UV дезинфицировать патогены в машинах скорой помощи, мы выбираем машины скорой помощи, которые только что вернулись в больницу из-за их обоснованной склонности к заражению широким спектром бактерий. Согласно инструкции по эксплуатации машины скорой помощи, объем терапевтической кабины скорой помощи составляет примерно 10 м 3 . Перед запуском устройства для дезинфекции использовали пробоотборник воздуха Merck MAS-100 для воздействия 1 л воздуха на чашки с кровяным агаром до и после дезинфекции импульсным ксеноновым ультрафиолетом (PX-UV) в течение 60 минут.Все планшеты инкубировали при 36 ° C ± 1 ° C в течение 24 ч. Были подсчитаны все колониеобразующие единицы бактерий и грибов, а также подсчитано количество переносимых по воздуху бактерий и уровень гибели:

3. Результат и обсуждение

В этом исследовании мы использовали E. coli и Staphylococcus albus в качестве моделей для тестирования. дезинфицирующий эффект PX-UV. В таблицах 1 и 2 показаны уровни концентрации E. coli и Staphylococcus albus до и после обработки PX-УФ, соответственно.Видно, что 30-минутная обработка PX-UV снижает концентрацию E. coli , что ниже уровня обнаружения, тогда как обработка PX-UV приводит к дезинфекции Staphylococcus albus на 99,91%. УФ может убивать бактерии, вирусы, грибки и споры, но разные типы микроорганизмов имеют разную чувствительность к УФ, грамотрицательные бактерии являются наиболее чувствительными, за ними следует стафилококк , [16]. Возможная причина этого случая заключается в том, что E. coli более чувствительна к УФ-свету, чем Staphylococcus albus .Таким образом, видно, что обработка PX-UV в течение более 30 минут оказывает очевидное влияние на снижение уровней концентрации бактерий до значения, совместимого с руководящими принципами.


Время (мин) No. (КОЕ / м 3 ) (КОЕ / м 3 ) Н т (%) (КОЕ / м 3 ) (КОЕ / м 3 ) K t (%)

30 2.70 × 10 5 1,76 × 10 5 34,81 2,64 × 10 5 0 100
2 2,54 × 10 5 1.0021 5 34,65 2,40 × 10 5 0 100
3 2,10 × 10 5 1,40 × 10 5 3321 4,106 0 100

N t : естественная скорость исчезновения бактерий в воздухе; и: количество бактерий в воздухе в разное время до и во время проведения эксперимента; и: количество бактерий в воздухе в разное время до и во время процесса дезинфекции экспериментальной группы; K t : степень обеззараживания бактерий в воздухе.
9026 t (%) N t : естественная скорость исчезновения бактерий в воздухе; и: количество бактерий в воздухе в разное время до и во время проведения эксперимента; и: количество бактерий в воздухе в разное время до и во время процесса дезинфекции экспериментальной группы; K t : степень обеззараживания бактерий в воздухе.

Время (мин) (КОЕ / м 3 ) (КОЕ / м 3 ) (КОЕ / м 3 ) (КОЕ / м 3 ) K t (%)

1 1.76 × 10 5 33,33 2,64 × 10 5 160 99,91
2 1,51 × 10 5 38,11 150 99,90
3 1,40 × 10 5 39,39 2,40 × 10 5 130 99,91
99,91

Эффективность дезинфекции устройства для дезинфекции PX-UV в реальном времени оценивалась путем измерения уровней биоаэрозолей естественных бактерий до и после дезинфекции. Результаты экспериментов показали, что средняя степень дезинфекции естественных бактериальных аэрозолей составила более 90% после 60 минут дезинфекции, что было ниже, чем в лабораторном имитационном тесте (см. Таблицу 3). Из-за суровых условий жизни в естественной среде выживаемость живых микроорганизмов и способность противостоять внешнему вмешательству выше, чем у тех, которые используются в лаборатории.Таким образом, использование дезинфицирующего средства PX-UV в режиме реального времени для поддержания качества воздуха имеет большое значение для снижения перекрестного заражения в машинах скорой помощи.

Скорость гибели (%)

Время (мин) No. До (КОЕ / м 3 ) После (КОЕ / м 3 )

60 1 480 30 93,75
2 490 40 91.84
3 400 40 90.00

4. Выводы

В заключение, мы разработали импульсную ультразвуковую дезинфекцию на основе ксенона. система с быстрой и эффективной дезинфекцией с использованием импульсного бактерицидного ультрафиолетового излучения высокой интенсивности. Наша конструкция представляет собой закрытое устройство для обеззараживания воздуха, которое может работать в присутствии людей. Устройство питается от машины скорой помощи и может работать автоматически при запуске машины скорой помощи.

В нашем исследовании мы обнаружили, что устройство для дезинфекции воздуха в режиме реального времени уменьшило количество E. coli и Staphylococcus albus в шкафу биологической безопасности с 30-минутным временем воздействия и предсказало положительный эффект. Точно так же из-за сложной среды фактического участка было достигнуто только 90% бактерицидных результатов. Хотя эффект дезинфекции не превышает 99%, эффективность устройства для дезинфекции воздуха в реальном времени может обеспечить желаемые результаты в реальных условиях.Результаты этого исследования показывают, что самодельное устройство для дезинфекции PX-UV может обеспечить эффективную дезинфекцию в режиме реального времени для машин скорой помощи.

При практическом использовании были обнаружены некоторые проблемы с устройством обеззараживания воздуха в реальном времени. Во-первых, проблема вентиляции. Помещение для машины скорой помощи составляет примерно 10 м 3 . Является ли воздух в десяти кубических метрах пространства полностью стерилизованным устройством вместо постоянной стерилизации чистым воздухом? Во-вторых, контактная поверхность оборудования с учетом дезинфекционного воздуха должна быть достаточно большой, а форма разработанного инструмента требует дальнейшего улучшения.Пространство в кабине ограничено, что обеспечивает отличный дезинфекционный эффект при максимальной экономии места, чтобы у медицинского персонала было достаточно места для лечения пациентов. Для решения этих проблем нам также необходимо доработать и улучшить инструмент, чтобы создать лучшее устройство для достижения более высокой и эффективной дезинфекции.

Доступность данных

Никакие данные не использовались для поддержки этого исследования.

Раскрытие информации

Ли Сун и Вэй Ли являются соавторами.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Эта работа была поддержана Национальной программой ключевых исследований и разработок Китая (№№ 2018YFC0809200 и 2016YFF0203203), Национальным фондом естественных наук Китая (№ 81703271), Гуандунским фондом науки и технологий (№ 2016A020219005), Шэньчжэньский научно-технический фонд (номера SGLh30180625171602058, CKCY20170720100145297, JCYJ20170307104024209 и JCYJ20160427151920801) и Открытый проект Ключевой лаборатории по контролю за тропическими заболеваниями Министерства образования (Университет Сунь Ятсена).2019kfkt06).

Интернет-кампус ZEISS Microscopy | Ксеноновые дуговые лампы

Введение

Ксеноновые и ртутные плазменные лампы с короткой дугой демонстрируют наивысшую яркость и яркость среди всех постоянно работающих источников света и очень близко подходят к идеальной модели точечного источника света. В отличие от ртутных и металлогалогенных источников освещения, ксеноновая дуговая лампа отличается тем, что дает в значительной степени непрерывный и однородный спектр во всей видимой области спектра.Поскольку профиль излучения ксеноновой лампы имеет цветовую температуру приблизительно 6000 K (близкую к температуре солнечного света) и не имеет заметных линий излучения, этот источник освещения более предпочтителен, чем ртутные дуговые лампы, для многих применений в количественной флуоресцентной микроскопии. Фактически, в сине-зеленой (от 440 до 540 нм) и красной (от 685 до 700 нм) областях спектра ксеноновая дуговая лампа мощностью 75 Вт ярче, чем сопоставимая ртутная лампа мощностью 100 Вт ( HBO 100). Подобно ртутным лампам, ксеноновые дуговые лампы обычно обозначаются зарегистрированным товарным знаком как XBO лампы ( X для Xe, или ксенон; B — символ яркости; O — для принудительного охлаждения) и были представлен научному сообществу в конце 1940-х гг.Популярная XBO 75 (75-ваттная ксеноновая дуговая лампа) более стабильна и имеет более длительный срок службы, чем аналогичная ртутная лампа HBO 100, но излучение видимого света составляет лишь около 25 процентов от общей светоотдачи, причем большая часть энергия попадает в менее полезную инфракрасную область спектра. Примерно 70 процентов выходной мощности ксеноновой дуговой лампы происходит на длинах волн более 700 нанометров, в то время как менее 5 процентов выходной мощности составляют волны с длиной волны менее 400 нанометров. Чрезвычайно высокое давление ксеноновых ламп во время работы (от 40 до 60 атмосфер) расширяет спектральные линии, обеспечивая гораздо более равномерное распределение возбуждения флуорофоров по сравнению с узкими и дискретными линиями излучения ртутных ламп.Таким образом, ксеноновая дуговая лампа больше подходит для строгих применений, требующих одновременного возбуждения нескольких флуорофоров в широком диапазоне длин волн в аналитической флуоресцентной микроскопии.

Несмотря на то, что ксеноновые лампы излучают широкополосное, почти непрерывное излучение, имеющее цветовую температуру, приближающуюся к солнечному свету в видимых длинах волн (часто называемое белым светом ), они действительно демонстрируют сложный линейчатый спектр в области от 750 до 1000 нанометров в ближнем диапазоне. инфракрасный спектр (см. рисунок 1).Кроме того, несколько линий с более низкой энергией существуют около 475 нанометров в видимой области. Между 400 и 700 нанометрами примерно 85 процентов всей энергии, излучаемой ксеноновой лампой, приходится на континуум, тогда как около 15 процентов приходится на линейчатый спектр. Спектральный выход (цветовая температура) ксеноновой лампы не изменяется по мере старения устройства (даже до конечной точки срока службы), и, в отличие от ртутных дуговых ламп, полный профиль излучения возникает мгновенно при зажигании.Выходная мощность ксеноновой лампы остается линейной в зависимости от приложенного тока и может регулироваться для специализированных приложений. Кроме того, спектральная яркость не изменяется при изменении тока лампы. Типичная лампа XBO 75 излучает световой поток примерно 15 люмен на ватт, но лампе требуется несколько минут после зажигания для достижения максимальной светоотдачи из-за того, что давление газа ксенона внутри лампы продолжает расти, пока не достигнет конечной рабочей температуры. и достигает теплового равновесия.

Максимальное распределение яркости рядом с катодом в области дуги ксеноновой лампы XBO 75 (часто называемой горячей точкой или плазменным шаром ) составляет приблизительно 0,3 x 0,5 миллиметра и может учитываться для всех практических целей. в оптической микроскопии — точечный источник света, который будет производить коллимированные пучки высокой интенсивности при правильном направлении через систему конденсирующих линз в фонаре. В большинстве применений флуоресцентной микроскопии свет, собранный от дуги ксеноновой лампы, отображается на точечном отверстии или задней апертуре объектива.Типичная контурная карта лампы XBO 75 показана на рисунке 2 (a), а распределение силы светового потока для той же лампы — на рисунке 2 (b). На контурной карте яркость дуги наиболее интенсивна на кончике катода и быстро спадает около анода. Картина интенсивности потока (рис. 2 (b)) по большей части демонстрирует превосходную симметрию вращения вокруг лампы, но затеняется электродами в областях, окружающих ноль и 180 на карте, где интенсивность резко падает.В ксеноновых дуговых лампах общий выход лампы составляет более 1000 нанометров в спектральной полосе, причем плазменная дуга и электроды составляют примерно половину общего излучения. Значительный вклад электродов обусловлен их большой площадью поверхности и высокими температурами. Большая часть излучения с более низкой длиной волны (фактически, видимый свет) исходит от плазменной дуги, тогда как электроды составляют большую часть инфракрасного излучения (более 700 нанометров). Образцы силы света и излучения, создаваемые дуговыми лампами, являются критическими элементами для инженеров при разработке оптики и стратегии охлаждения систем распределения света для приложений в оптической микроскопии.

Оптическая мощность ксеноновых (XBO) дуговых ламп

Комплект фильтров Возбуждение
Фильтр
Ширина полосы (нм)
Дихроматический
Зеркало
Отсечка (нм)
Мощность
мВт / см 2
DAPI (49) 1 365/10 395 LP 5.6
CFP (47) 1 436/25 455 LP 25,0
GFP / FITC (38) 1 470/40 495 LP 52,8
YFP (S-2427A) 2 500/24 ​​ 520 LP 35.4
TRITC (20) 1 546/12 560 LP 12,2
TRITC (S-A-OMF) 2 543/22 562 LP 31,9
Красный Техас (4040B) 2 562/40 595 LP 54.4
mCherry (64HE) 1 587/25 605 LP 27,9
Cy5 (50) 1 640/30 660 LP 22,1

1 Фильтры ZEISS 2 Фильтры Semrock
Стол 1

В таблице 1 представлены значения выходной оптической мощности типичного 75-ваттного источника света XBO после прохождения через оптическую цепь микроскопа и выбранные наборы флуоресцентных фильтров.Мощность (в милливатт / см 2 ) измерялась в фокальной плоскости объектива микроскопа (40-кратный сухой флюорит, числовая апертура = 0,85) с помощью радиометра на основе фотодиода. Для проецирования света через объектив в датчик радиометра использовалось либо зеркало с коэффициентом отражения более 95% от 350 до 800 нанометров, либо стандартный набор флуоресцентных фильтров. Потери пропускания света в системе освещения микроскопа могут варьироваться примерно от 50 до 99 процентов входной мощности, в зависимости от механизма связи источника света и количества фильтров, зеркал, призм и линз в оптической цепи.Например, для типичного инвертированного микроскопа исследовательского уровня, соединенного с лампой XBO на входном отверстии эпи-осветителя, менее 70 процентов света, выходящего из системы коллекторных линз, доступно для возбуждения флуорофоров, расположенных в фокусе объектива. самолет.

Ориентация ксеноновой лампы имеет решающее значение для правильной работы и долговечности. В тех лампах, которые предназначены для работы в вертикальном положении (до угла отклонения от оси 30), анод расположен вверху, а катод — внизу, внизу лампы.Эта конфигурация осесимметрична и обеспечивает отличные характеристики дуги. Напротив, лампы, предназначенные для работы в горизонтальном положении (хотя они также могут работать и в вертикальном положении), создают дуги, требующие стабилизации, чтобы уменьшить преждевременный и ускоренный износ электродов. Горизонтальная работа лампы не обладает симметрией, присущей вертикальной работе лампы, хотя такая ориентация требуется для некоторых конструкций ламповых домиков. Стабилизация дуги в горизонтальных лампах легче всего достигается с помощью магнитов в форме стержней, установленных параллельно оси лампы непосредственно под колпаком.Магнитное поле тянет дугу вниз, повышая стабильность, которую можно точно настроить, изменяя расстояние между магнитом и огибающей. Изменение положения лампы путем поворота на 180 градусов во время периода полураспада лампы позволяет осаждению испаренного электродного материала более равномерно распределяться по внутренним стенкам оболочки. Следует отметить, что разумным выбором является использование вертикальной ориентации ксеноновых ламп, когда это возможно, в конфигурациях флуоресцентной микроскопии.

Срок службы ксеноновой дуговой лампы в первую очередь определяется уменьшением светового потока, которое происходит в результате испарения вольфрама, который со временем откладывается на внутренней стенке колбы. Распад кончика катода и эффекты соляризации ультрафиолетового излучения на кварцевой оболочке также способствуют старению лампы, а также стабильности. Частые воспламенения лампы ускоряют износ электрода и приводят к преждевременному почернению оболочки. Затемнение постепенно снижает светоотдачу и сдвигает спектральные характеристики в сторону более низкой цветовой температуры.Почернение лампы, которое увеличивает рабочую температуру оболочки из-за поглощения энергии излучаемого света, происходит медленно на ранних стадиях срока службы лампы, но быстро увеличивается на более поздних стадиях. К другим факторам, отрицательно влияющим на срок службы ксеноновой лампы, относятся перегрев, низкий ток, пульсации источника питания, неправильное положение горения, чрезмерный ток и неравномерное почернение оболочки. Средний срок службы лампы (рассчитанный производителями) основан на продолжительности горения приблизительно 30 минут для каждого случая воспламенения.Конструкция ксеноновой дуговой лампы Ксеноновые дуговые лампы

производятся со сферической или эллипсоидальной оболочкой из плавленого кварца, одного из немногих оптически прозрачных материалов, способных выдерживать чрезмерные тепловые нагрузки и высокое внутреннее давление, оказываемое на материалы, используемые при производстве этих ламп. Для большинства применений в оптической микроскопии кварцевый сплав, используемый в ксеноновых лампах, обычно легирован соединениями церия или диоксидом титана для поглощения ультрафиолетовых волн, которые служат для образования озона во время работы.Типичный плавленый кварц пропускает свет с длинами волн до 180 нанометров, тогда как легирование стекла ограничивает излучение лампы длинами волн выше 220 нанометров. Ксеноновые лампы, оборудованные для работы без озона, часто обозначаются кодом OFR , чтобы указать их класс. Подобно процессу изготовления ртутных ламп, кварц, используемый для колб ксеноновой лампы, изготавливается из высококачественных трубок, которые аккуратно формуются на токарном станке в готовую колбу с помощью технологий расширения воздуха.Во время работы колба лампы может нагреваться до температур от 500 до 700 ° C, что требует жестких производственных допусков для минимизации риска взрыва.

Анодные и катодные электроды в ксеноновых дуговых лампах изготавливаются из кованого вольфрама или специальных вольфрамовых сплавов, легированных оксидом тория или соединениями бария, для уменьшения работы выхода и повышения эффективности электронной эмиссии. При производстве ксеноновых дуговых ламп используются только самые чистые сорта вольфрама.Высококачественный вольфрам имеет очень низкое давление пара и гарантирует, что электроды ксеноновой лампы способны выдерживать чрезвычайно высокие температуры дуги (более 2000 ° C для анода), возникающие во время работы, и помогает минимизировать накопление отложений на оболочке. Из-за сложности обработки электродов из вольфрама таких сортов высокой чистоты на протяжении всего процесса требуются керамические инструменты, чтобы избежать попадания загрязняющих веществ. После изготовления катод припаивается к молибденовому стержню или пластине для поддержки, но стержень анода состоит из твердого вольфрама, поскольку он подвергается гораздо более высоким температурам из-за постоянной бомбардировки электронами, испускаемыми катодом.Оба электрода проходят ультразвуковую очистку и термообработку для удаления остатков смазки и загрязнений перед тем, как вставить их в колбу лампы.

Конструкции катодов ксеноновой лампы уделялось значительное внимание, направленное на повышение стабильности дуги во время работы. В обычных лампах с вольфрамовыми электродами, легированными торием, точка излучения дуги на катоде периодически смещается из-за локализованных изменений эмиссии электронов с поверхности, явления, известного как дуговой дрейф (см. Рисунок 3 (а)).Этот артефакт, который усиливается по мере износа наконечника, приводит к кратковременным колебаниям яркости лампы, называемым вспышкой , когда дуга перемещается в новую область на катоде (рис. 3 (b)). Флаттер дуги описывает быстрое боковое смещение столба дуги конвекционными токами, возникающими, когда газ ксенон нагревается дугой и охлаждается внутренними стенками оболочки (рис. 3 (c)). Кроме того, острые концы катодов, легированных торием, имеют тенденцию изнашиваться с большей скоростью по сравнению с катодами, изготовленными из современных сплавов оксидов редкоземельных металлов.Лампы с усовершенствованной катодной технологией часто называют сверхтихими и продемонстрировали высокую кратковременную стабильность дуги менее половины процента, а также сниженную скорость дрейфа менее 0,05 процента за час работы. Долгосрочный анализ работы катода с высокими эксплуатационными характеристиками показывает, что износ значительно снижается, а смещение точки дуги в течение среднего срока службы лампы практически исключается. В результате, после того, как сверхтихая ксеноновая лампа изначально совмещена с другими элементами оптической системы микроскопа, обычно нет необходимости повторно регулировать положение в течение всего срока службы лампы.

На этапах герметизации сборки лампы катод и анод прикрепляются к полоскам очень тонкой молибденовой ленты в ступенчатом уплотнении, которое компенсирует разницу теплового расширения между кварцевой трубкой и стержнями металлических электродов. Функциональное уплотнение создается путем термического сжатия кварцевой трубки с молибденовой фольгой на токарном станке, помещенном в вакуум для предотвращения окисления. Высокие температуры сжатия позволяют расплавленному кварцу сжиматься вокруг молибденовой фольги, образуя газонепроницаемое уплотнение.После герметизации электродов в корпусе кварцевой лампы и отжига сборки для снятия напряжения в оболочку загружается газообразный ксенон высокой чистоты (99,999%) под давлением 10 атмосфер через заправочную трубку, прикрепленную к колбе оболочки. Затем лампу охлаждают жидким азотом для затвердевания газообразного ксенона и снимают заправочную трубку, чтобы полностью запечатать оболочку. После возврата к комнатной температуре готовая лампа находится под давлением, так как ксенон возвращается в газообразное состояние.

Заключительный этап процесса сборки ксеноновой лампы состоит в добавлении никелированных латунных выводов, называемых наконечниками , или оснований к каждому концу лампы.Наконечники, которые должны выдерживать температуру до 300 C, служат двойной функции, действуя как электрические соединения с источником питания, а также как механическая опора для точной фиксации лампы в правильном оптическом положении внутри фонарного светильника. Многие конструкции наконечников включают гибкий выводной провод внутри основания, который соединяется с герметизированными электродами, чтобы исключить возможность выхода лампы из строя из-за напряжения или деформации между валом электрода и латунным наконечником. Наконечники крепятся к запаянным концам кварцевого конверта с помощью угольно-графитовой ленты или термостойкого клея.Ксеноновые лампы и блоки питания

Конструкция светильников для ксеноновых дуговых ламп имеет решающее значение для долговечности и рабочих характеристик лампы. Важнейшим из конструктивных соображений является тот факт, что эти лампы работают при чрезвычайно высоком внутреннем давлении (обычно 50+ атмосфер), поэтому при выборе строительных материалов следует учитывать возможность взрыва. Поскольку дуговые лампы расширяются из-за чрезмерного нагрева, выделяемого во время работы, только один конец лампы должен быть жестко зажат в корпусе; другой конец можно закрепить гибкой металлической полосой или накрыть радиатором и привязать к соответствующему внутреннему электрическому зажиму с помощью кабеля (см. рисунок 4).Ксеноновые лампы должны иметь достаточное охлаждение, чтобы ксеноновые лампы могли работать при температуре ниже 750 ° C на поверхности оболочки и ниже 250 ° C в кабельных наконечниках. Повышенные температуры быстро приводят к окислению выводов электродов, ускоренному износу оболочки и увеличению вероятности преждевременного выхода лампы из строя. В случае ламп малой мощности (менее 250 Вт) обычно достаточно конвекционного охлаждения в хорошо вентилируемом светильнике, но для ламп большей мощности часто требуется охлаждающий вентилятор.Высокие триггерные напряжения (от 20 до 30 киловольт), необходимые для зажигания ксеноновых ламп, требуют использования высококачественных изоляционных материалов в электрической проводке светильника, а кабель питания должен выдерживать напряжение, превышающее 30 киловольт. Кроме того, кабель питания должен быть как можно короче, разобщен и размещен вдали от рамы микроскопа и других металлических инструментов (таких как компьютеры, контроллеры фильтров и цифровые камеры) в непосредственной близости.

Большинство высокоэффективных ксеноновых ламп имеют внутреннее отражающее зеркало, соединенное с системой линз выходного коллектора, которая производит коллимированный световой пучок высокой интенсивности. Конструкции коллекционных отражателей варьируются от простых вогнутых зеркал до сложных эллиптических, сферических, асферических и параболических геометрий, которые более эффективно организуют и направляют излучение лампы на линзу коллектора, а затем через микроскоп. Использование конического отражателя с гальваническим формованием позволяет достичь номинальной эффективности улавливания до 85 процентов, что является значительным улучшением по сравнению с обычными системами обратных отражателей, эффективность которых составляет от 10 до 20 процентов.Специализированные отражатели можно легко сконструировать с помощью простых методов трассировки лучей. Покрытия на всех зеркалах-накопителях должны быть дихроичными, чтобы пропускать инфракрасные (тепловые) волны. Ксеноновые лампы также выигрывают от наличия фильтров, блокирующих инфракрасное излучение, таких как стеклянный фильтр Schott BG38 или BG39 и / или зеркало горячего или холодного (в зависимости от передаваемых или отраженных длин волн) для ослабления или блокирования длин волн инфракрасного излучения и защиты образец (живые клетки) от избыточного тепла.Кроме того, твердотельные детекторы в электронных камерах, особенно в устройствах формирования изображения ПЗС, также особенно чувствительны к инфракрасному свету, который может затуманивать изображение, если соответствующие фильтры не вставлены в световой тракт.

Ксеноновые лампы

обычно имеют стандартную конфигурацию с дуговой лампой, расположенной в фокусе линзы коллектора, так что волновые фронты, выходящие из источника, собираются и грубо сколлимируются, чтобы выйти из лампы в виде параллельного пучка (Рисунок 4).Отражатель также размещается на той же оси, что и лампа и коллектор, чтобы гарантировать, что перевернутое виртуальное изображение дуги может быть создано рядом с лампой. Свет от отраженного виртуального изображения также собирается коллекторной линзой, что увеличивает мощность освещения. Вторая система линз (называемая конденсирующей линзой ), расположенная в осветителе микроскопа, необходима для фокусировки параллельных лучей, выходящих из фонаря, в задней фокальной плоскости объектива. Как правило, фокусное расстояние системы конденсирующих линз намного больше фокусного расстояния коллектора, что приводит к проецированию увеличенного изображения дуги на заднюю фокальную плоскость объектива.Конечный результат состоит в том, что свет, покидающий переднюю линзу объектива и движущийся к образцу, примерно параллелен, чтобы обеспечить равномерное освещение поля зрения. Обратите внимание, что во время юстировки лампы свет, собираемый отражателем-собирателем, не должен напрямую фокусироваться на стенках оболочки лампы (около дуги), чтобы избежать прямого нагрева колбы собственным светом излучения. Это приведет к перегреву лампы. Вместо этого расположите виртуальное изображение дуги с одной или другой стороны лампы.

Одним из основных требований к использованию ксеноновой дуговой лампы для количественной флуоресцентной микроскопии является то, что выходное излучение должно быть стабильным. Сила излучения ксеноновой лампы на выходе приблизительно пропорциональна току, протекающему через лампу. Таким образом, для обеспечения максимальной стабильности источник питания должен быть тщательно спроектирован. Источники питания дуговых ламп также должны иметь пусковое устройство для зажигания лампы. На Рисунке 5 представлена ​​принципиальная схема типичного стабилизированного источника питания для ксеноновой дуговой лампы.В дополнение к питанию лампы от источника стабильного постоянного тока ( DC ), источник питания также заряжен для поддержания катода при оптимальной рабочей температуре с использованием определенного уровня тока. Схема стабилизации источника питания ксеноновой дуговой лампы, в зависимости от конструкции, может стабилизировать напряжение, ток или общую мощность (напряжение x ток). Если напряжение стабилизировано, сила тока (и яркость лампы) будет медленно уменьшаться по мере разрушения электродов. Напротив, если ток стабилизирован, лампа будет продолжать излучать на постоянном уровне до тех пор, пока электроды не достигнут критической точки износа, когда лампа не сможет зажечься.С другой стороны, поскольку для поддержания постоянного тока требуется увеличение напряжения, мощность, передаваемая на дугу, медленно увеличивается по мере износа электродов, что может привести к перегреву и возможности взрыва. В источниках питания, которые стабилизируют общий уровень мощности, светоотдача будет медленно падать вместе с током, поскольку напряжение, необходимое для поддержания дуги, увеличивается.

Когда дуговые лампы холодные (фактически, при комнатной температуре), они действуют как электрические изоляторы, и газообразный ксенон, окружающий электроды, должен быть сначала ионизирован для инициализации и образования дуги.В большинстве конструкций источников питания зажигание осуществляется с помощью всплесков высокого напряжения (от 30 до 40 киловольт) от вспомогательной цепи, которая вызывает разряд между электродами. Специализированная схема часто упоминается как триггер или воспламенитель , потому что она прикладывает кратковременный высокочастотный импульс к ламповой нагрузке через индуктивную связь (см. Рисунок 5). После установления дуги ее необходимо поддерживать постоянным источником тока от основного источника питания, величина которого зависит от параметров лампы.Типичная лампа XBO мощностью 75 Вт работает при напряжении 15 вольт и токе от 5 до 6 ампер, но эти цифры зависят от производителя и увеличиваются с увеличением мощности лампы. Обратите внимание, что лампа XBO работает при значительно более высоком токе, чем можно было бы ожидать при относительно низком напряжении, которое определяется размером дугового промежутка, давлением ксенона и рекомендуемой рабочей температурой. Пульсации тока от источника питания должны быть сведены к минимуму, чтобы обеспечить длительный срок службы дуговых ламп. Таким образом, качество постоянного тока, используемого для питания лампы, должно быть высоким, а пульсации должны быть менее 10 процентов (размах) для ксеноновых ламп мощностью до 3000 Вт.

Специализированные ксеноновые лампы, производимые производителями послепродажного обслуживания, часто включают опции выбора длины волны и соединяют выход с оптическим волокном или жидким световодом для реле с оптической системой микроскопа для высокоэффективного освещения в выбранных областях спектра. Примеры включают Lambda LS (инструмент Саттера), который включает в себя ксеноновую лампу, холодное параболическое зеркало и источник питания в едином корпусе, который соединен с жидкостным световодом.Lambda LS может вмещать внутреннее колесо фильтра, вставки фильтра и второе колесо фильтра, установленное снаружи. Более продвинутое и быстрое устройство от Sutter, DG-4, может обеспечивать скорость переключения длины волны в диапазоне 1-2 миллисекунды, используя конструкцию двойного гальванометра в сочетании со стандартными интерференционными фильтрами. Свет от ксеноновой дуговой лампы фокусируется на первом гальванометре, который направляет его на интерференционный фильтр путем отражения от параболического зеркала. Отфильтрованный свет затем проходит через второе параболическое зеркало и гальванометр перед попаданием в жидкий световод.Холодное зеркало, расположенное перед световодом, предотвращает попадание инфракрасного излучения на оптическую цепь микроскопа. Другие производители также производят аналогичные осветители с ксеноновым питанием, многие из которых имеют функцию выбора длины волны и световые заслонки.

ipl xenon lamp — купить ipl xenon lamp с бесплатной доставкой на AliExpress

Отличные новости !!! Вы попали в нужное место для покупки ксеноновой лампы ipl.К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта ксеноновая лампа высшего класса ipl собирается в кратчайшие сроки стать одним из самых популярных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели ксеноновую лампу IPL на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в ксеноновой лампе ipl и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

И, если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести xenon lamp ipl по самой выгодной цене.

Мы всегда в курсе последних технологий, новейших тенденций и самых обсуждаемых лейблов.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *