Принцип работы ксеноновых ламп
Ксенон на сегодняшнее время используется во многих автомобилях, то ли штатно, то ли при переоборудовании оптики. Не многие знают принципы работы ксеноновой лампы, хотя это очень важно. Именно поэтому данный материал мы посвятили именно принципу работы ксеноновых ламп. Ксеноновая лампа – это электрическое газоразрядное устройство, которое может создавать внутри колбы мощные, интенсивные импульсы белого цвета.
Конструкция ксеноновой автомобильной лампы
Лампа сконструирована из специальной трубки, хорошо запаянной, состоящей из прочного стекла или же надежного кварца. Внутри этой трубки находится смесь инертных газов под большим давлением. Большая часть всей смеси газов припадает на ксенон.
Внутри колбы также находится два электрода, обеспечивающие пропуск электрического тока и образование электрической дуги для розжига газа. Чтобы активизировать газ понадобится огромное количество энергии, превращающейся в последствии в высоковольтный импульс, благодаря специальному устройству – блоку розжига, принцип работы которого схож с трансформатором.
Стеклянный корпус изделия – это и есть трубка, которая может быть разной формы. Именно в трубку по обе вертикальные стороны впаиваются электроды, между которыми при подаче высоковольтного импульса от 23000 В дол 30000 В и активизируется электрическая дуга. В колбе есть и еще один электрод, сделанный в виде тонкой металлической дорожки, которая проходит вертикально сквозь всю трубку. Этот электрод необходим для ионизации газового состава и запуска разряда.
Принцип работы ксеноновых ламп
Принцип работы ксеноновых излучателей достаточно непростой и состоит из нескольких этапов.
- Этап 1. Подача высоковольтного импульса от 23000 В до 30000 В, благодаря блоку розжига, который поступает в лампу.
- Этап 2. Активизация электрической дуги.
- Этап 3. Ионизация газа и пропуск через него тока под большим напряжением, что создает мощную вспышку белого света. Этот процесс является важным и обязательным, ведь он необходим для сокращения электрического сопротивления газа внутри колбы лампы. Ионизация активизируется путем той же подачи высоковольтного импульса от блока розжига, что активизирует электроды и выпускает ионы.
- Этап 4. Проходящий ток через газ возбуждает атомы ксенона.
- Этап 5. Активизированные атомы ксенона вынуждают переходить электроны на орбиты с характеристикой более высокой энергии.
Отметим, что газы в лампе находятся под высоким давлением, что и обеспечивает повышенную яркость. Степень давления зависит от размеров колбы лампы.
Спектр ксеноновых излучателей
Как и многие другие газы, благодарённый ксенон также имеет спектры. Принцип свечения ксенона максимально схож с неонами. Излучение от такого источника человеку кажется идеально белоснежным, поскольку спектральные лини цвета распределяются по всей видимой полосе спектра для ксенона.
Цветность лампы очень важна и измеряется она в Кельвинах:
3000 Кельвинов | Насыщенный желтый свет, идеальный для использования в ПТФ. |
4300 Кельвинов | Теплый белый свет, который максимально схож с солнечным, эффективен для использования в головной оптике. |
5000 Кельвинов | Насыщенно белоснежный свет, разрешенный для использования в головной оптике автомобилей. |
6000 Кельвинов | Белоснежный свет, имеющий небольшой оттенок голубого цвета, что стильно смотрится в головной оптике автомобилей. |
7000 Кельвинов | Голубой свет, который не используются для повседневной езды, поскольку обеспечивают низкую освещенность дороги. |
8000 Кельвинов |
Синий цвет, также используемый в целях тюнинга автомобиля для шоу-каров. |
Стандартная цветность ксенона, используемая на наших дорогах:
- Цветность стандартного ксенона составляет 4300 Кельвинов. Это самый оптимальный тепло-белый свет, который необходим для качественного освещения дорожного полотна. Данный спектр обеспечивает освещение дороги, обочины. Не рассеивается и не кристаллизируется, что важно в плохих метеорологических условиях при дожде или же мокром асфальте.
- Ксенон на 5000 Кельвинов также часто используется водителями, и обладает достаточно высокой эффективностью, хотя интенсивность света и освещенность дороги немного снижена, по сравнению со стандартным бело-теплым свечением в 4300 кельвинов. Такие лампы используются для ночных поездок, но не имеют максимального эффекта при сильном дожде или же туманности.
- Ксенон на 6000 Кельвинов очень редко используется на наших дорогах, поскольку голубой – это спектр приближенный к синему, а поэтому он не обеспечивает качественное освещение дорожного полотна ни ночью, ни при погоде. Его яркость максимально снижена, по сравнению с предыдущими цветностями, что не может в полной мере гарантировать качественную и насыщенную видимость дороги для водителя.
Ксеноновые лампы – конструкция, преимущества и другие особенности
Конструкция автомобилей с времен изобретения непрерывно претерпевала изменения, направленные на всевозможное усовершенствование. При этом менялась и автомобильная светотехника. Сперва лампы были газовыми, затем фары представляли собой лампы накаливания, с 50-х гг. прошедшего века появились в обиходе фары газонаполненные и галогеновые. А относительно недавно автомобилисты познакомились с газоразрядными ксеноновыми лампами.
Разработали лампы с ксеноном конкретно для автотранспорта. Свет тут выдается за счет ксенона, а он светится за счет пары электродов. Колбу накачивают ксеноном под сильным давлением. В компании с инертным газом имеются и соли металлов.
Изменение давления, обладающего диапазоном 30-120 атм, зависит непосредственно от режима работы светотехнического изделия.
Заметим, что внутри колбочки, когда лампочка работает, чрезвычайно жарко – порядка 4500 К (градусов кельвина). На солнышке и то прохладнее — 5000-6000 К, в галогеновой вообще «холод» – примерно 2500 К.
Температура цвета в целом может именоваться единицей яркости светового источника. Чем «внутриламповая» температура больше смахивает на солнечную, тем сильнее на свет солнца будет похоже и качество освещения пути-дороги. Значит, собираясь купить ксеноновые лампы для авто, подбирайте температуру – 4-5 тыс. Кельвинов дадут прекрасный желтый свет, а вот 6 тысяч и выше – уже голубой.
Сравним лампы разного устройства. №5-ваттная ксеноновая лампа выдаст вдвое сильный световой пучок, нежели лампа накаливания с 55 Вт мощности. Стандартной же лампой в 45Вт излучается поток света чуть выше 500 люменов, а галоген 55 Вт этих люменов даст 1500. Но! Ксеноновая лампа, которой мощности надо гораздо меньше, выдаст целых 3000 люменов. Правда, глаза людские к красному и желтому цветам сильно чувствительны, потому при увеличении температуры цвета видимость ухудшится.
Соответственно, оптимальной в ксеноновых лампах будет яркость порядка 5000 кельвинов, автопроизводители оснащают машины ксеноном в 4500-5200 кельвинов. Сильной стороной ксенона признано отсутствие привычной нити накаливания – перегореть нечему. Правда, лампы запрещено мочить и даже руками трогать.
При ночной езде именно ксенон дает наибольшую, лучше в 2,5 раза галогеновых ламп, яркость. Обзорность улучшается существенно, а спектральный состав, приближенный максимально к солнечному, водителю позволит рассмотреть на трассе людей, разные объекты и ямы гораздо раньше, что снижает, безусловно, вероятность ДТП и утомляет водителя многократно меньше.
Да, ксенон греется, но лишь 7% энергии теряется на этот нагрев. Значит, оплавления и перегрева не произойдет. Ресурс ламп с ксеноном – порядка 3 тыс. часов. О чем вещает гарантия производителей. Галогены, кстати, работают приблизительно 500 часов.
Каково устройство ксеноновых ламп? — Блог о строительстве
Ксеноновые фары стали очередной ступенью в эволюции автомобильных осветительных приборов. Их появление было обусловлено необходимостью сделать фары автомобиля более мощными и яркими, а также увеличить срок их службы.
История
Своим появлением ксеноновые фары обязаны технологиям газонаполненных и галогеновых ламп.
Ксеноновые лампы получили распространение в середине XX века и использовались для кинопроекторов. В качестве автомобильных фар такие лампы стали использовать в 1991 году. Сложно установить кто первым начал производить ксеноновые фары: по одним сведениям — это фирма Philips, по другим -Bosch .
Устройство
Ксеноновая лампа выглядит как стеклянная колба. Внутри нее находится под большим давлением смесь инертных газов, состоящая из ксенона и солей металла. Помимо этого в колбе расположены два электрода.
Для того чтобы разжечь между ними дугу, на электроды подается высоковольтный импульс напряжения (порядка 25000 В). Горящая лампа требует напряжения намного меньше – 85 В. Собственно, разряд между двумя электродами нужен для того, чтобы вызвать свечение газов.
Кроме того, существуют так называемые биксеноновые фары. Они способны излучать не только ближний или дальний свет, а оба.
Устройство таких фар бывает двух типов. В первом случае, колба двигается под действием электромагнитов(в разных лампах движение происходит либо вверх и вниз, либо вперед и назад), за счет чего образуется два типа освещения. Во втором, между самой лампой и линзой находится заслонка, которая регулирует световой поток, изменяя тем самым параметры излучения.
На автомобиль, который оборудован ксеноновыми фарами, устанавливают специальный блок управления. Он обеспечивает лампы необходимым для них напряжением, в то время как штатное электрооборудование не может с этим справиться.
Вообще, яркость источника света характеризуется цветовой температурой. Например, у Солнца цветовая температура 5000 К, у ксеноновых ламп — 4300 К, а у галогеновых всего лишь 2800 К. Спектр свечения ксеноновых ламп ближе к спектру свечения Солнца, т.
е. дневному свету. Поэтому цвет ксеноновых фар имеет слегка голубоватый оттенок, а у обычных галогеновых — желтоватый.
Достоинства и недостатки
Достоинством ксеноновых ламп является их долговечность. Их срок службы примерно в шесть раз больше, чем у галогеновых, и составляет примерно 3000 часов. Таким образом, эти лампы приходят в негодность после трех-четырех лет использования, в то время как «галогенки» перегорают каждые пол-года.
Еще одно преимущество ксеноновых фар в том, что они значительно лучше освещают дорогу при дожде и тумане. Кроме того, ксенон, в отличие от галогена значительно лучше рассеивается, а значит в меньшей степени ослепляет водителей других автомобилей.
В довершении всего, ксеноновые фары выгодно отличаются от других количеством потребляемой мощности.
К примеру, галогеновая лампа требует минимум 55 Вт, в то время как ксеноновой нужно всего 35Вт. При этом сила света ксенона в два раза больше. Низкая потребляемая мощность влияет на такой бытовой факт как загрязнение стекол фар.
Дело в том, что при длительном свечении фары ее стекло сильно нагревается. На горячем стекле дорожная грязь лучше подсушивается, и соответственно, ее тяжелее потом отмывать. Ксеноновые лампы не допускают перегревания стекла фары и возникновения на нем трещин.
Однако, помимо очевидных преимуществ, ксеноновые лампы обладают и рядом недостатков. Основным минусом “ксенона” является высокая цена.
На цену главным образом влияет необходимость установки дополнительного электрического блока. Сами лампы тоже стоят несколько дороже остальных. Ко всему прочему, меняют их только в паре, так как спектр лампы в ходе эксплуатации изменяется, и если одна будет новой, а другая старой, то светить они будут по-разному.
Еще одним фактором, влияющим на цену, является необходимость установки автоматического корректора угла фар и омывателя. Наличие этих устройств способно обезопасить других водителей от ослепления мощным светом ксенона.
Штраф за ксенон в фарах и противотуманках
Сам по себе ксенон в автомобильных фарах не является основанием для штрафа. Если речь идет о штатных световых приборах, то никаких претензий к владельцу автомобиля, естественно, не будет – наказание предусмотрено только за нештатный и кустарно установленный ксенон в фарах и противотуманках.
Техническое состояние автомобиля (в том числе и его световых приборов) в России регламентируется Основным положением по допуску транспортных средств к эксплуатации.
В этом документе прописан перечень условий и неисправностей, при которых эксплуатация авто запрещена. К ним, в частности, относится и использование «рассеивателей и ламп, не соответствующих типу данного светового прибора» (п. 3.4 Перечня).
Согласно статье 12. 5 ч. 3 КоАП РФ, в 2015 году за нарушение этого требования Основных положений предусмотрено лишение прав на срок от 6 месяцев до 1 года. Таким образом, за нештатный ксенон и желание поразить окружающих своими яркими фарами водитель может поплатиться полугодом или даже годом «пешеходной» жизни.
На противотуманки распространяются те же требования, что и на фары головного света. Ксенон в туманках также может закончиться 6-12 месяцами лишения прав.
Обратите внимание, что наличие нештатных и неправильно установленных ксеноновых ламп в фарах и ПТФ (как и светопропускную способность стекол с тонировкой) проверяют инспекторы технического надзора. Выполнить эту проверку они могут только на стационарном посту ГИБДД.
Полезно? Лайкаем и делимся со своими подписчиками!
За последние годы получают все более широкое распространение газоразрядные лампы сверхвысокого давления, в которых используются не пары металлов, а тяжелые газы, в частности ксенон.
Применение ксенона вносит существенные изменения в характеристики этих ламп. Период разгорания в ксеноновых лампах практически отсутствует, так как плотность газа в лампе не зависит от температуры колбы. Поэтому сразу же после зажигания в лампе разряда она начинает работать в номинальном режиме.
Это удобно с точки зрения эксплуатации. Разряд в ксеноне имеет хорошие спектральные характеристики излучения, близкие к спектру солнечного света. В связи с этим ксеноновые лампы имеют хорошую цветопередачу.Схема подключения ксеноновой лампы.Излучение ксеноновых ламп богато ультрафиолетовыми и инфракрасными лучами.При некоторых значениях тока лампы приобретают положительную вольт-амперную характеристику, что позволяет питать лампы определенной мощности без балласта (безбалластные лампы).
Использование таких ламп экономически выгодно, так как при их включении в сеть отсутствуют непроизводительные потери в балласте. Ксеноновые лампы имеют относительно низкие рабочие напряжения при горении, но для достижения большой яркости разряда и повышения их световой отдачи приходится увеличивать ток лампы. Поэтому характерной особенностью этих ламп является относительно большой ток.По своей экономичности ксеноновые лампы занимают среднее положение между лампами накаливания и ртутно-кварцевыми лампами высокого давления.
Световая отдача ксеноновых ламп в зависимости от мощности в среднем составляет от 20 до 50 лм/вт. Срок службы, гарантируемый заводами, колеблется от 200 до 1000 ч.Рисунок 1. Схема дуговых ксеноновых ламп типа ДКСШ-1000.Может показаться, что при указанных экономических параметрах ламп их применение не является целесообразным.
Однако проведенные расчеты и имеющаяся практика использования ксеноновых ламп дают основание утверждать, что применение ксеноновых ламп в ряде случаев весьма целесообразно и экономически выгодно. Наивыгоднейшими областями применения ксеноновых ламп в настоящее время можно считать наружное освещение больших площадей в городах, освещение спортивных сооружений, освещение карьеров при разработке открытым способом, освещение открытых строительных площадок и монтажных площадок производственных предприятий, а также внутреннее освещение производственных цехов больших размеров и высотой более 20-25 м. Значительное применение находят ксеноновые лампы в кинопроекторах, при съемке цветных кинофильмов, в телевидении и театральном освещении и ряде других специальных установок.Конструкция ксеноновых лампРазличают два основных типа ксеноновых ламп: лампы в шаровых колбах с короткой дугой, с расстоянием между электродами в несколько миллиметров с естественным или воздушным охлаждением и лампы в трубчатых колбах с длинной дугой с естественным или водяным охлаждением.Лампа с шаровой колбой (рис.
1) представляет собой толстостенный баллон из кварца с впаянными в него двумя электродами, изготовленными из торированного вольфрама. Токопроводящими контактами служат цилиндрические выводы, конструкция которых предусматривает как возможность крепления ламп, так и присоединение питающих проводов. Баллон лампы наполняется ксеноном до давления 8-9 ат, которое при работе лампы возрастает до 20-25 ат.Лампы могут работать на постоянном и переменном токе.
Отличие этих ламп – в конструкции электродов. При постоянном токе лампа имеет очень массивный анод (рис. 1а), располагаемый вверху.
При переменном токе оба электрода имеют одинаковую конструкцию (рис. 1б).Рисунок 2. Схема дуговых ксеноновых ламп типа ДКСТ: 1 – разрядная трубка; 2 — корпус охлаждающей рубашки; 3 — электрод; 4 — втулка; 5 – вывод; 6 — цилиндр из молибденовой фольги; 7 —вкладыш; 8 – стеклянный цилиндр; 9 – гайка; 10 — уплотняющий вкладыш; 11 – уплотняющие прокладки.Трубчатая ксеноновая лампа с естественным охлаждением (рис.
2а). представляет собой толстостенную трубку из кварцевого стекла, по концам которой вварены электроды из торированного вольфрама. Вводы лампы изготовляются из молибденовой фольги.
Внение выводы изготовлены из стали, а переходные втулки – из титана. Колба лампы заполняется ксеноном, его давление составляет от 15 до 350 мм рт. ст.Величина давления ксенона определяется напряжением зажигания пускового устройства, а также зависит от выбранного внутреннего радиуса трубки и падения напряжения на единицу длины разряда.
В лампах с водяным охлаждением разрядная трубка из кварца помещается внутри стеклянного цилиндра (рис. 2б). В зазоре между разрядной трубкой и цилиндром циркулирует вода, которой придается винтообразное движение благодаря некоторому сдвигу входного патрубка по отношению к плоскости, проходящей через ось лампы.
Концы стеклянного цилиндра помещаются в сборные латунные муфты и уплотняются резиновыми прокладками.Для охлаждения ламп используется дистиллированная вода, циркулирующая в замкнутой системе. Нормальная работа лампы возможна, если стеклянный цилиндр полностью заполняется водой. Максимальная температура охлаждающей воды не должна превышать температуры, при которой образуется сплошная паровая рубашка (не более 50°С на выходе из лампы).
Из этих соображений определяется расход охлаждающей воды. Применение водяного охлаждения позволяет увеличить почти в 10 раз удельную нагрузку на кварц по сравнению с естественным охлаждением, что дает возможность уменьшить размеры лампы и при этом повысить на 30-40% их световую отдачу. Зажигание ксеноновых лампНапряжение зажигания ксеноновых ламп значительно превышает напряжение питающей сети, поэтому поджигающее устройство основано на принципе искрового генератора. На рис.
3 приведены схемы зажигания лампы с помощью искрового генератора. Для зажигания ламп имеют важное значение не только величина поджигающего импульса и число подаваемых на лампу импульсов, но и сдвиг фаз между напряжением питания лампы и пускового устройства. При питании лампы и пускового устройства от одной и той же фазы сети напряжение зажигания лампы выше, чем при питании от различных фаз.
Поэтому к пусковому устройству и к лампе подаются различные фазы сети. Контактами контактора R1 в случае автоматического управления зажиганием ламп на первичную обмотку трансформатора Т1 подается сетевое напряжение.Рисунок 3. Схемы включения ксеноновых ламп.Конденсатор С1, включенный во вторичную обмотку трансформатора, заряжается, и, когда на нем напряжение достигает величины напряжения пробоя воздушного разрядника Р, он почти мгновенно разрядится на первичную обмотку импульсного трансформатора Т2.
Во вторичной обмотке трансформатора Т2 индуктируется высоковольтный, высокочастотный импульс, который будет приложен к электродам лампы. Под воздействием этого импульса разрядный промежуток лампы пробьется, что вызовет его первоначальную ионизацию.Если величина и число подаваемых импульсов оказываются достаточными, то в лампе создаются необходимые условия для развития дугового разряда, и лампа зажигается. После того как лампа зажглась, необходимо, чтобы искровой генератор продолжал работать в течение некоторого промежутка времени.
Если отключить искровой генератор раньше положенного времени, то лампа может погаснуть. Время, в течение которого искровой генератор должен продолжать работать, зависит от напряжения и полного сопротивления сети. Необходимая выдержка времени обеспечивается введением в схему реле времени(на схеме не показано).http://fazaa.ru/www.youtube.com/watch?v=oAURMvlKCjsКогда процесс зажигания лампы закончится, поджигающее устройство отключается от лампы.
Для этого размыкается кнопка К1, а вторичная обмотка импульсного трансформатора замыкается накоротко кнопкой К2. В случае автоматического управления реле времени включает контактор (не показан на схеме), который своими контактами отключает трансформатор Т1 и замыкает накоротко вторичную обмотку трансформатора Т2. Конденсатор С2 служит для защиты сети от попадания в нее высокого напряжения.Лампы мощностью до 6 кВт могут включаться по две последовательно на напряжение 220 В и зажигаться одним поджигающим устройством.Следует обратить внимание на размещение пускового устройства.
Оно должно размещаться не далее 30 м от лампы, в противном случае это будет снижать величину высоковольтного импульса. Так как величина этого импульса составляет 20-50 кВ, то изоляция провода, соединяющего лампу с пусковым устройством, должна быть выбрана из расчета на номинальное напряжение 15-20 кВ.http://fazaa.ru/www.youtube.com/watch?v=vxKiPfELn6cПри отключении лампы от сети ее повторное включение возможно только после достаточного остывания, на что требуется 5-10 мин. Повторное включение неостывшей лампы может вывести ее из строя, поэтому его следует избегать.Поделитесь полезной статьей:
Что же многие из нас с вами ставят на свои автомобили ксеноновые лампы, или просто так называемый «КСЕНОН». Оно и понятно с одной стороны это очень мощный источник света, который «разрезает» туман и прочую непогоду, позволяя намного увереннее чувствовать себя за рулем. Но с другой стороны, кустарный (то есть который не идет с завода) запрещен законом РФ и этому есть вполне вменяемое объяснение – он слепит встречных водителей, что увеличивает число ДТП на дорогах, зачастую летальных.
Так почему он слепит, как работает в фаре? И что такое блок его розжига. Разбираем подробно …
СОДЕРЖАНИЕ СТАТЬИ
Не данный период времени, ксенон это одна из самых передовых технологий, которая позволяет добиться высоких показателей светового потока. Зачастую его эффективность превышает галогеновые лампы в 2 – 4 раза.
Есть еще один оппонент, это светодиоды, сейчас они вплотную приблизились к ксеноновым лампам, но пока их надежность реально хромает, про это думали здесь. Но за счет чего достигается такое свечение, как работает? И что такое ксенон вообще?
Что такое ксенон?Для начала я предлагаю вам поговорить про само вещество, из чего состоит? Оказывается все просто – это одноатомный, инертный газ. Которые не имеет не цвета, не запаха, без вкуса, полностью безопасен для человека.
Этого газа в чистом виде очень мало в земной атмосфере, в основном он образуется около радиоактивных источников.
Однако в промышленности его научились выделять из воздуха, когда получают кислород и азот. Путем сложных преобразований выделяется чистый ксенон без примесей именно его и закачивают в колбу лампы.
Устройство ксеноновой лампы и системыЭто так называемая газоразрядная лампа. В ней под высоким давлением закачан наш газ в специальную колбу.
- Есть основная стеклянная колба, с достаточно толстыми стенками. То есть, я хочу отметить — что лампа не хрупкая.Колба заполнена нашим инертным газом – ксеноном, однако некоторые производители рядом могут «разместить» пары ртути. Они также зажигаются от нашего ксенона, однако она находятся в другой, внешней колбеТакже внутрь помещаются два электрода, которые располагаются рядом друг с другом, на достаточно близком расстоянии.С внешней части к этим электродам подходят два контакта, как у обычной лампы это плюс и минус.За лампой стоит высоковольтный «блок розжига», который является важным элементом системы.Ну и собственно «жгут проводов» который подсоединяется к системе питания автомобиля и соединяет лампу и блог розжига.
Собственно это вся система, как видите ничего сложного, абсолютно! Просто многие из моих читателей, думаю — что это просто «заоблачные технологии».
Как работает лампа?Процесс достаточно простой, его можно назвать горением электрической дуги в инертном газе. НА контакты, которые находятся внутри и располагаются друг напротив друга, подается очень высокий электрический разряд, под напряжением в 25 000 Вольт! Между контактами возникает электрическая дуга, которая в газе-ксеноне начинает гореть ярким светом. По сути можно сравнить с дугой от сварочного аппарата, некоторые это называют «плазмой», хотя я не уверен.
Так как газ инертный он никак не влияет на контакты — то есть дуга не разрушает их, а как бы проходит между ними. Ведь внутри колбы больше нет никаких газов, ни кислорода, ни азота, ни водорода.Дуга горит недолго, и поэтому ее нужно постоянно подпитывать определенным напряжением, чем собственно и занимается «блок розжига». Именно он формирует такое напряжение, зачастую после розжига оно составляет 60 – 80 Вольт.Внутри колбы могут устанавливаться специальные отражатели, которые могут направлять свет в нужную сторону.Питание блока, я еще раз повторяюсь — происходит от стандартной системы питания автомобиля.Многие задают вопрос – а почему ксенон загорается не сразу, а постепенно?
Все просто – потому что нужно небольшой промежуток времени, чтобы дуга «зажглась» в газе. Обычно это от 5 до 7 секунд не больше.Как видите ничего сложного! Но зачастую многих интересует — а как образовывается такой высоковольтный разряд в 25 000 Вольт? Как работает блок?
Как работает блок розжига ксенона?Если взять характеристики блока розжига, то зачастую составляют:
Напряжение от 8 до 16 Вольт.
Сила потребляемого тока – от 3 до 6 Ампер.
Среднее потребление около 35 – 55 Ватт.
Но постойте, а где же напряжение в 25000 Вольт?
Ведь это очень большой показатель. Спокойно ребята, такое напряжение действительное есть – то есть с одной стороны заходит низкое, а выходит очень высокое, но лишь на какие-то миллисекунды, именно они нужны для того чтобы поджечь наш газ. Это и есть принцип высоковольтного бока питания.
Если копнуть в строение (кому интересно) то становится понятно, что у нас от бортовой сети 12 Вольт, забирается первоначальная энергия — дальше она поступает в импульсный трансформатор, который преобразует напряжение уже до 250 Вольт.
После чего он отдает напряжение конденсатору, где оно накапливается (обычно его напряжение около 400 – 500 Вольт, а емкость от 0,2 до 0,5 Микрофарада). Дальше импульс, от конденсатора, поступает на высоковольтную катушку, и уже она методом индукции первичной и вторичной катушек выдает очень высокое напряжение, которое в десятки раз, может превышать напряжение на конденсаторе.Дальше напряжение, которое требуется для дальнейшего «горения» как я уже писал, составляет всего 60 – 80 Вольт, все зависит от мощности лампы.Поэтому конечное потребление всего 35 – 55 Ватт энергии, что вполне соизмеримо с обычной галогеновой лампой. Как видите достаточно простая конструкция.
Световой потокЕсли сравнивать работу ксенона и работу обычной галогеновой лампы, то наш «технологичный претендент» намного опережает в силе светового потока.
Обычный галоген– выдает поток в 1500 Lm (Люмен)
Ксенон– примерно от 3000 до 6000 Lm (не верьте китайским производителям, которые указывают по 10 – 20 000 Lm, такие системы очень редкие и для конечного потребителя практически не используются)
Светодиодные варианты– сейчас выдают практически одинаковые потоки с ксеноновыми элементами – от 2500 до 4500 Lm (правда стоит оговориться нужно выбирать именно с специальным драйвером)
Как вы видите ксенон очень яркий, он работает с высоким потоком света, что с одной стороны является благом – хорошо освещает дорогу, с другой стороны – губителен, потому как он очень часто ослепляет встречных водителей.
Срок службы ксенонаНУ и в заключении хочется отметить — что на данный период времени, ксеноновая лампа самая долговечная из оппонентов.
В среднем работает около 200 000 часов, что примерно 4 – 5 лет использования по два – три часа в день. Да и потом он может не перегореть, однако его свечение кардинально меняется, то есть лампа как бы выцветает. Ее нужно срочно заменить, для восстановления изначальных характеристик.
Сейчас небольшое полезное видео, смотрим.
НА этом заканчиваю, думаю, я вам подробно объяснил — как работает лампа и сам блок розжига. Искренне ваш АВТОБЛОГГЕР.
Источники:
- www.drive2.ru
- fazaa.ru
- avto-blogger.ru
Самостоятельная установка ксенона
Ксеноновые фары обеспечивают яркое и эффективное освещение проезжей части. Считается, что это – самый надежный, экономичный и прогрессивный вид автомобильной оптики. При замене ламп в фарах на ксенон:
- Значительно повышается эффективная видимость, обеспечивается безопасность движения;
- Во время тумана или дождя фары автомобиля освещают именно дорогу, а не частицы воды;
- Примерно на треть снижается энергопотребление, уменьшается нагрузка на генератор авто;
- Ксеноновый свет напоминает дневной, не утомляет глаза и не ослепляет участников движения;
- Ксеноновые лампы рассчитаны более чем на 3 тысячи часов работы и не ломаются от сотрясений.
Конструкция и принцип работы ксеноновой оптики
Чтобы выполнить установку ксенона в фары своими руками, надо знать принцип его работы. Ксеноновая лампа – это небольшая колба с двумя электродами, изготовленная из кварцевого стекла. Колба заполнена хлоридами нескольких металлов и ксеноном – инертным газом, который излучает яркое свечение, если через него начинают пропускать ток. Чтобы лампа зажглась, через ксенон по технологии нужно пропустить ток напряжением 25000 В, потом достаточно поддерживать напряжение 80 В и выше. Но штатное оборудование не может обеспечить таких условий. Поэтому при переходе на ксенон требуется установка специального предпускового блока. По новым правилам также требуется установка корректора фар и омывателя.Виды ксеноновых ламп
Произвести установку ксенона самостоятельно не очень трудно, но важно выбрать подходящую оптику. Цоколи ксеноновых ламп отличаются и подходят для фар определенных моделей машин. Чаще всего используются лампы с цоколем на h2, h5, H7, HB4. Чтобы узнать, каким цоколем оборудованы фары, надо обратиться в сервис. Но можно произвести проверку фар и самостоятельно, просто сравнив штатный цоколь с представленной здесь таблицей. Отличается и цветовая температура разных ксеноновых ламп. От данного параметра зависит цвет и яркость света, излучаемого автомобильными фарами. Внешне эффектнее всего смотрится голубой ксенон, но свет, максимально приближенный к дневному, дают белые лампы с цветовой температурой от 5 до 5,5 тыс. К. Именно они считаются наиболее щадящими для глаз и лучше всего освещают дорогу в тумане. Это обязательно надо учитывать при установке ксенона в противотуманные фары.Производители ксенона
Прежде, чем рассказать, как установить ксенон в фары самому, предлагаем обзор производителей предпусковых блоков и газоразрядных ламп:- Лучшими считаются блоки розжига Osram, Hella, Philips. Изделия Bosch и Matsushita практически им не уступают, к тому же их проще установить. Блоки PIAA имеют высокое качество, но стоят дороже других.
- Ксеноновые лампы Osram и Philips считаются самыми надежными (замена ксенона требуются крайне редко), но выбор цоколей у этих производителей ограничен. Корейские компании Eagleye, Alpha Optima, ZZX Pro, Berus выпускают лампы высокого качества с любыми цоколями.
Схема подключения ксенона своими руками
Процесс монтажа ксенона на разные авто отличается, но здесь представлена универсальная схема, которая применима для большинства моделей. В инструкции на ксеноновый комплект есть информация, касающаяся особенностей подключения конкретного оборудования.Самостоятельная установка ксенона в ближний свет
Полная замена штатной оптики на ксенон стоит недешево. Поэтому многие устанавливают газоразрядные лампы только в ближний свет. Это несложно, а инструкция по самостоятельной установке ксенона позволит правильно произвести монтаж:- Итак, надо приобрести подходящий комплект ксенона.
- Откинуть или полностью снять передний бампер.
- Открутить и разобрать штатную фару.
- Вынуть старую лампу.
- Если цоколь газоразрядной лампы немного другой, можно использовать специальный переходник (иногда переходники входят в комплект ксенона).
- Далее устанавливаем ксенон сами (помещаем в фару лампу с переходником и прижимаем пружиной).
- Потом лампу надо прижать резинкой.
- Продеть через провода лампы резиновую заглушку.
- Установить в подходящее место блок розжига.
- Вставить провода из блока ксенона в штатный разъем ближнего света.
- Чтобы провода со временем не выпали, их можно дополнительно зафиксировать изолентой.
- Ксенон установлен.
Самостоятельная установка ксенона в дальний свет
Для установки в дальний свет потребуется отдельный комплект ксенона. А выполнить монтаж газоразрядных ламп просто, ниже описывается, как поставить ксенон самому:- Сначала надо демонтировать бампер и фары.
- Разобрать фару, вынуть галогеновую лампочку.
- Поставить ксеноновую лампу, вернуть на место герметичную заглушку фары. Предварительно в ней надо сделать подходящие отверстия для проводов.
- Установить ксенон во вторую фару.
- Выбрать место для монтажа блоков розжига.
- Подключить провода, закрепить обе фары.
- После монтажа надо выполнить регулировку ксенона.
Как установить блок розжига ксенона своими руками?
Блок розжига – это устройство, которое обеспечивает старт ксеноновой лампы за счет создания высоковольтных импульсов (до 30 тыс. Вольт). Предпусковые блоки (на обе фары) входят в каждый комплект ксенона. Жестких требований к размещению балластов нет, но надо учитывать, что высокая влажность – основная причина поломок и ремонта блоков ксенона. Чаще всего устройства устанавливаются в подкапотном пространстве, недалеко от фар:- В этом примере один блок установлен под нижним креплением усилителя бампера, а второй прикреплен к ребру за бачком омывателя.
- Также можно нарастить провода и закрепить блоки в более подходящих местах.
- У блоков розжига Bosch и Matsushita высоковольтная часть (игнитор) вынесена за пределы самого устройства. Она крепится непосредственно на фару.
Что такое биксенон?
Многие автомобили имеют раздельную оптику, при которой ксенон можно установить в любой свет (ближний или дальний). Для полного оснащения фары ксеноном нужно два разных комплекта. Но у некоторых моделей всего одна лампа, которая работает в обоих режимах (ближнего и дальнего света). Оптимальный вариант для таких фар – установка биксенона. Биксенон – это световое оборудование, способное переключаться между этими режимами. Смена спектра свечения обеспечивается за счет конструкции биксеноновой лампы. Биксеноновая линза включает газоразрядную лампу, светоотражатель и металлическую шторку, которая создает четкую «ступеньку» светового потока. Такая конструкция исключает появление паразитарных засветок, ослепляющих водителей встречных машин. Многих интересует, как сделать биксенон самостоятельно. Это несложно, но надо учитывать, что биксеноновые лампы можно поставить лишь в цоколи h5 (самые распространенные), HB-1, HB-5, h23.Установка биксенона своими руками
Вместо двух комплектов ксенона можно установить биксенон. Если на автомобиле имеется штатный блок розжига, монтаж будет совсем несложным, но потребуется доработка самой фары. Итак, устанавливаем биксенон сами:- Сначала надо полностью снять передний бампер или хотя бы отогнуть его (нижние крепления можно не откручивать).
- Разобрать фары.
- Снять все пружинки и скобы.
- Обломать два выступа (посадочное место под лампу трогать не нужно).
- Выскоблить весь штатный герметик (можно слегка подогревать его феном). Далее надо просто высверлить на дефлекторе отверстие под проводку. Это отверстие расположено за штатной шторкой, и после установки линз в фары его не будет видно.
- Вставить лампу, протянуть в отверстие провода (в инструкции по установке биксенона есть подробная схема).
- Выровнять линзу и зафиксировать гайкой с обратной стороны. Залить в щель между посадочным местом лампы и шайбой специальный термоклей, склеить плафон и фару герметиком.
- Завершив монтаж биксенона, можно выполнить установку переднего бампера.
Как сделать ксенон в противотуманки своими руками?
Чтобы противотуманные фары машины обеспечивали лучшую видимость в непогоду и хорошо освещали обочины дороги, их целесообразно оборудовать ксеноном. Да и смотрятся ксеноновые ПТФ намного эффектнее штатных фар. Итак, чтобы установить ксенон, надо:- Извлечь штатную лампу (на некоторые модели ксенон ставится без снятия противотуманной фары).
- Взять из комплекта ксеноновую лампу.
- Вставить ее в фару на место штатной.
- Чтобы завершить установку ксенона в туманки своими руками, надо разместить два блока розжига (от левой и правой фары).
- Если ранее ксенон был установлен в ближний и дальний свет, найти место для дополнительных блоков не так-то просто, но есть неплохой вариант. Надо взять блок розжига и прикрутить к нему изолентой железный крепеж.
- Потом дрелью высверлить отверстие для крепления блока где-нибудь недалеко от фар.
- Аккуратно прикрутить предстартовый блок.
- Установить проводку легко, там просто невозможно подключить что-нибудь не так.
- По такому же принципу ксеноном оснащается вторая фара. Наконец, надо выполнить установку противотуманных фар (если они были демонтированы).
Самостоятельная установка ксенона в фонари заднего хода
Ксенон часто используется для тюнинга задней оптики. Чтобы оборудовать газоразрядными лампами фонари заднего хода, надо:- Купить подходящий комплект ксенона.
- Демонтировать оба фонаря заднего хода.
- Срезать разъем от штатной лампы и подпаять его к лампе ксенона.
- Чтобы вставить в плафон ксеноновую лампу, может потребоваться сточить отверстие в фонаре и намотать изоленту (чтобы лампа не проваливалась глубже).
- Вместо изоленты можно использовать герметик.
- Минусовой провод от предпускового блока подключить к общему минусу.
- Желательно использовать круглую клемму, тогда монтаж будет аккуратнее.
- Плюсовой провод от блока подключить к красному проводу (здесь также можно использовать подходящие клеммы).
- Заизолировать участок, где соединяются провода.
- Провод, который идет от предпускового блока к ксеноновой лампе, просунуть через специальную резинку (при необходимости ее можно разрезать).
- Замотать новую проводку изолентой.
- Лишние отверстия можно залить клеем.
- Выполнить установку задних фар.
Меры безопасности при самостоятельной установке ксенона
Выполняя установку или ремонт ксенона, надо соблюдать осторожность:- Нельзя производить монтаж замасленными или влажными руками, прикасаться к лампам, высоковольтным проводам и предпусковым блоками после включения.
- Все электрические соединения комплекта ксенона нужно как следует заизолировать, так как при окислении они будут нагреваться, и может произойти возгорание электропроводки.
- Не следует смотреть на работающие ксеноновые фары без затемненных очков, иначе можно травмировать зрение.
Как отрегулировать ксеноновые фары своими руками?
После установки ксеноновых фар их надо отрегулировать. Тогда яркий свет газоразрядных ламп не будет создавать дискомфорт другим водителям и обеспечит наилучшее освещение дороги. Для регулировки положения фар надо:- Выбрать ровную стену и поставить машину так, чтобы расстояние между «экраном» и фарами было 5 м. Измерить расстояние от центров автомобильных фар до земли и на такой высоте провести горизонтальную линию (линия 1). Отступить вниз 75 мм и провести параллельно ей еще одну линию (линия 2). Начертить вертикальную линию, на одинаковом расстоянии от нее провести еще две линии (А и В), обозначающие центры фар.
- Включить фары (регулировка производится в режиме ближнего света). Закрыть одну фару куском фанеры и отрегулировать вторую, потом наоборот. Для настройки фар конструкцией предусмотрены регулировочные винты с пластмассовыми головками.
- Чтобы выполнить регулировку ближнего света фар авто в вертикальной плоскости, надо подкручивать винт А, а в горизонтальной плоскости – винт Б.
- Фары считаются отрегулированными правильно, если верхние границы пятен света совпадают с нижней линией, а излом светового пучка происходит там, где проходит вертикальная линия (А или В).
- Поставить машину на расстоянии 5 м от ровной стены. Измерить расстояние от центров противотуманок до земли и на такой же высоте провести горизонтальную линию. Отступить вниз 50 мм и провести линию.
- При вращении регулировочных винтов противотуманных фар будет меняться наклон пучков света. Таким образом надо отрегулировать сначала одну, а потом другую фару.
- Нужно добиться, чтобы верхние края световых пятен совпадали с нижней линией. При таком положении противотуманные фонари смогут хорошо освещать обочины, но при этом не будут ослеплять других водителей.
Ксеноновые фары — Устройство, принцип работы, преимущества и недостатки
Еще недавно ксеноновый автомобильный свет считался чем-то уникальным, возможным к применению исключительно в топовых моделях, которые обычным среднестатистическим автолюбителям были не по карману. Развитие технологий позволило значительно снизить стоимость его установки, что предопределило широчайшее распространение среди огромного количества автомашин, гораздо более доступных для потребителей. Сегодняшняя статья будет посвящена устройству, принципам работы и основным преимуществам и недостаткам ксеноновых фар.
Устройство и принцип работы ксеноновых фар автомобиля
Лампы, используемые в ксеноновом освещении, принадлежат к газоразрядному типу. Их англоязычное название «HID-Lamp» переводится как «лампы высокоинтенсивного разряда». Их конструкция основана на двух герметичных колбах, изготовленных из кварцевой разновидности стекла. Главное назначение стеклянной оболочки – защита от загрязнения и температурных перепадов. Внутренний стеклянный контур заполняется газом, основной частью которого выступает ксенон. От его количества зависит цветовой оттенок светового луча и скорость включения фар. Обязательным компонентом ксеноновых фонарей является управляющий блок, называемый также блоком розжига. Он подает необходимый для работы высоковольтный заряд и контролирует стабильность напряжения, избавляя его от скачков и чрезмерных просадок. Одной из особенностей HID-освещения является характерная постепенность его запуска. Время задержки отводится на разогрев газовой смеси, чтобы она смогла обрести максимальный яркую степень свечения. Рабочий температурный уровень внутри ламп составляет 4 тысячи градусов. Она может быть и выше, вплоть до 8 тысяч, однако продуктивность работы такого света крайне низкая. Что же определяет световой оттенок луча, исходящего от фар? Именно температура. В зависимости от её величины цвет изменяется от бело-желтого, до ярко-голубого.
Основные преимущества ксенона
- Главным «плюсом» применения ксеноновых фонарей, безусловно, является качество исходящего от них свечения. Луч HID-осветителей невероятно яркий, с великолепной интенсивностью и охватом.
- Выделим и срок службы самих ламп. Он в несколько раз превышает функциональный ресурс галогенов, пусть и слегка проигрывая светодиодным модулям. Почему это возможно? Прежде всего, из-за отсутствия в конструктивном устройстве основной нити. Это исключает возможность перегорания ламп в результате перепадов напряжения, которые отфильтровывает управляющий блок, и по причине постоянной вибрации во время эксплуатации.
- Не можем оставить без внимания отличные показатели продуктивности работы.
- Невысокое потребление бортового тока облегчает «жизнь» генератору, что прямым образом сказывается на экономичном топливном потреблении.
Основные недостатки ксенона
- Основным недостатком HID-фар является сравнительно высокая стоимость установочных комплектов в целом и самих ламп в частности. Однако отдельно оговоримся, что эта дороговизна касается сравнения лишь со штатными галогенными фарами. Ни светодиодные фонари, ни, тем более, лазерные технологии, начинающиеся применяться в некоторых моделях «БМВ», ничуть не дешевле, а в большинстве случаев значительно дороже.
Насколько законна самостоятельная установка ксенона?
В российских автомобильных ГОСТах вопрос законности именно самостоятельной установки ксенонового освещения никак не отражен. Единственная оговорка касается допуска производителями автомобиля штатной замены. Дело в том, что не все фары имеют возможность монтажа ксенона. Для его установки обязательно наличие линз, собирающих луч в единый пучок и препятствующий хаотично направленному свету, ослепляющему всех водителей встречного направления. Если заводом-изготовителем транспортного средства допускается установка ксенона в штатные фары, автолюбитель имеет полное право законно замену осветителей. Причем совершенно неважно, куда оборудование будет смонтировано – в фары ближнего света, дальнего или вовсе в противотуманные фонари.
Подведем итоги
Подводя итоги статьи, отметим, что ксеноновое освещение является одним из наиболее качественных решений, общепринятом в автомобильной промышленности в настоящее время. Да, он несколько дороже галогенных фар, зато все их недостатки полностью устранены, а его работа, в том числе КПД использования, находится на великолепном уровне. Что касается основных конкурентов, то для ксенона наиболее «опасны светодиодные модули». Они значительно более экономичные, хотя их интенсивность и качество функционирования ничем не уступает ксенону. Нам – рядовым автолюбителям, такая конкуренция только на руку. Это прямым образом влияет на развитие направления, в том числе и на его ценовой уровень.
Как устроена ксеноновая лампа — MOREREMONTA
Ксеноновые фары стали очередной ступенью в эволюции автомобильных осветительных приборов. Их появление было обусловлено необходимостью сделать фары автомобиля более мощными и яркими, а также увеличить срок их службы.
Своим появлением ксеноновые фары обязаны технологиям газонаполненных и галогеновых ламп. Ксеноновые лампы получили распространение в середине XX века и использовались для кинопроекторов. В качестве автомобильных фар такие лампы стали использовать в 1991 году. Сложно установить кто первым начал производить ксеноновые фары: по одним сведениям — это фирма Philips, по другим -Bosch .
Ксеноновая лампа выглядит как стеклянная колба. Внутри нее находится под большим давлением смесь инертных газов, состоящая из ксенона и солей металла. Помимо этого в колбе расположены два электрода. Для того чтобы разжечь между ними дугу, на электроды подается высоковольтный импульс напряжения (порядка 25000 В). Горящая лампа требует напряжения намного меньше – 85 В. Собственно, разряд между двумя электродами нужен для того, чтобы вызвать свечение газов.
Кроме того, существуют так называемые биксеноновые фары. Они способны излучать не только ближний или дальний свет, а оба. Устройство таких фар бывает двух типов. В первом случае, колба двигается под действием электромагнитов(в разных лампах движение происходит либо вверх и вниз, либо вперед и назад), за счет чего образуется два типа освещения. Во втором, между самой лампой и линзой находится заслонка, которая регулирует световой поток, изменяя тем самым параметры излучения.
На автомобиль, который оборудован ксеноновыми фарами, устанавливают специальный блок управления. Он обеспечивает лампы необходимым для них напряжением, в то время как штатное электрооборудование не может с этим справиться.
Вообще, яркость источника света характеризуется цветовой температурой. Например, у Солнца цветовая температура 5000 К, у ксеноновых ламп — 4300 К, а у галогеновых всего лишь 2800 К. Спектр свечения ксеноновых ламп ближе к спектру свечения Солнца, т.е. дневному свету. Поэтому цвет ксеноновых фар имеет слегка голубоватый оттенок, а у обычных галогеновых — желтоватый.
Достоинства и недостатки
Достоинством ксеноновых ламп является их долговечность. Их срок службы примерно в шесть раз больше, чем у галогеновых, и составляет примерно 3000 часов. Таким образом, эти лампы приходят в негодность после трех-четырех лет использования, в то время как «галогенки» перегорают каждые пол-года.
Еще одно преимущество ксеноновых фар в том, что они значительно лучше освещают дорогу при дожде и тумане. Кроме того, ксенон, в отличие от галогена значительно лучше рассеивается, а значит в меньшей степени ослепляет водителей других автомобилей.
В довершении всего, ксеноновые фары выгодно отличаются от других количеством потребляемой мощности. К примеру, галогеновая лампа требует минимум 55 Вт, в то время как ксеноновой нужно всего 35Вт. При этом сила света ксенона в два раза больше. Низкая потребляемая мощность влияет на такой бытовой факт как загрязнение стекол фар. Дело в том, что при длительном свечении фары ее стекло сильно нагревается. На горячем стекле дорожная грязь лучше подсушивается, и соответственно, ее тяжелее потом отмывать. Ксеноновые лампы не допускают перегревания стекла фары и возникновения на нем трещин.
Однако, помимо очевидных преимуществ, ксеноновые лампы обладают и рядом недостатков. Основным минусом «ксенона» является высокая цена. На цену главным образом влияет необходимость установки дополнительного электрического блока. Сами лампы тоже стоят несколько дороже остальных. Ко всему прочему, меняют их только в паре, так как спектр лампы в ходе эксплуатации изменяется, и если одна будет новой, а другая старой, то светить они будут по-разному.
Еще одним фактором, влияющим на цену, является необходимость установки автоматического корректора угла фар и омывателя. Наличие этих устройств способно обезопасить других водителей от ослепления мощным светом ксенона.
Штраф за ксенон в фарах и противотуманках
Сам по себе ксенон в автомобильных фарах не является основанием для штрафа. Если речь идет о штатных световых приборах, то никаких претензий к владельцу автомобиля, естественно, не будет – наказание предусмотрено только за нештатный и кустарно установленный ксенон в фарах и противотуманках.
Техническое состояние автомобиля (в том числе и его световых приборов) в России регламентируется Основным положением по допуску транспортных средств к эксплуатации. В этом документе прописан перечень условий и неисправностей, при которых эксплуатация авто запрещена. К ним, в частности, относится и использование «рассеивателей и ламп, не соответствующих типу данного светового прибора» (п. 3.4 Перечня).
Согласно статье 12.5 ч. 3 КоАП РФ, в 2015 году за нарушение этого требования Основных положений предусмотрено лишение прав на срок от 6 месяцев до 1 года. Таким образом, за нештатный ксенон и желание поразить окружающих своими яркими фарами водитель может поплатиться полугодом или даже годом «пешеходной» жизни.
На противотуманки распространяются те же требования, что и на фары головного света. Ксенон в туманках также может закончиться 6-12 месяцами лишения прав.
Обратите внимание, что наличие нештатных и неправильно установленных ксеноновых ламп в фарах и ПТФ (как и светопропускную способность стекол с тонировкой) проверяют инспекторы технического надзора. Выполнить эту проверку они могут только на стационарном посту ГИБДД.
Полезно? Лайкаем и делимся со своими подписчиками!
Что же многие из нас с вами ставят на свои автомобили ксеноновые лампы, или просто так называемый «КСЕНОН». Оно и понятно с одной стороны это очень мощный источник света, который «разрезает» туман и прочую непогоду, позволяя намного увереннее чувствовать себя за рулем. Но с другой стороны, кустарный (то есть который не идет с завода) запрещен законом РФ и этому есть вполне вменяемое объяснение – он слепит встречных водителей, что увеличивает число ДТП на дорогах, зачастую летальных. Так почему он слепит, как работает в фаре? И что такое блок его розжига. Разбираем подробно …
СОДЕРЖАНИЕ СТАТЬИ
Не данный период времени, ксенон это одна из самых передовых технологий, которая позволяет добиться высоких показателей светового потока. Зачастую его эффективность превышает галогеновые лампы в 2 – 4 раза. Есть еще один оппонент, это светодиоды, сейчас они вплотную приблизились к ксеноновым лампам, но пока их надежность реально хромает, про это думали здесь. Но за счет чего достигается такое свечение, как работает? И что такое ксенон вообще?
Что такое ксенон?Для начала я предлагаю вам поговорить про само вещество, из чего состоит? Оказывается все просто – это одноатомный, инертный газ. Которые не имеет не цвета, не запаха, без вкуса, полностью безопасен для человека.
Этого газа в чистом виде очень мало в земной атмосфере, в основном он образуется около радиоактивных источников.
Однако в промышленности его научились выделять из воздуха, когда получают кислород и азот. Путем сложных преобразований выделяется чистый ксенон без примесей именно его и закачивают в колбу лампы.
Устройство ксеноновой лампы и системыЭто так называемая газоразрядная лампа. В ней под высоким давлением закачан наш газ в специальную колбу.
- Есть основная стеклянная колба, с достаточно толстыми стенками. То есть, я хочу отметить — что лампа не хрупкая.
- Колба заполнена нашим инертным газом – ксеноном, однако некоторые производители рядом могут «разместить» пары ртути. Они также зажигаются от нашего ксенона, однако она находятся в другой, внешней колбе
- Также внутрь помещаются два электрода, которые располагаются рядом друг с другом, на достаточно близком расстоянии.
- С внешней части к этим электродам подходят два контакта, как у обычной лампы это плюс и минус.
- За лампой стоит высоковольтный «блок розжига», который является важным элементом системы.
- Ну и собственно «жгут проводов» который подсоединяется к системе питания автомобиля и соединяет лампу и блог розжига.
Собственно это вся система, как видите ничего сложного, абсолютно! Просто многие из моих читателей, думаю — что это просто «заоблачные технологии».
Как работает лампа?Процесс достаточно простой, его можно назвать горением электрической дуги в инертном газе. НА контакты, которые находятся внутри и располагаются друг напротив друга, подается очень высокий электрический разряд, под напряжением в 25 000 Вольт! Между контактами возникает электрическая дуга, которая в газе-ксеноне начинает гореть ярким светом. По сути можно сравнить с дугой от сварочного аппарата, некоторые это называют «плазмой», хотя я не уверен.
Так как газ инертный он никак не влияет на контакты — то есть дуга не разрушает их, а как бы проходит между ними. Ведь внутри колбы больше нет никаких газов, ни кислорода, ни азота, ни водорода.
Дуга горит недолго, и поэтому ее нужно постоянно подпитывать определенным напряжением, чем собственно и занимается «блок розжига». Именно он формирует такое напряжение, зачастую после розжига оно составляет 60 – 80 Вольт.
Внутри колбы могут устанавливаться специальные отражатели, которые могут направлять свет в нужную сторону.
Питание блока, я еще раз повторяюсь — происходит от стандартной системы питания автомобиля.
Многие задают вопрос – а почему ксенон загорается не сразу, а постепенно? Все просто – потому что нужно небольшой промежуток времени, чтобы дуга «зажглась» в газе. Обычно это от 5 до 7 секунд не больше.
Как видите ничего сложного! Но зачастую многих интересует — а как образовывается такой высоковольтный разряд в 25 000 Вольт? Как работает блок?
Как работает блок розжига ксенона?Если взять характеристики блока розжига, то зачастую составляют:
Напряжение от 8 до 16 Вольт.
Сила потребляемого тока – от 3 до 6 Ампер.
Среднее потребление около 35 – 55 Ватт.
Но постойте, а где же напряжение в 25000 Вольт? Ведь это очень большой показатель. Спокойно ребята, такое напряжение действительное есть – то есть с одной стороны заходит низкое, а выходит очень высокое, но лишь на какие-то миллисекунды, именно они нужны для того чтобы поджечь наш газ. Это и есть принцип высоковольтного бока питания.
Если копнуть в строение (кому интересно) то становится понятно, что у нас от бортовой сети 12 Вольт, забирается первоначальная энергия — дальше она поступает в импульсный трансформатор, который преобразует напряжение уже до 250 Вольт. После чего он отдает напряжение конденсатору, где оно накапливается (обычно его напряжение около 400 – 500 Вольт, а емкость от 0,2 до 0,5 Микрофарада). Дальше импульс, от конденсатора, поступает на высоковольтную катушку, и уже она методом индукции первичной и вторичной катушек выдает очень высокое напряжение, которое в десятки раз, может превышать напряжение на конденсаторе.
Дальше напряжение, которое требуется для дальнейшего «горения» как я уже писал, составляет всего 60 – 80 Вольт, все зависит от мощности лампы.
Световой потокПоэтому конечное потребление всего 35 – 55 Ватт энергии, что вполне соизмеримо с обычной галогеновой лампой. Как видите достаточно простая конструкция.
Если сравнивать работу ксенона и работу обычной галогеновой лампы, то наш «технологичный претендент» намного опережает в силе светового потока.
Обычный галоген – выдает поток в 1500 Lm (Люмен)
Ксенон – примерно от 3000 до 6000 Lm (не верьте китайским производителям, которые указывают по 10 – 20 000 Lm, такие системы очень редкие и для конечного потребителя практически не используются)
Светодиодные варианты – сейчас выдают практически одинаковые потоки с ксеноновыми элементами – от 2500 до 4500 Lm (правда стоит оговориться нужно выбирать именно с специальным драйвером)
Как вы видите ксенон очень яркий, он работает с высоким потоком света, что с одной стороны является благом – хорошо освещает дорогу, с другой стороны – губителен, потому как он очень часто ослепляет встречных водителей.
Срок службы ксенонаНУ и в заключении хочется отметить — что на данный период времени, ксеноновая лампа самая долговечная из оппонентов. В среднем работает около 200 000 часов, что примерно 4 – 5 лет использования по два – три часа в день. Да и потом он может не перегореть, однако его свечение кардинально меняется, то есть лампа как бы выцветает. Ее нужно срочно заменить, для восстановления изначальных характеристик.
Сейчас небольшое полезное видео, смотрим.
НА этом заканчиваю, думаю, я вам подробно объяснил — как работает лампа и сам блок розжига. Искренне ваш АВТОБЛОГГЕР.
(9 голосов, средний: 4,11 из 5)
Похожие новости
Как проверить предохранитель в машине. Применяем мультиметр (тес.
Ручейковый (поликлиновый) ремень. Что это такое? Как улучшил раб.
Светодиодные лампы в фары головного света – Разрешены? Или полаг.
Ксенон на сегодняшнее время используется во многих автомобилях, то ли штатно, то ли при переоборудовании оптики. Не многие знают принципы работы ксеноновой лампы, хотя это очень важно. Именно поэтому данный материал мы посвятили именно принципу работы ксеноновых ламп. Ксеноновая лампа – это электрическое газоразрядное устройство, которое может создавать внутри колбы мощные, интенсивные импульсы белого цвета.
Конструкция ксеноновой автомобильной лампы
Лампа сконструирована из специальной трубки, хорошо запаянной, состоящей из прочного стекла или же надежного кварца. Внутри этой трубки находится смесь инертных газов под большим давлением. Большая часть всей смеси газов припадает на ксенон.
Внутри колбы также находится два электрода, обеспечивающие пропуск электрического тока и образование электрической дуги для розжига газа. Чтобы активизировать газ понадобится огромное количество энергии, превращающейся в последствии в высоковольтный импульс, благодаря специальному устройству – блоку розжига, принцип работы которого схож с трансформатором.
Стеклянный корпус изделия – это и есть трубка, которая может быть разной формы. Именно в трубку по обе вертикальные стороны впаиваются электроды, между которыми при подаче высоковольтного импульса от 23000 В дол 30000 В и активизируется электрическая дуга. В колбе есть и еще один электрод, сделанный в виде тонкой металлической дорожки, которая проходит вертикально сквозь всю трубку. Этот электрод необходим для ионизации газового состава и запуска разряда.
Принцип работы ксеноновых ламп
Принцип работы ксеноновых излучателей достаточно непростой и состоит из нескольких этапов.
- Этап 1. Подача высоковольтного импульса от 23000 В до 30000 В, благодаря блоку розжига, который поступает в лампу.
- Этап 2. Активизация электрической дуги.
- Этап 3. Ионизация газа и пропуск через него тока под большим напряжением, что создает мощную вспышку белого света. Этот процесс является важным и обязательным, ведь он необходим для сокращения электрического сопротивления газа внутри колбы лампы. Ионизация активизируется путем той же подачи высоковольтного импульса от блока розжига, что активизирует электроды и выпускает ионы.
- Этап 4. Проходящий ток через газ возбуждает атомы ксенона.
- Этап 5. Активизированные атомы ксенона вынуждают переходить электроны на орбиты с характеристикой более высокой энергии.
- Этап 6. Затем электроны возвращаются к первоначальным орбитам и при этом образуют энергию, выраженную в форме фотона, а это и обеспечивает выдачу насыщенного и интенсивного света.
Отметим, что газы в лампе находятся под высоким давлением, что и обеспечивает повышенную яркость. Степень давления зависит от размеров колбы лампы.
Спектр ксеноновых излучателей
Как и многие другие газы, благодарённый ксенон также имеет спектры. Принцип свечения ксенона максимально схож с неонами. Излучение от такого источника человеку кажется идеально белоснежным, поскольку спектральные лини цвета распределяются по всей видимой полосе спектра для ксенона.
Каково устройство ксеноновых ламп?
Опубликовано:
24.06.2012
За последние годы получают все более широкое распространение газоразрядные лампы сверхвысокого давления, в которых используются не пары металлов, а тяжелые газы, в частности ксенон. Применение ксенона вносит существенные изменения в характеристики этих ламп. Период разгорания в ксеноновых лампах практически отсутствует, так как плотность газа в лампе не зависит от температуры колбы. Поэтому сразу же после зажигания в лампе разряда она начинает работать в номинальном режиме. Это удобно с точки зрения эксплуатации. Разряд в ксеноне имеет хорошие спектральные характеристики излучения, близкие к спектру солнечного света. В связи с этим ксеноновые лампы имеют хорошую цветопередачу.
Схема подключения ксеноновой лампы.
Излучение ксеноновых ламп богато ультрафиолетовыми и инфракрасными лучами.
При некоторых значениях тока лампы приобретают положительную вольт-амперную характеристику, что позволяет питать лампы определенной мощности без балласта (безбалластные лампы). Использование таких ламп экономически выгодно, так как при их включении в сеть отсутствуют непроизводительные потери в балласте. Ксеноновые лампы имеют относительно низкие рабочие напряжения при горении, но для достижения большой яркости разряда и повышения их световой отдачи приходится увеличивать ток лампы. Поэтому характерной особенностью этих ламп является относительно большой ток.
По своей экономичности ксеноновые лампы занимают среднее положение между лампами накаливания и ртутно-кварцевыми лампами высокого давления. Световая отдача ксеноновых ламп в зависимости от мощности в среднем составляет от 20 до 50 лм/вт. Срок службы, гарантируемый заводами, колеблется от 200 до 1000 ч.
Рисунок 1. Схема дуговых ксеноновых ламп типа ДКСШ-1000.
Может показаться, что при указанных экономических параметрах ламп их применение не является целесообразным. Однако проведенные расчеты и имеющаяся практика использования ксеноновых ламп дают основание утверждать, что применение ксеноновых ламп в ряде случаев весьма целесообразно и экономически выгодно. Наивыгоднейшими областями применения ксеноновых ламп в настоящее время можно считать наружное освещение больших площадей в городах, освещение спортивных сооружений, освещение карьеров при разработке открытым способом, освещение открытых строительных площадок и монтажных площадок производственных предприятий, а также внутреннее освещение производственных цехов больших размеров и высотой более 20-25 м. Значительное применение находят ксеноновые лампы в кинопроекторах, при съемке цветных кинофильмов, в телевидении и театральном освещении и ряде других специальных установок.
Конструкция ксеноновых ламп
Различают два основных типа ксеноновых ламп: лампы в шаровых колбах с короткой дугой, с расстоянием между электродами в несколько миллиметров с естественным или воздушным охлаждением и лампы в трубчатых колбах с длинной дугой с естественным или водяным охлаждением.
Лампа с шаровой колбой (рис. 1) представляет собой толстостенный баллон из кварца с впаянными в него двумя электродами, изготовленными из торированного вольфрама. Токопроводящими контактами служат цилиндрические выводы, конструкция которых предусматривает как возможность крепления ламп, так и присоединение питающих проводов. Баллон лампы наполняется ксеноном до давления 8-9 ат, которое при работе лампы возрастает до 20-25 ат.
Лампы могут работать на постоянном и переменном токе. Отличие этих ламп – в конструкции электродов. При постоянном токе лампа имеет очень массивный анод (рис. 1а), располагаемый вверху. При переменном токе оба электрода имеют одинаковую конструкцию (рис. 1б).
Рисунок 2. Схема дуговых ксеноновых ламп типа ДКСТ: 1 – разрядная трубка; 2 — корпус охлаждающей рубашки; 3 — электрод; 4 — втулка; 5 – вывод; 6 — цилиндр из молибденовой фольги; 7 —вкладыш; 8 – стеклянный цилиндр; 9 – гайка; 10 — уплотняющий вкладыш; 11 – уплотняющие прокладки.
Трубчатая ксеноновая лампа с естественным охлаждением (рис. 2а). представляет собой толстостенную трубку из кварцевого стекла, по концам которой вварены электроды из торированного вольфрама. Вводы лампы изготовляются из молибденовой фольги. Внение выводы изготовлены из стали, а переходные втулки – из титана. Колба лампы заполняется ксеноном, его давление составляет от 15 до 350 мм рт.ст.
Величина давления ксенона определяется напряжением зажигания пускового устройства, а также зависит от выбранного внутреннего радиуса трубки и падения напряжения на единицу длины разряда. В лампах с водяным охлаждением разрядная трубка из кварца помещается внутри стеклянного цилиндра (рис. 2б). В зазоре между разрядной трубкой и цилиндром циркулирует вода, которой придается винтообразное движение благодаря некоторому сдвигу входного патрубка по отношению к плоскости, проходящей через ось лампы. Концы стеклянного цилиндра помещаются в сборные латунные муфты и уплотняются резиновыми прокладками.
Для охлаждения ламп используется дистиллированная вода, циркулирующая в замкнутой системе. Нормальная работа лампы возможна, если стеклянный цилиндр полностью заполняется водой. Максимальная температура охлаждающей воды не должна превышать температуры, при которой образуется сплошная паровая рубашка (не более 50°С на выходе из лампы). Из этих соображений определяется расход охлаждающей воды. Применение водяного охлаждения позволяет увеличить почти в 10 раз удельную нагрузку на кварц по сравнению с естественным охлаждением, что дает возможность уменьшить размеры лампы и при этом повысить на 30-40% их световую отдачу.
Зажигание ксеноновых ламп
Напряжение зажигания ксеноновых ламп значительно превышает напряжение питающей сети, поэтому поджигающее устройство основано на принципе искрового генератора. На рис. 3 приведены схемы зажигания лампы с помощью искрового генератора. Для зажигания ламп имеют важное значение не только величина поджигающего импульса и число подаваемых на лампу импульсов, но и сдвиг фаз между напряжением питания лампы и пускового устройства. При питании лампы и пускового устройства от одной и той же фазы сети напряжение зажигания лампы выше, чем при питании от различных фаз. Поэтому к пусковому устройству и к лампе подаются различные фазы сети. Контактами контактора R1 в случае автоматического управления зажиганием ламп на первичную обмотку трансформатора Т1 подается сетевое напряжение.
Рисунок 3. Схемы включения ксеноновых ламп.
Конденсатор С1, включенный во вторичную обмотку трансформатора, заряжается, и, когда на нем напряжение достигает величины напряжения пробоя воздушного разрядника Р, он почти мгновенно разрядится на первичную обмотку импульсного трансформатора Т2. Во вторичной обмотке трансформатора Т2 индуктируется высоковольтный, высокочастотный импульс, который будет приложен к электродам лампы. Под воздействием этого импульса разрядный промежуток лампы пробьется, что вызовет его первоначальную ионизацию.
Если величина и число подаваемых импульсов оказываются достаточными, то в лампе создаются необходимые условия для развития дугового разряда, и лампа зажигается. После того как лампа зажглась, необходимо, чтобы искровой генератор продолжал работать в течение некоторого промежутка времени. Если отключить искровой генератор раньше положенного времени, то лампа может погаснуть. Время, в течение которого искровой генератор должен продолжать работать, зависит от напряжения и полного сопротивления сети. Необходимая выдержка времени обеспечивается введением в схему реле времени (на схеме не показано).
http://fazaa.ru/www.youtube.com/watch?v=oAURMvlKCjs
Когда процесс зажигания лампы закончится, поджигающее устройство отключается от лампы. Для этого размыкается кнопка К1, а вторичная обмотка импульсного трансформатора замыкается накоротко кнопкой К2. В случае автоматического управления реле времени включает контактор (не показан на схеме), который своими контактами отключает трансформатор Т1 и замыкает накоротко вторичную обмотку трансформатора Т2. Конденсатор С2 служит для защиты сети от попадания в нее высокого напряжения.
Лампы мощностью до 6 кВт могут включаться по две последовательно на напряжение 220 В и зажигаться одним поджигающим устройством.
Следует обратить внимание на размещение пускового устройства. Оно должно размещаться не далее 30 м от лампы, в противном случае это будет снижать величину высоковольтного импульса. Так как величина этого импульса составляет 20-50 кВ, то изоляция провода, соединяющего лампу с пусковым устройством, должна быть выбрана из расчета на номинальное напряжение 15-20 кВ.
http://fazaa.ru/www.youtube.com/watch?v=vxKiPfELn6c
При отключении лампы от сети ее повторное включение возможно только после достаточного остывания, на что требуется 5-10 мин. Повторное включение неостывшей лампы может вывести ее из строя, поэтому его следует избегать.
Ксеноновая лампа — обзор
7.4 ИЗЛУЧЕНИЕ: ПОДАЧА, МОНИТОРИНГ И КОНТРОЛЬ
Система доставки и контроля излучения в современном устройстве с ксеноновой лампой состоит из лампы, светомонитора и микропроцессора. На рисунке 7.30 показана ксеноновая лампа с комплектом фильтров. Лампа на рис. 7.30 — это лампа с водяным охлаждением, которая широко используется в Weather-Ometer. Обычно в устройстве используется одна или несколько ламп (например, Xenotest Beta LM использует 3 лампы). Лампы также могут охлаждаться воздухом, как в Xenotest.
Рисунок 7.30. Ксеноновая лампа с фильтрами.
Предоставлено Atlas Material Testing Solutions.На рис. 7.31 показана лампа, собранная внутри камеры. Справа виден конический элемент светового монитора. Прежде чем попасть на фотоприемник, свет проходит через фильтр. Используются несколько типов радиационных фильтров, включая 340, 300-400, 420 нм и контроль люкс. В зависимости от выбора фильтра прибор управляется определенной длиной волны или ее диапазоном.В Северной Америке более популярно управление прибором на длине волны 340 нм, в отличие от Европы, где наиболее часто используется диапазон 300-400 нм. Фотодетектор измеряет энергию входящего излучения и посылает сигнал на микропроцессор, который выполняет необходимые настройки регулятора мощности.
Рисунок 7.31. Ксеноновая лампа вмонтирована в камеру и световой монитор.
Предоставлено Atlas Material Testing Solutions.В Xenotest, который оснащен мультисенсором (рис. 7.32), УФ-излучение измеряется на длине волны 300-400 нм.Мультисенсор устанавливается непосредственно на штативе для образцов (рис. 7.33). В небольших настольных устройствах, таких как Suntest, освещенность измеряется датчиком освещенности, называемым XenoCal, который можно вручную регулировать с помощью ручки управления. XenoCal измеряет освещенность либо в УФ (300–400 нм), либо в глобальном (300–800 нм) диапазоне. Данные измерений можно отправить на компьютер.
Рисунок 7.32. Мультисенсор, Xenosensiv (XSV) для измерения УФ.
Предоставлено Atlas Material Testing Solutions.Рисунок 7.33. Xenosensiv (XSV) установлен на штативе с открытыми образцами в Xenotest Beta LM.
Предоставлено Atlas Material Testing Solutions.Плановая ротация и замена люминесцентных ламп являются наиболее распространенной практикой при обслуживании люминесцентных устройств. Технически возможно использовать балласт (пускатель и устройство ограничения тока), который обеспечивает переменную мощность для регулировки освещенности, но это сокращает срок службы лампы и требует ламп, для которых спектр излучения не изменяется при изменении входной мощности.Добавление таких функций изменяет концепцию этих устройств, которые были разработаны как недорогие устройства для проверки. Теперь некоторые флуоресцентные устройства оснащены измерителем освещенности, например, солнечной освещенностью глаза, производимой Q-Lab (модели QUV / se и QUV / spray). Аналогичный УФ-контроллер также используется в настольной ксеноновой дуге Q-Lab (Q-Sun Xe-1) и автономной ксеноновой дуге (Q-Sun Xe-2 и Q-Sun Xe-3). Флуоресцентная лампа Atlas UVTest обеспечивает контроль температуры и калибратор освещенности. Освещенность регулируется диммирующим балластом.
Равномерность распределения света — важный фактор в получении воспроизводимых результатов. Устройства с вращающейся стойкой, измерения в реальном времени, контроля освещенности — самые надежные и точные инструменты. 27 Благодаря высокой воспроизводимости данные могут быть получены быстрее, для этого требуется меньше копий образцов, а также снижаются затраты на тестирование. 27
Разработана технология калибровки погодного оборудования, которая позволяет проводить калибровку, мониторинг и контроль полного спектра. 28 В случае калибровки устанавливается калибровочная лампа, погодное оборудование работает на фиксированном уровне мощности, собирается и сохраняется полный спектр распределения мощности, данные сравниваются с результатами аналогичного испытания на эталонном оборудовании, определяя коэффициент отклика системы, используемый для калибровки погодоустойчивого устройства клиента. Мониторинг прибора выполняется аналогично. 28
Часто радиацию необходимо контролировать на открытом воздухе, чтобы избежать чрезмерного воздействия излучения на поверхность или чрезмерного повреждения некоторых чувствительных материалов или продуктов.Одно изобретение 29 касается мониторинга излучения для предотвращения чрезмерного облучения кожи человека. Он действует на основе изменения цвета разлагаемого под действием УФ-излучения вещества, которое используется в составе одежды. 29 Индикаторное устройство было разработано для определения степени старения пластмассового предмета, такого как защитная каска. 30 Индикаторное устройство, включающее разлагаемый пигмент, крепится к защитной каске и помогает определять временной интервал в соответствии с законодательством или другими нормативными актами. 30
Купите ксеноновые дуговые лампы у ведущих брендов
Сегодня многие технологии требуют чистых газов или стандартных газовых смесей для безопасной и эффективной работы. Производительность СО2-лазера не в последнюю очередь зависит от качества используемого рабочего газа. Инертный газ в лампах увеличивает срок их службы и увеличивает производительность. Другими примерами, в которых использование (инертных) газов помогает достичь определенных свойств, являются ксеноновые или аргоновые лампы или окна с изоляцией из криптона.
Источники излучения в AAS:
В атомно-абсорбционной спектрометрии используются два разных типа источников излучения: линейный источник и непрерывный источник.
Линейный источник:
Линейные источники излучают линейчатый спектр и используются в качестве источника измерительного света, поглощение которого измеряется в пламени и используется для определения аналита.
Источник континуума в AAS:
Лампы Continuum излучают непрерывный спектр. В обычных ААС дейтериевые и галогенные лампы служат для компенсации подполья. Для измерения света большинство доступных источников не подходят, потому что их интенсивность недостаточно высока.
Ксеноновые лампы как источник излучения в AAS:
Поскольку появление ксеноновых ламп с короткой дугой (XKBL) представляет собой доступный новый тип ламп с такой высокой плотностью излучения во всей соответствующей спектральной области, что позволяет использовать их в качестве источника света для измерения в атомной абсорбции. спектроскопия. Это привело к появлению нового варианта AAS, который получил название CS-AAS (Continuous Source AAS). Обычные устройства, реализующие AAS, называются LS AAS (от Line Source).Часто в CS-AAS по сравнению с LS AAS также используются новые типы детекторов.
Принцип работы Ксеноновая лампа:
Ксеноновая лампа с короткой дугой (XKBL) включает ксенон под начальным давлением от 5 до 20 бар, что в три раза увеличивает время работы за счет повышения температуры. Между двумя электродами, которые находятся на расстоянии всего нескольких миллиметров друг от друга, образуется небольшая, очень яркая, интенсивная дуга. Он излучает непрерывный спектр с цветовой температурой 5500-6000 К, который подобен солнечному спектру.
Здесь вы можете вернуться к товарам.
Ксеноновая дуговая лампа для испытания на старение на ускорение
Характеристики машины для ускорения старения ксеноновой дуговой лампы
1. Камера для испытаний на атмосферостойкость ксеноновой лампы марки ASLi с передовой технологией и концепцией дизайна.
2. Камера для испытания атмосферостойкости ксеноновой лампы марки ASLi с превосходной технологией производства и выдающейся
система менеджмента качества.
3. Камера для испытания атмосферостойкости ксеноновой лампы марки ASLi может быть наиболее реалистичным моделированным солнечным спектром.
включая ультрафиолетовое, видимое и инфракрасное.
4. Камера для испытаний на атмосферостойкость ксеноновой лампы марки ASLi прошла испытания в диапазоне полного спектра, необходимого для
большинство текстильных тестов на солнце и устойчивость окраски.
5. Камера для испытаний на устойчивость к атмосферным воздействиям ксеноновой лампы марки ASLi может определять стойкость цвета и старение к солнечному свету,
атмосферостойкость и др.
Применение машины для испытания на ускорение старения ксеноновой дуговой лампы:
Оборудование для испытаний на старение ксеноновым светом — это комплексная машина для климатических испытаний, она может выполнять климатические испытания на старение и
также можно выполнить тест на ускорение выцветания при изменении цвета или изменении цвета. Диапазон испытаний, в том числе: покраска и отделка,
печать, кожа, пластик, плиссированное стекло, живопись, текстиль, печатная краска, резина, а также цвет, относящийся к отрасли.Скорость света
и степень выцветания можно узнать за короткое время. Эти материалы подвергались воздействию искусственного солнечного света, чтобы оценить свет материала.
быстродействие. Для имитации и усиления теста в зависимости от энергии света, температуры, дождя или конденсации,
влажность и т. д. эти основные климатические факторы. Используйте ксеноновую дуговую лампу с имитацией спектра солнечного света для создания разрушительных
волны в другой среде.Его можно использовать для выбора новых материалов, улучшения существующих материалов или оценки изменения долговечности после составления материала.
Компактная ксеноновая лампа | USHIO INC.
Компактный и легкий.
Вы можете выбрать широкий диапазон длин волн.
Устойчивое к разрыву сапфировое окно.
Принята «конструкция, предотвращающая грязь / царапины», которая делает возможной замену лампы через запатентованную оконную структуру Ushio.
Основные характеристики (исходные электрические характеристики) | Вход лампы | 300 Вт | |
---|---|---|---|
Номинальное напряжение лампы * 1 | 15 В | ||
Номинальный ток лампы | 20A | ||
Диапазон тока | от 18 до 21 A | ||
Технические характеристики | Расстояние между электродами | 1.5 мм | |
Тип длины волны | Без озона | ||
Диаметр выходного окна | диам. 25,4 | ||
Зеркало | Параболический | ||
Расчетный срок службы * 3 | 500 часов | ||
Начальная интенсивность излучения * 2 | Общая мощность облучения | 50 Вт | |
Общий световой поток | 4500 лм | ||
Световой поток через апертуру 5 мм | 1830 лм | ||
Цветовая температура | 6100 К | ||
Требования к использованию (источник питания) | Тип блока питания | Контроль постоянного тока / Контроль постоянной мощности | |
Допустимая пульсация тока (P-P) | 5% или менее | ||
Выход зажигания | 23 кВ переменного тока или выше | ||
Возможное напряжение питания | 140 В или больше | ||
Требования к использованию (лампа) | Направление освещения | Горизонтальное освещение | |
Требования к охлаждению | Керамические компоненты | 150 ℃ или ниже | |
Металлические детали | 200 ℃ или ниже | ||
Принудительное воздушное охлаждение | Требуется |
* 2 Результат при работе на 20 А.
* 3 Когда световой поток через апертуру 5 мм достигает 50% от начального значения.
Разработка устройства импульсной ксеноновой ультрафиолетовой дезинфекции для обеззараживания воздуха в режиме реального времени в машинах скорой помощи
Цели . Мы разработали систему обеззараживания воздуха в режиме реального времени на основе импульсного ксенонового ультрафиолетового света с быстрой и эффективной дезинфекцией с использованием высокоинтенсивного импульсного бактерицидного УФ-излучения. Дезинфекция помещения машины скорой помощи имеет решающее значение для предотвращения перекрестного инфекционного заражения. Методы . В этом исследовании была создана система обеззараживания воздуха на основе импульсного ксенонового ультрафиолетового света для обеззараживания воздуха в машинах скорой помощи в режиме реального времени. В этой системе импульсный ксеноновый ультрафиолет (PX-UV) использовался для генерации широкого спектра (200–320 нм) высокоинтенсивного ультрафиолетового света для дезактивации и уничтожения бактерий и вирусов. Результаты показали, что использование PX-UV может быть эффективным для снижения уровня E. coli , Staphylococcus albus и патогенов окружающей среды в машинах скорой помощи (снижение на ≥90% за 30 минут). Результатов . Это устройство было относительно простым и удобным в использовании, не оставляло химических остатков и не подвергало пациентов и рабочих воздействию токсичных химикатов. Выводы . Это, по-видимому, практическая альтернативная технология для достижения автоматизированной дезинфекции воздуха в машинах скорой помощи.
1. Введение
Сотни миллионов пациентов во всем мире ежегодно страдают от инфекций, связанных с оказанием медицинской помощи (ИСМП), и, несмотря на наличие многих методов дезинфекции, микробное заражение остается серьезной проблемой для здоровья во всем мире [1 , 2].Скорая помощь — один из самых распространенных и важных видов медицинского транспорта в системе скорой помощи больниц. Он несет ответственность за передачу лиц, получивших тяжелые травмы или больных. Из-за особой конструкции и узкого внутреннего пространства машины скорой помощи часто заражаются патогенными микроорганизмами, выделяемыми пациентами во время догоспитальной транспортировки, которые передаются последующим пациентам и работникам скорой медицинской помощи. Предыдущие исследования показали, что машины скорой помощи, работающие в системе скорой медицинской помощи (EMS), могут иметь значительную степень заражения MRSA [3, 4].Эти результаты продемонстрировали, что машины скорой помощи представляют собой важный резервуар для инфекционных микроорганизмов во время пандемии инфекционных заболеваний, когда будет транспортироваться большое количество очень заразных пациентов. Дезинфекция помещения машины скорой помощи имеет решающее значение для предотвращения перекрестного инфекционного заражения. Такие химические вещества, как диоксид хлора и дезинфицирующее средство на основе перекиси водорода, традиционно использовались для дезинфекции машин скорой помощи после того, как их использовали инфекционные пациенты. Однако ручная химическая дезинфекция утомительна, требует много времени и опасна для рабочих и окружающей среды.Несколько исследований показали, что стойкое загрязнение обычно обнаруживается в отделении пациента даже после очистки [5, 6]. Во время пандемии инфекционного заболевания необходимо перевозить большое количество очень заразных пациентов, и это требует скорейшего возвращения машин скорой помощи в строй. В этом случае отдельной рутинной очистки недостаточно для устранения этих болезнетворных микроорганизмов. Для борьбы с перекрестной инфекцией в машинах скорой помощи обязательными требованиями являются надлежащие процедуры дезинфекции, основанные на очистке и дезинфекции машин скорой помощи, зараженных высокозаразными микроорганизмами.
Ультрафиолетовое (УФ) облучение было предложено в качестве метода окончательной дезинфекции в различных областях. УФ-излучение охватывает диапазон длин волн от 100 до 380 нм. При определенных длинах волн механизм уничтожения микроорганизмов УФ-излучением в первую очередь связан с разрывом молекулярных связей в ДНК и РНК за счет поглощения фотонов, что приводит к образованию димеров пиримидина из тимина и цитозина [7]. В частности, предыдущие исследования показали, что УФ-излучение, испускаемое на длине волны 254 нанометра (нм), было наиболее эффективным [8, 9].В большинстве устройств для дезинфекции помещений УФ-излучением в качестве источника света используются газовые ртутные лампы с характерной длиной волны 254 нм [10]. Ультрафиолетовое излучение, испускаемое ртутными лампами низкого давления, доставляется непрерывным потоком, который постепенно накапливается до смертельных доз в зависимости от продолжительности воздействия и удаленности от основного поля излучения [11]. Импульсный ксеноновый ультрафиолет (PX-UV) является привлекательной альтернативой традиционным УФ-методам, предлагая импульсное бактерицидное УФ-излучение высокой интенсивности. Он испускается короткими импульсами высокой интенсивности, что, возможно, требует более короткого воздействия для достижения смертельных доз.PX-УФ-свет может иметь большую эффективность, чем другие формы УФ-излучения, такие как ртутный УФ-свет, из-за широкого спектра и большей интенсивности [11]. Haddad et al. показали, что использование PX-UV в качестве дополнительной стандартной процедуры очистки помогло снизить уровень бактериального загрязнения [12]. Джинадатха и др. показали, что использование PX-UV было более эффективным, чем стандартная ручная очистка терминала помещения в снижении уровней известных патогенов [13–15]. Насколько нам известно, ранее не сообщалось об устройстве для дезинфекции на основе PV-УФ для дезинфекции воздуха в машинах скорой помощи в реальном времени.
Целью настоящего исследования была проверка устройства для импульсной ксеноновой ультрафиолетовой дезинфекции для дезинфекции воздуха в режиме реального времени в машинах скорой помощи и оценка эффективности этого устройства с точки зрения снижения загрязнения окружающей среды патогенами в машинах скорой помощи.
2. Экспериментальная часть
2.1. Настройка устройства
Конфигурация устройства для дезинфекции воздуха в реальном времени показана на рисунке 1. Устройство представляет собой закрытое устройство для дезинфекции воздуха, встроенное в приспособление для скорой помощи, где импульсная ксеноновая УФ-лампа используется в качестве источника света, который может излучать широкий спектр 200–320 нм.Лампа питалась от импульсного источника питания. Система PX-UV производит импульсную вспышку с частотой 30 Гц с приблизительной мощностью 270 Дж на импульс и длительностью менее 360 мс. Импульсная ксеноновая УФ-лампа была помещена в центр отражающей камеры с алюминиевым покрытием для непрерывной очистки воздуха. Воздух проходит через рабочую камеру с внутренним перекрестным вентилятором с расходом 5,4 м 3 / мин. В этом случае вентилятор с поперечным потоком выполняет две функции: (1) нагнетание воздуха в устройство и (2) охлаждение импульсной ксеноновой УФ-лампы.Отражательная способность алюминия предлагается для повышения эффективности отражения света и увеличения времени, в течение которого импульсный свет находится в контакте с воздухом, тем самым улучшая бактерицидную активность устройства. Воздуховыпускное отверстие выполнено в виде заслонок для защиты от УФ-излучения.
2.2. Приготовление бактериальной суспензии
E. coli (ATCC 8099) и Staphylococcus albus (ATCC 8799) использовали в качестве модельных бактерий для оценки эффекта стерилизации. E. coli (ATCC 8099) и Staphylococcus albus (ATCC 8799) были получены из Пекинского биотехнологического института Beina Chuanglian и выращены в питательном бульоне и питательном агаре при 36 ° C ± 1 ° C в течение 24 часов с последующим центрифугированием. при 3300 × g в течение 30 мин. Бактерии ресуспендировали в 0,1 М фосфатном буфере. С помощью турбидиметра приготовили бактериальную суспензию с концентрацией от 1,5 × 10 8 КОЕ / мл до 3,0 × 10 8 КОЕ / мл. Приготовленная бактериальная суспензия будет готова к употреблению.
2.3. Бактериальная суспензия
Бактериальная суспензия была разбавлена буферным раствором PBS (концентрация суспензии E. coli и Staphylococcus составляла 1,20 × 10 6 КОЕ / мл и 1,40 × 10 6 КОЕ / мл соответственно) . Разбавленную бактериальную суспензию загружали в генератор аэрозоля (эффект распыления> 90%, размер частиц <5 мкм мкм). Это квазиэкспериментальное исследование проводилось в двух шкафах биобезопасности. Генератор микробных аэрозолей помещали в шкафы биобезопасности (NUAIRE NU 437 600S).Распыление воздуха проводили при следующих условиях: температура в помещении составляет от 20 ° C до 25 ° C, а относительная влажность составляет от 50% до 70%. Время распыления составляло 5 мин, время стационарного — 1 мин. Популяции переносимых по воздуху бактерий отбирали путем импакции непосредственно на чашки с питательным агаром, используя пробоотборник воздуха Merck MAS-100. За этим последовало использование системы PX-UV для 30-минутной экспозиции. Замените чашку с агаром в пробоотборнике и возьмите второй образец через 30 минут. Контрольный эксперимент был проведен, как описано выше, но без воздействия системы PX-UV.Все чашки инкубировали при 36 ° C ± 1 ° C в течение 24 часов, где N t — естественная скорость исчезновения бактерий в воздухе, а также количество бактерий в воздухе в разное время до и. во время эксперимента, и — количество бактерий в воздухе в разное время до и во время процесса дезинфекции экспериментальной группы, а K t — степень дезинфекции бактерий в воздухе.
2.4. Тест на дезинфекцию воздуха в полевых условиях
Чтобы проверить способность системы PX-UV дезинфицировать патогены в машинах скорой помощи, мы выбираем машины скорой помощи, которые только что вернулись в больницу из-за их обоснованной склонности к заражению широким спектром бактерий. Согласно инструкции по эксплуатации машины скорой помощи, объем терапевтической кабины скорой помощи составляет примерно 10 м 3 . Перед запуском устройства для дезинфекции использовали пробоотборник воздуха Merck MAS-100 для воздействия 1 л воздуха на чашки с кровяным агаром до и после дезинфекции импульсным ксеноновым ультрафиолетом (PX-UV) в течение 60 минут.Все планшеты инкубировали при 36 ° C ± 1 ° C в течение 24 ч. Были подсчитаны все колониеобразующие единицы бактерий и грибов, а также подсчитано количество переносимых по воздуху бактерий и уровень гибели:
3. Результат и обсуждение
В этом исследовании мы использовали E. coli и Staphylococcus albus в качестве моделей для тестирования. дезинфицирующий эффект PX-UV. В таблицах 1 и 2 показаны уровни концентрации E. coli и Staphylococcus albus до и после обработки PX-УФ, соответственно.Видно, что 30-минутная обработка PX-UV снижает концентрацию E. coli , что ниже уровня обнаружения, тогда как обработка PX-UV приводит к дезинфекции Staphylococcus albus на 99,91%. УФ может убивать бактерии, вирусы, грибки и споры, но разные типы микроорганизмов имеют разную чувствительность к УФ, грамотрицательные бактерии являются наиболее чувствительными, за ними следует стафилококк , [16]. Возможная причина этого случая заключается в том, что E. coli более чувствительна к УФ-свету, чем Staphylococcus albus .Таким образом, видно, что обработка PX-UV в течение более 30 минут оказывает очевидное влияние на снижение уровней концентрации бактерий до значения, совместимого с руководящими принципами.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
N t : естественная скорость исчезновения бактерий в воздухе; и: количество бактерий в воздухе в разное время до и во время проведения эксперимента; и: количество бактерий в воздухе в разное время до и во время процесса дезинфекции экспериментальной группы; K t : степень обеззараживания бактерий в воздухе. |