Время — токовые характеристики автоматов
2017-11-23 Статьи
Время-токовая характеристика автоматического выключателя — это показатель, определяющий время срабатывания защитного устройства в зависимости от величины протекающего через него тока по отношению к номинальному току устройства.
Правильный выбор автомата по время-токовой характеристике позволяет избежать ложных срабатываний при подключении в сеть нагрузки, имеющей высокие пусковые токи. Например это происходит при подключении в сеть электродвигателя, который имеет большой пусковой ток, превышающий номинальный в 3-8 раз. Этого тока будет достаточно чтобы отключился автомат, имеющий характеристику срабатывания не предназначенную для такого типа нагрузок.
Также при правильном подборе автоматических выключателей по их время-токовым характеристикам соблюдается селективность (избирательность), то есть при повреждении какого-либо участка цепи сработает только тот автоматический выключатель, который обеспечивает защиту именно этого участка, а остальные автоматы не отключатся.
Я думаю все обращали внимание на буквенное обозначение рядом с номинальным током на корпусе модульного автоматического выключателя. Так вот эти буквы и указывают время-токовую характеристику, то есть чувствительность автомата.
Чаще всего встречаются автоматы с характеристиками B, C и D. Это стандартные типы характеристик, указанные в ГОСТ Р 50345-99. Кроме этих типов существуют еще типы A, K и Z, но встречаются они гораздо реже, а в жилых зданиях так и вовсе не используются. Различные типы рекомендовано использовать следующим образом:
- А — Для размыкания цепей с большой протяженностью электропроводки и защиты полупроводниковых устройств
- B — Для осветительных и розеточных групп общего назначения
- C — Для осветительных цепей и электроустановок с умеренными пусковыми токами (двигателей и трансформаторов)
- D — Для цепей с активно-индуктивной нагрузкой, а также защиты электродвигателей с большими пусковыми токами
- K — Для индуктивных нагрузок
- Z — Для электронных устройств
Время срабатывания электромагнитного расцепителя для каждой из характеристик выражается в значении величины протекающего тока по отношению к номинальному. Так для B это значение составляет от 3·In до 5·In (In — номинальный ток), то есть его расцепитель сработает при токе, превышающем номинальный в 3-5 раз. Для С пределы составляют уже от 5·In до 10·In, а для D — от 10·In до 20·In. Рассмотрим графики, отображающие время-токовые характеристики для типов B, C и D.
График время-токовой характеристики B
График время- токовой характеристики C
График время- токовой характеристики D
На оси Х отображается значение, показывающее отношение протекающего тока по отношению к номинальному (I/In). На оси Y — время срабатывания в секундах. График для каждой из кривой характеристик разделен на две линии, показывающие время срабатывания электромагнитной защиты (нижняя линия), отвечающей за отключение при коротких замыканиях и тепловой защиты (верхняя линия), отвечающей за отключение от перегрузок.
Верхняя кривая показывает холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата. Пунктирной линией показана верхняя граница время-токовой характеристики для автоматических выключателей с номинальным током In меньше или равно 32 A.
Так например если смотреть график для время-токовой характеристики С автоматический выключатель 16 А при токе 80 А (5·In) должен отключиться в горячем состоянии за 0,02 сек. В холодном состоянии при таком же токе автомат отключится за 11 сек. (если номинал автомата меньше или равен 32 A), если больше 32 А — то отключение произойдет через 25 сек. Если предел отключения будет равен 10·In, то в горячем состоянии отключение произойдет через 0,01 сек, а в холодном — за 0,03 сек.
Таким образом, график время-токовой характеристики позволяет определить правильно автоматический выключатель для конкретных условий эксплуатации. Теперь осталось только разобраться какие типы автоматов предпочтительно использовать в быту.
Понятно, что для городской квартиры, где нагрузка активная либо слабоиндуктивная, выбирать необходимо либо категорию B либо С.
Что такое время-токовые характеристики автоматических выключателей и зачем они нужны?
Любому автоматическому выключателю необходимо время на срабатывание. Оно может быть составлять сотые доли секунды, а может и несколько минут. Все зависит от тока, который будет протекать через автоматический выключатель.
Если правильно выбрали кабель и автомат, то можете не бояться, что при повышенном токе изоляция на ваших проводах не расплавится, например за 30 секунд, которые необходимы, чтобы автоматический выключатель сработал от определенной перегрузки.Есть такие интересные время-токовые характеристики автоматических выключателей – это такие красивые графики кривых зависимости времени срабатывания от величины тока. Они на автоматах обозначаются буквами B, C и D.
Эти буковки стоят перед значением номинала автомата. Ниже представлены обычные графики, по которым можно определить, через какое время нагрузка будет обесточена при повышенном токе или его скачке. В школу ходили? С графиками работать умеете? Тогда сразу разберетесь. По вертикальной оси стоит время в секундах. По горизонтальной шкале стоит отношение протекающего по проводам тока к номинальному току автомата I/In.
Что такое время-токовые характеристики автоматических выключателей и зачем они нужны?
Чем же различаются время-токовые характеристики автоматических выключателей «B», «C» и «D»? Все просто! Они различаются в значении величины отношения протекающего тока к номинальному току I/In.
№ пп | Время-токовая характеристика автоматического выключателя | Отношение протекающего тока к номинальному току I/In |
1 | B | 3-5 |
2 | C | 5-10 |
3 | D | 10-20 |
Если все равно остались вопросы, то идем дальше разбираться вместе. Буду приводить все на конкретных примерах, так как это будет более понятно, чем если буду объяснять «на пальцах».
Допустим, есть у нас автоматический выключатель номиналом 10А с характеристикой В. Мы выбрали на 10А, так как проще будет считать, и они часто используются в быту.
Например, произошло ЧП. Жена попросила повесить ковер, а Вы когда сверлили, попали в провод, идущий от распредкоробки. Бабах! Вокруг тишина и темно. Здесь Вы просто сверлом закоротили жилы провода, и произошло короткое замыкание.
Было такое? Признаюсь, что у меня в молодости такое было.В данной ситуации автоматические выключатели с характеристикой В срабатывают практически мгновенно, когда ток в сети превысит значение номинала автомата в 3-5 раз. В нашем случае это ток лежит в пределах 30-50 ампер. Конечно при коротком замыкании ток увеличивается в сотни раз, но автомату с характеристикой В достаточно 3-5 кратного увеличения. Здесь приходит в действие электромагнитный расцепитель.
Смотрим графики ниже и видим, что при токе 50А автомат сработает через 0,01 секунду. Это получается отсюда. Ток при КЗ делим на номинальный ток автомата, т.е. 50А/10А=5. Теперь на горизонтальной шкале находим цифру 5 и ведем условную линию (на рисунке она выделена красным) вертикально вверх до пересечения с кривой. Ставим точку и от нее ведем условную горизонтальную линию до оси времени. У нас получилось ориентировочно 0,01 секунда. Аналогично при перегрузке сети током 15А у нас отношение составило 1,5 и время задержки на срабатывание составит 30 секунд.
Выше мы рассмотрели нижнюю кривую, но на картинке их можно выделить 3 шт. Зачем все это? Давайте разберемся. Эти кривые предназначены для разных состояний автоматических выключателей: «холодного» (верхняя кривая) и «горячего» (нижняя кривая), а сам график составлен для температуры окружающей среды +30С. По пунктирной линии рассчитывается время отключения для автоматом номиналом не выше 32А.
Для холодного состояния автоматического выключателя с характеристикой В для вышеописанного примера, время задержки на срабатывание составит при токе 50А – 0,04 сек. и при токе 15А – 4000 сек. (примерно 67 мин.). На рисунке выше это показано синим цветом.
Еще учтите, что автоматы стоят в разных местах – в квартире, в подъезде, на улице и т.д. Например, зимой дома температура +25, в подъезде +16, на улице -25. Соответственно температура элементов расцепителя разная и ему нужно разное время, чтобы прогреться и заставить автомат сработать.
Еще здесь существуют поправочный коэффициент. Чем ниже температура окружающей среды, тем больший ток через себя будет пропускать автомат и наоборот. При одной и той же нагрузке в жарких и в холодных помещениях один и тот же автомат будет срабатывать при разных значениях тока. Это колебания не значительные и этот вопрос становится актуальным, когда автоматический выключатель сильно нагружен и работает на пределе своего номинала. Стоит повыситься окружающей температуре, как он сможет отключить нагрузку. Часто такой вопрос встает летом в жарких помещениях.
Теперь скажу несколько слов про время-токовые характеристики автоматических выключателей C и D. Суть их заключается в том, что все графики характеристик сдвинуты вправо, т.е. таким образом, увеличивается время их срабатывания. Автомат с характеристикой C при коротком замыкании сработает, когда ток в сети превысит номинальный ток самого автомата в 5-10 раз. Автомат с характеристикой D при коротком замыкании сработает, когда ток в сети превысит номинальный ток самого автомата в 10-20 раз.
Из графиков получаем (смотрим ниже). Для автоматического автомата на 10А характеристики C время срабатывания уже будет: при токе 50А примерно 0,02 сек. и при токе 15А примерно 40 сек. Это для горячего состояния автомата (красный цвет). Для холодного состояния (синий цвет) получаем: при токе 50А примерно 27 сек. и при токе 15А примерно 5000 сек. (83 мин.).
Для автоматического автомата на 10А характеристики D (смотрим графики ниже) время срабатывания уже будет: при токе 50А примерно 1,5 сек. и при токе 15А примерно 40 сек. Это для горячего состояния автомата (красный цвет). Для холодного состояния (синий цвет) получаем: при токе 50А примерно 30 сек. и при токе 15А примерно 6000 сек. (100 мин.).
Вот видите какая разница в значениях времени при перегрузке автоматов. Это тоже нужно знать и учитывать при их выборе.
Как правило, для квартир используют автоматические выключатели с характеристикой B, а на производстве — C и D. Хотя очень часто можно встретить в этажных щитках автоматы с параметром C. Еще автоматы с параметром B в продаже редко встречаются.
Также учтите, что каждый автомат может пропускать через себя ток больший номинального в 1,13 раз. Это видно из графика. Видите на горизонтальной оси значение 1,13 и если вести условную линию вертикально вверх, то она никогда не пересечет кривую времени. Следовательно, автомат при таком токе не сработает. Поэтому выбирайте кабель большего сечения, т.е. с запасом. Лучше перестрахуйтесь.
Смотрите для каких автоматических выключателей какой соответствует ток не отключения. Это тоже учитывайте при выборе автоматического выключателя по номиналу и кабеля.
№ пп | Номинал автоматических выключателей, А | Условный ток не отключения автоматических выключателей, А |
1 | 10 | 11,3 |
2 | 16 | 18,08 |
3 | 20 | 22,6 |
4 | 25 | 28,25 |
Например, для нагрузки, потребляющей ток 25А вы выбрали кабель сечением 2,5мм2. Тут жена собралась готовить обед, попутно пить чай, размораживать мясо в микроволновке и еще принесла на кухню фен (который вы не учитывали в своих расчётах), чтобы волосы посушить. Таким образом, вместо 25А вы можете получить в сети 28А, и автомат тут не сработает, так как он сработает при токе 25А*1,13=28,25А. Из таблицы видно, что для такого тока уже нужен провод сечением минимум 3 мм2. Но у нас провод сечением 2,5 мм2 и поэтому он будет греться и плавиться изоляция.
Да еще возьмите на заметку, что многие производители лукавят при производстве кабеля. Делают его по ТУ (техническим условиям), при которых уменьшают сечение кабеля. Я придерживаюсь такого мнения в выборе кабеля и автоматических выключателей, что лучше все брать с разумным запасом, чем предполагаемая нагрузка.
Не забываем улыбаться:
А не пойти ли мне поработать? — подумал электрик.
И не пошел …
Время токовые характеристики автоматических выключателей
Автоматический выключатель (АВ) – защитное электротехническое устройство, срабатывающее при коротких замыканиях или превышении допустимой нагрузки по сети. Современный рынок заполнен аппаратами немецкого (АВВ, Siemens), французского (Schneider, Legrand), японского (Terasaky), российского (IEK) производства. Они различаются между собой конструкцией, качеством и ценой. Но время токовые характеристики автоматических выключателей от разных изготовителей соответствуют действующим нормам и стандартам. Этот показатель дает возможность подобрать АВ под конкретные условия.
Что показывает время токовая характеристика
В электрических системах при возникновении аварии отключение электропитания следует производить очень быстро, чтобы свести к минимуму негативные последствия. Человек неспособен достаточно быстро отреагировать. Поэтому устанавливаются автоматические выключатели.
Для энергетической сферы существует деление на системы постоянного и переменного напряжения. Оборудование классифицируется на низковольтное (до 1000 В), высоковольтное (более 1000 В). Соответственно применяются различные типы автоматов.
Во всех случаях АВ предназначен для разрывания цепи при различных токовых величинах короткого замыкания (КЗ) и перегрузках. Первые безошибочно отсекаются электромагнитным расцепителем мгновенно. Вторые протекают по цепи определенное время, без каких-либо последствий, а лишь потом сработает тепловая защита.
Современные автоматические защитные аппараты содержат три вида расцепителей:
- механический – эта ручка предназначена для включения, выключения автомата;
- электромагнитный – отсекает нагрузку КЗ;
- тепловой – предохраняет электрические цепи от перегрузки.
Рабочие параметры последних двух определяют время токовые характеристики для автоматических выключателей. Которые показывают зависимость времени отключения аппарата от соотношения между протекающим по нему током и его номинальным значением. Они сложны тем, что требуют графического выражения.
Благодаря тому, что автоматы с одинаковым номиналом имеют различные характеристики срабатывания, при одном и том же токовом значении их можно применять под разные типы нагрузки. Это обеспечивает минимальное число ложных отключений и защищает от токовых перегрузок.
Получается, что время токовая характеристика (ВТХ) показывает:
- диапазон срабатывания защиты от короткого замыкания (максимально-токовой), который определяется параметрами встроенной электромагнитной катушки;
- диапазон срабатывания при превышении нагрузки, определяемый встроенной биметаллической пластиной.
Общий вид ВТХ можно представить нижеприведенным графиком. Цифрой 1 отмечен участок срабатывания при определенном токовом соотношении теплового расцепителя, а цифрой 2 – время реакции электромагнитного.
Общий вид время токовой характеристики АВ
Распространенные виды характеристик
Характеристики срабатывания автоматических выключателей указываются буквами латинского алфавита на их корпусе: А, B, C, D, Z, К. Они показывают на отношение уставки электромагнитного расцепителя к номинальному току данного аппарата, то есть чувствительность.
Рассмотрим их детально в таблице.
Время токовые характеристики АВ типа B, C, D представлены на рисунке.
Время токовые характеристики выключателей по типу B, C, D
У автоматических выключателей разные технические характеристики. Правильный выбор автомата по токовой нагрузке и время токовой характеристике позволяет установить защитное устройство, реагирующее на перегрузки сети должным образом. Это избавит от ложных отключений. Для домашних условий оптимальным вариантом будет использование автоматов типа В и С.
Время-токовая характеристика автоматического выключателя
Время-токовая характеристика автоматического выключателя (ВТХ) (time-current characteristic circuit-breaker) — кривая, задающая время расцепления автоматического выключателя в зависимости от величины сверхтока, протекающего в его главной цепи (определение на основе [1]).
Харечко Ю.В. проведя достаточный анализ существующей нормативной документации заключил следующее [1]:
« В МЭС и стандартах МЭК приведено общее определение рассматриваемого термина и для автоматического выключателя, и для плавкого предохранителя. При этом в определении использован термин «время срабатывания» («operating time»), который не имеет своего определения. Для автоматического выключателя целесообразно дать более конкретное определение термина «время-токовая характеристика», в котором вместо неопределенного понятия «время срабатывания» целесообразно использовать понятие «время расцепления1», которое определено в МЭС и некоторых стандартах МЭК. »
[1]
Примечание 1: В МЭС (в стандарте ГОСТ IEC 60050-442-2015 [3]) термин «время расцепления» определен так: интервал времени от момента, когда соответствующий ток расцепления начинает протекать в главной цепи до момента, когда протекание этого тока прерывается (во всех полюсах). В примечании к определению термина «время размыкания» («opening time»), приведенному в стандарте МЭК 60898‑1, сказано, что время размыкания обычно упоминается как время расцепления, хотя, строго говоря, время расцепления применяется ко времени между моментом инициирования времени размыкания и моментом, в который команда размыкания становится необратимой.
Харечко Ю.В. дополняет [1]:
« Следует также учитывать, что в стандарте МЭК 60898‑1 (ГОСТ IEC 60898-1-2020) при установлении параметров время-токовой характеристики автоматического выключателя использовано понятие «время расцепления», зависящее от величины сверхтока, протекающего в главной цепи автоматического выключателя. »
« Время-токовая характеристика автоматического выключателя устанавливает время расцепления в зависимости от значения сверхтока, который протекает в его главной цепи. Время-токовая характеристика каждого автоматического выключателя, с одной стороны, должна предопределять осуществление им надежной защиты проводников электрических цепей от сверхтока. »
Время отключения сверхтока зависит от индивидуальной время-токовой характеристики автоматического выключателя, которая должна находиться в пределах стандартной время-токовой зоны.
Харечко Ю.В. акцентирует внимание [1]:
« Автоматический выключатель должен своевременно отключать электрические цепи с целью недопущения перегрева их проводников. С другой стороны, она не должна допускать расцепления автоматического выключателя при протекании в его главной цепи электрического тока, равного номинальному току, если температура окружающего воздуха не превышает контрольную температуру окружающего воздуха, равную 30 °С. Кроме того, параметры время-токовой характеристики автоматического выключателя должны быть такими, чтобы можно было избежать отключения им пусковых токов, протекающих в электрической цепи при включении электрооборудования. »
[1]
Время-токовая характеристика автоматического выключателя бытового назначения, соответствующего требованиям стандартов МЭК 60898‑1 или МЭК 60898‑2, ГОСТ IEC 60898-1-2020 или ГОСТ IEC 60898-2-2011, состоит из двух кривых, определяющих разный характер оперирования автоматического выключателя (см. рисунок 1). В области малых сверхтоков, обычно представляющих собой токи перегрузки и пусковые токи, время расцепления автоматического выключателя измеряется секундами, минутами и даже десятками минут.
Оно обратно пропорционально значению сверхтока в главной цепи автоматического выключателя. В области больших сверхтоков, которые, как правило, являются токами короткого замыкания, время расцепления автоматического выключателя измеряется долями секунды. Причем оно незначительно уменьшается при увеличении сверхтока. Граница между двумя кривыми «проходит» по индивидуальному току мгновенного расцепления IIT автоматического выключателя.
Рисунок 1. Время-токовая характеристика автоматического выключателя бытового назначенияЧто влияет на ВТХ?
Время-токовая характеристика должна быть стабильной во время эксплуатации автоматического выключателя и находиться в пределах стандартной время-токовой зоны.
Харечко Ю.В. в своей книге [1] дополняет, какие условия могут влиять на ВТХ автоматического выключателя:
« Изменение температуры окружающего воздуха сказывается на характеристике расцепления автоматического выключателя. Однако, как отмечается в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 [4], изменение температуры окружающего воздуха от – 5 до + 40 оС не должно сопровождаться существенным ее изменением. При температуре окружающего воздуха – 5 оС автоматический выключатель (через все полюсы которого в течение условного времени пропускали электрический ток, равный 1,13 его номинального тока In), должен отключить в течение условного времени электрический ток, равный 1,9 In. При температуре окружающего воздуха + 40 оС автоматический выключатель, через все полюсы которого протекает электрический ток, равный его номинальному току, должен расцепиться в течение условного времени. »
« На время-токовую характеристику автоматического выключателя также могут влиять условия монтажа. Например, размещение нескольких автоматических выключателей в одной оболочке приводит к незначительному изменению их характеристик расцепления, обусловленному тем, что температура воздуха внутри оболочки обычно превышает температуру воздуха вне оболочки. »
« На время-токовую характеристику многополюсного автоматического выключателя оказывает влияние протекание электрического тока только через один полюс. Стандартом МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены пределы указанного изменения. Двухполюсный автоматический выключатель с двумя защищенными полюсами должен расцепиться в пределах условного времени при протекании через один его полюс электрического тока, равного 1,1 условного тока расцепления (начиная от холодного состояния). Трехполюсный и четырехполюсный автоматические выключатели должны расцепиться в течение условного времени при протекании через один защищенный полюс электрического тока, равного 1,2 условного тока расцепления. »
Список использованной литературы
- Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 5// Приложение к журналу «Библиотека инженера по охране труда». – 2017. – № 2. – 160 c
- ГОСТ IEC 60050-441-2015
- ГОСТ IEC 60050-442-2015
- ГОСТ IEC 60898-1-2020
Время токовая характеристика автоматического выключателя
Автоматические выключатели служат для аварийного размыкания цепи в случае превышения показателей силы тока. Они позволяют уберечь приборы от поломки или выхода из строя при недопустимых нагрузках и предотвратить возгорание.
Автоматические выключатели
Принцип действия
Принцип действия автоматического выключателя достаточно прост. В конструкцию выключатели входят два вида расцепителей: электромагнитный и тепловой. Первый – мгновенно срабатывает при сильном скачке силы тока. Электромагнитный расцепитель состоит из соленоида со стальным подвижным сердечником, который удерживается пружиной. Если заданный показатель тока превышается, электромагнитное поле в катушке наводится, что приводит к втягиванию катушки. В результате срабатывает механизм сопротивления. Если режим работы стандартный, магнитное поле также наводится, но оно недостаточной силы, чтобы сопротивление пружины было преодолено.
Виды расцепителей
Второй – тепловой расцепитель имеет в своем составе биметаллическую пластину, которая рассчитана на определенную силу тока. Если протекающий ток превышает допустимые показатели, пластина из биметалла нагревается и гнется, благодаря чему также происходит расцепление электросети.
Работа автоматического выключателя основывается на этих двух расцепителях, поскольку порознь они малоэффективны.
Электромагнитный расцепитель быстро срабатывает при небольшом скачке. Но если взять во внимание, что некоторые высокопроизводительные моторы нуждаются в более сильном токе во время пуска, чем в обычном рабочем состоянии, то нет необходимости в срабатывании выключателя. В бытовых условиях такими мощными приборами являются пылесос, электрочайник, микроволновая печь. Для теплового расцепителя нужно некоторое время для нагревания и плавки пластины, которое может быть критичным для бытовых или промышленных приборов, подвергшихся высокому скачку тока. В жилом доме очень пагубным окажется влияние сильного тока на холодильник, компьютер и оргтехнику.
Строение электромагнитного расцепителя
Именно поэтому два вида расцепителя применяются в автоматических выключателях сообща, а за отрезок времени от скачка силы тока до аварийного выключения отвечает времятоковая характеристика автоматического прибора.
Типы характеристик
Времятоковая характеристика определяет взаимосвязь между нарастанием силы тока и моментом аварийного отключения посредством защитного автомата. Поскольку различные условия потребления тока в бытовых и промышленных условиях требуют различного напряжения сети, автоматы для защиты также обладают различной мощностью и характеристиками срабатывания. Автоматические выключатели выпускают с номиналами силы тока от 6 до 125 ампер. В быту же наиболее часто применяются защитные автоматы на 16 или 20 ампер. Для большого частного дома подойдет устройство в 25А. Что касается времятоковой характеристики, ее обозначают латинскими буквами на маркировке выключателя. Наиболее распространены три типа: B, C, D. Данная маркировка обозначает чувствительность электромагнитного расцепителя или же скорость мгновенного срабатывания при граничном повышении силы тока.
Диапазон срабатывания для этих трех типов следующий:
B – 3-5ХIn,
С – 5-10ХIn,
D – 10-20ХIn.
Расшифровка параметров разных типов автоматов выглядит так: если автомат рассчитан на силу тока в 20 ампер, то этот показатель умножается на данные диапазона срабатывания, и получается характеристика чувствительности автоматического выключателя.
20*(3…5) =60…100А
Таким образом, автомат типа В на 20 ампер выключится мгновенно при силе тока свыше 100 ампер. Граничным показателем для его срабатывания является 60А, а при силе тока от 60 до 100А скорость выключения будет зависеть от скорости нагревания биметаллической пластины теплового датчика.
При выборе электрического защитного автомата для дома или промышленных целей следует не только рассчитывать его мощность, исходя из потребляемого тока в помещении, но и обращать внимание на тип времятоковой характеристики.
Автоматы идентичной мощности, но разного типа времятоковой характеристики ведут себя по-разному. В ситуации, когда автомат типа В сработает с доли секунды, такой же предохранитель типа С отреагирует только через 5-7 секунд, что может негативно сказаться на приборах и электросети в целом. В жилой квартире, где много высокочувствительных приборов с малым потреблением тока, необходимо устанавливать выключатели типа В. Для больших коммерческих, полупромышленных или офисных помещений, где есть мощные приборы, можно применить автомат типа С. Тип D используется исключительно на промышленных объектах, где есть моторы с мощными пусковыми характеристиками.
Кривая времятоковой характеристики
Для описания времятоковой характеристики предохранительных автоматических выключателей часто используют график функций, где вертикально на оси ординат прописано время расцепления электросети в секундах и десятых секунд, а горизонтально на оси абсцисс обозначены показатели роста силы тока. На данном графике рост определяется делением тока в сети на номинальный ток автомата I/In.
График функции кривой времятоковой характеристики
Изображенные две кривые отвечают за показатели в холодном состоянии (сверху) и разогретом состоянии (снизу).
Дополнительная информация: Условно также нижнюю часть кривой, резко устремляющуюся вправо, считают зоной срабатывания электромагнитного расцепителя, а левую ее часть, плавно спускающуюся вниз, – зоной теплового расцепителя.
Слева от кривой размещается отрезок времени до срабатывания автоматического выключателя, а справа – после расцепления. Сама кривая представляет момент выключения. Традиционно времятоковые характеристики в виде графика функций изображаются для работы автоматов при температуре окружающей среды +30 градусов.
Если просмотреть характеристику для автомата типа В, диапазоном срабатывания которого является показатели от 3 до 5 In, то можно увидеть следующее: время отключения сети при проходящем токе в 3 In составляет 0,02 секунды в разогретом состоянии и до 35 секунд в холодном состоянии. Для автоматов мощностью свыше 32А показатель в холодном состоянии может достигать 80 секунд.
Если же проходящий ток для того же типа автомата будет равен 5In, то в горячем состоянии автомат сработает за 0,01 секунду и за 0,04 секунды в холодном.
График функции автомата типа С
Автомат типа С не сработает при токе в 3In, а при токе 5In он отключится за 0,02 секунды в разогретом и за 11 секунд в охлажденном состоянии. По этой причине не стоит устанавливать предохранители типа С в жилом доме, где бытовые приборы не рассчитаны на большое потребление тока и резкие перепады. Автомат типа В с высокой чувствительностью обеспечит надежную защиту проводки и электрооборудования. Если же в большом частном доме используется распределительный автомат, на входе можно разместить выключатель типа С правильно рассчитанной мощности, а для отдельных точек использовать автоматы типа В.
Устройство. Видео
Об особенностях устройства автоматического выключателя АВВ расскажет видео ниже.
Оцените статью:Время токовые характеристики автоматов — Строительство домов и бань
Категории автоматических выключателей: A, B, C и D
Автоматическими выключателями называются приборы, отвечающие за защиту электроцепи от повреждений, связанных с воздействием на нее тока большой величины. Слишком сильный поток электронов способен вывести из строя бытовую технику, а также вызвать перегрев кабеля с последующим оплавлением и возгоранием изоляции. Если вовремя не обесточить линию, это может привести к пожару, Поэтому, в соответствии с требованиями ПУЭ (Правила устройства электроустановок), эксплуатация сети, в которой не установлены электрические автоматы защиты, запрещена. АВ обладают несколькими параметрами, один из которых – время токовая характеристика автоматического защитного выключателя. В этой статье мы расскажем, чем различаются автоматические выключатели категории A, B, C, D и для защиты каких сетей они используются.
Особенности работы автоматов защиты сети
К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.
Токи, которые могут представлять опасность для сети, подразделяются на два вида:
- Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
- Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.
Устройство и принцип работы автоматического выключателя – на видео:
Токи перегрузки
Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.
Время срабатывания защитного автоматического выключателя зависит от величины перегрузки: при небольшом превышении нормы оно может занять час и более, а при значительном – несколько секунд.
За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.
Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.
Токи короткого замыкания
Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.
Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?
На видео про селективность автоматических выключателей:
Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.
Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.
Характеристики срабатывания защитных автоматических выключателей
Класс АВ, определяющийся этим параметром, обозначается латинским литером и проставляется на корпусной части автомата перед цифрой, соответствующей номинальному току.
В соответствии с классификацией, установленной ПУЭ, защитные автоматы подразделяются на несколько категорий.
Автоматы типа МА
Отличительная черта таких устройств – отсутствие в них теплового расцепителя. Аппараты этого класса устанавливают в цепях подключения электрических моторов и других мощных агрегатов.
Защиту от перегрузок в таких линиях обеспечивает реле максимального тока, автоматический выключатель только предохраняет сеть от повреждений в результате воздействия сверхтоков короткого замыкания.
Приборы класса А
Автоматы типа А, как было сказано, обладают самой высокой чувствительностью. Тепловой расцепитель в устройствах с времятоковой характеристикой А чаще всего срабатывает при превышении силой тока номинала АВ на 30%.
Катушка электромагнитного расцепления обесточивает сеть в течение примерно 0,05 сек, если электроток в цепи превышает номинальный на 100%. Если по какой-либо причине после увеличения силы потока электронов в два раза электромагнитный соленоид не сработал, биметаллический расцепитель отключает питание в течение 20 – 30 сек.
Автоматы, имеющие времятоковую характеристику А, включаются в линии, при работе которых недопустимы даже кратковременные перегрузки. К таковым относятся цепи с включенными в них полупроводниковыми элементами.
Защитные устройства класса B
Аппараты категории B обладают меньшей чувствительностью, чем относящиеся к типу A. Электромагнитный расцепитель в них срабатывает при превышении номинального тока на 200%, а время на срабатывание составляет 0,015 сек. Срабатывание биметаллической пластины в размыкателе с характеристикой B при аналогичном превышении номинала АВ занимает 4-5 сек.
Оборудование этого типа предназначено для установки в линиях, в которые включены розетки, приборы освещения и в других цепях, где пусковое повышение электротока отсутствует либо имеет минимальное значение.
Автоматы категории C
Устройства типа C наиболее распространены в бытовых сетях. Их перегрузочная способность еще выше, чем у ранее описанных. Для того, чтобы произошло срабатывание соленоида электромагнитного расцепления, установленного в таком приборе, нужно, чтобы проходящий через него поток электронов превысил номинальную величину в 5 раз. Срабатывание теплового расцепителя при пятикратном превышении номинала аппарата защиты происходит через 1,5 сек.
Установка автоматических выключателей с времятоковой характеристикой C, как мы и говорили, обычно производится в бытовых сетях. Они отлично справляются с ролью вводных устройств для защиты общей сети, в то время как для отдельных веток, к которым подключены группы розеток и осветительные приборы, хорошо подходят аппараты категории B.
Это позволит соблюсти селективность защитных автоматов (избирательность), и при КЗ в одной из веток не будет происходить обесточивания всего дома.
Автоматические выключатели категории Д
Эти устройства имеют наиболее высокую перегрузочную способность. Для срабатывания электромагнитной катушки, установленной в аппарате такого типа, нужно, чтобы номинал по электротоку защитного автомата был превышен как минимум в 10 раз.
Срабатывание теплового расцепителя в этом случае происходит через 0,4 сек.
Устройства с характеристикой D наиболее часто используются в общих сетях зданий и сооружений, где они играют подстраховочную роль. Их срабатывание происходит в том случае, если не произошло своевременного отключения электроэнергии автоматами защиты цепи в отдельных помещениях. Также их устанавливают в цепях с большой величиной пусковых токов, к которым подключены, например, электромоторы.
Защитные устройства категории K и Z
Автоматы этих типов распространены гораздо меньше, чем те, о которых было рассказано выше. Приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.
Этими особенностями обусловлено применение устройств типа K в цепях с исключительно индуктивной нагрузкой.
Приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.
Аппараты с характеристикой Z используются только в линиях, к которым подключены электронные устройства.
Наглядно про категории автоматов на видео:
Заключение
В этой статье мы рассмотрели время токовые характеристики защитных автоматов, классификацию этих устройств в соответствии с ПУЭ, а также разобрались, в каких цепях устанавливаются приборы различных категорий. Полученная информация поможет вам определить, какое защитное оборудование следует использовать в сети, исходя из того, какие устройства к ней подключены.
Основные технические характеристики автоматических выключателей
При практическом применении важно не только знать характеристики автоматических выключателей, а и понимать, что они означают. Благодаря такому подходу можно определиться с большинством технических вопросов. Давайте рассмотрим, что подразумевается под теми или иными параметрами, указанными на маркировке.
Используемая аббревиатура.
Маркировка устройств содержит всю необходимую информацию, описывающую основные характеристики автоматических выключателей (далее АВ). Что они обозначают, будет рассказано ниже.
Время-токовая характеристика (ВТХ)
При помощи такого графического отображения можно получить наглядное представление, при каких условиях будет активирован механизм отключения питания цепи (см. рис. 2). На графике, в качестве вертикальной шкалы отображается время, необходимое для активации АВ. Горизонтальная шкала показывает соотношение I/In.
Рис. 2. Графическое отображение время токовых характеристик наиболее распространенных типов автоматовДопустимое превышение штатного тока, определяет тип время-токовых характеристик для расцепителей в приборах, производящих автоматическое выключение. В соответствии с действующими нормативом (ГОСТ P 50345-99), каждому виду присваивается определенное обозначение (из латинских литер). Допустимое превышение определяется коэффициентом k=I/In, для каждого вида предусмотрены установленные стандартом значения (см. рис.3):
- «А» — максимум – троекратное превышение;
- «В» — от 3 до 5;
- «С» — в 5-10 раз больше штатного;
- «D» — 10-20 кратное превышение;
- «К» — от 8 до 14;
- «Z» — в 2-4 больше штатного.
Заметим, что данный график полностью описывает условия активации соленоида и термоэлемента (см. рис.4).
Таблица время токовых характеристик автоматических выключателейХарактеристика типа «A»
Тепловая защита АВ этой категории активируется, когда отношение тока цепи к номинальному (I/In) превысит 1,3. При таких условиях отключение произойдет через 60 минут. По мере дальнейшего превышения номинального тока время отключения сокращается. Активация электромагнитной защиты происходит при двукратном превышении номинала, скорость срабатывания – 0,05 сек.
Данный тип устанавливаются в цепях не подверженных кратковременным перегрузкам. В качестве примера можно привести схемы на полупроводниковых элементах, при выходе из строя которых, превышение тока незначительное. В быту такой тип не используется.
Характеристика «B»
Отличие данного вида от предыдущего заключается в токе срабатывания, он может превышать штатный от трех до пяти раз. При этом механизм соленоида гарантированно активируется при пятикратной нагрузке (время обесточивания – 0,015 сек.), термоэлемент – трехкратной (на отключение понадобиться не более 4-5 сек.).
Такие виды устройств нашли применение в сетях, для которых не характерны высокие пусковые токи, например, цепи освещения.
S201 производства компании ABB с время-токовой характеристикой BХарактеристика «C»
Это наиболее распространенный тип, его допустимая перегрузка выше, чем у двух предыдущих видов. При пятикратном превышении штатного режима срабатывает термоэлемент, это схема, отключающая электропитание в течение полутора секунд. Механизм соленоида активируется, когда перегрузка превысит норму в десять раз.
Данные АВ рассчитаны на защиту электроцепи, в которой может возникнуть умеренный пусковой ток, что характерно для бытовой сети, для которой характерна смешанная нагрузка. Покупая устройство для дома, рекомендуется остановить свой выбор на этом виде.
Трехполюсный автомат LegrandХарактеристика «D»
Для АВ такого типа характерны высокие перегрузочные характеристики. А именно, десятикратное превышение нормы для термоэлемента и двадцатикратное для соленоида.
Применяются такие приспособления в цепях с большими пусковыми токами. Например, для защиты пусковых устройств асинхронных электродвигателей. На рисунке 9 показано два прибора этой группы (a и b).
Рисунок 9. а) ВА51-35; b) BA57-35; c) BA88-35Характеристика «K»
У таких АВ активация механизма соленоида возможна при превышении токовой нагрузки в 8 раз, и гарантированно произойдет, когда будет двенадцати кратная перегрузка штатного режима (восемнадцати кратное для постоянного напряжения). Время отключения нагрузки не более 0,02 сек. Что касается термоэлемента, то его активация возможна при превышении 1,05 от штатного режима.
Сфера применения – цепи с индуктивной нагрузкой.
Характеристика «Z»
Данный тип отличается небольшим допустимым превышением штатного тока, минимальная граница — двух кратная от штатной, максимальная – четырех кратная. Параметры срабатывания термоэлемента, такие же, как и у АВ с характеристикой К.
Этот подвид применяется для подключения электронных приборов.
Характеристика «MA»
Отличительная особенность этой группы – не используется термоэлемент для отключения нагрузки. То есть прибор предохраняет только от КЗ, этого вполне достаточно, чтобы подключить электрический двигатель. На рисунке 9 показано такое приспособление (с).
Ток штатной работы
Этот параметр описывает максимально допустимое значение для штатного режима работы, при его превышении будет активировано срабатывание системы отключения нагрузки. На рисунке 1 показано, где отображается это значение (в качестве примера взята продукция компании IEK).
Ток штатной работы обведен окружностьюТепловые параметры
Под данным термином подразумевается условия срабатывания термоэлемента. Эти данные можно получить из соответствующего время-токового графика.
Предельная отключающая способность (ПКС).
Этот термин обозначает максимально допустимое значение нагрузки, при котором прибор сможет разомкнуть цепь без потери работоспособности. На рисунке 5 данная маркировка обозначена красным овалом.
Рис. 5. Прибор компании Шнайдер ЭлектрикКатегории токоограничения
Этот термин используется для описания способности АВ произвести отключение цепи до того, как ток КЗ в ней станет максимальным. Приспособления выпускаются с токоограничением трех категорий, в зависимости от времени отключения нагрузки:
- 10 мс. и больше;
- от 6 до 10 мс;
- 2,5-6 мс.
Соответственно, чем выше категория, тем меньше электропроводка подвержена нагреву, а значит, снижается риск ее возгорания. На рисунке 6 указанная категория обведена красным овалом.
Маркировка ВА47-29 содержит указание на класс токоограниченияЗаметим, что АВ, относящиеся к первой категории, могут не иметь соответствующей маркировки.
Небольшой лайфхак о том, как выбрать необходимый выключатель для дома
Предложим несколько общих рекомендаций:
- Исходя из всего выше сказанного, нам следует остановить свой выбор на АВ с времятоковой характеристикой «С».
- При выборе штатных параметров необходимо учитывать планируемую нагрузку. Для вычисления следует воспользоваться законом Ома: I=Р/U, где Р – мощность цепи, U – напряжение. Рассчитав силу тока (I), выбираем номинал АВ по таблице, представленной на рисунке 10. Рисунок 10. График для выбора АВ в зависимости от тока нагрузки
Расскажем, как пользоваться графиком. Допустим, произведя расчет силы тока нагрузки, мы получили результат — 42 А. Следует выбрать автомат, где это значение будет в зеленой зоне (рабочей области), это будет номинал – 50 А. При выборе также следует учитывать, на какую силу тока рассчитана проводка. Допускается подбирать автомат исходя из этого значения, при условии, что суммарная сила тока нагрузки будет меньше расчетного тока для проводки.
Токовые характеристики автоматических выключателей
Здравствуйте, уважаемые читатели сайта http://elektrik-sam.info.
В этой статье мы рассмотрим основные характеристики автоматических выключателей, которые необходимо знать, чтобы правильно ориентироваться при их выборе — это номинальный ток и время токовые характеристики автоматических выключателей.
Напомню, что эта публикация входит в серию статей и видео, посвященных электрическим аппаратам защиты из курса Автоматические выключатели, УЗО, дифавтоматы — подробное руководство.
Основные характеристики автоматического выключателя указываются на его корпусе, где также наносится торговая марка или бренд производителя и каталожный либо серийный номер.
Самая главная характеристика автоматического выключателя – номинальный ток. Это максимальный ток (в Амперах), который может протекать через автомат бесконечно долго, не отключая защищаемую цепь. При превышении протекающим током этой величины, автомат срабатывает и размыкает защищаемую цепь.
Ряд значений номинального тока автоматических выключателей стандартизован и составляет:
6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А.
Величина номинального тока автомата указывается на его корпусе в амперах и соответствует температуре окружающей среды +30˚С. С увеличением температуры, значение номинального тока снижается.
Также автоматы в электрощитах обычно устанавливаются по несколько штук в ряд вплотную друг к другу, это приводит к увеличению температуры (автоматы «подогревают» друг друга) и снижению величины коммутируемого ими тока.
Некоторые производители автоматических выключателей указывают в каталогах поправочные коэффициенты для учета этих параметров.
Подробно о влиянии температуры окружающей среды и количества рядом установленных аппаратов защиты смотрите в статье Почему в жару срабатывает автоматический выключатель.
В момент подключения в электрическую сеть некоторых потребителей, например, холодильников, пылесосов, компрессоров и др. в цепи кратковременно возникают пусковые токи, которые могут в несколько раз превышать номинальный ток автомата. Для кабеля такие кратковременные броски тока не страшны.
Поэтому, чтобы автомат не выключался каждый раз при небольшом кратковременном возрастании тока в цепи, применяют автоматы с разными типами время-токовой характеристики.
Таким образом, следующая основная характеристика:
время-токовая характеристика срабатывания автоматического выключателя – это зависимость времени отключения защищаемой цепи, от силы протекающего через нее тока. Ток указывается как отношение к номинальному току I/Iном, т.е. во сколько раз протекающий через автомат ток превышает номинальный для данного автоматического выключателя.
Важность этой характеристики заключается в том, что автоматы с одинаковым номиналом будут отключаться по-разному (в зависимости от типа время-токовой характеристики). Это дает возможность уменьшить количество ложных срабатываний, применяя автоматические выключатели с различными токовыми характеристиками для разных типов нагрузки,
Рассмотрим типы время-токовых характеристик:
— Тип A (2-3 значения номинального тока) применяются для защиты цепей с большой протяженностью электропроводки и для защиты полупроводниковых устройств.
— Тип B (3-5 значений номинального тока) применяются для защиты цепей с малым значением кратности пускового тока с преимущественно активной нагрузкой (лампы накаливания, обогреватели, печи, осветительные электросети общего назначения). Показаны для применения в квартирах и жилых зданиях, где нагрузки в основном активные.
— Тип C (5-10 значений номинального тока) применяются для защиты цепей установок с умеренными пусковыми токами — кондиционеры, холодильники, домашние и офисные розеточные группы, газоразрядные лампы с повышенным пусковым током.
— Тип D (10-20 значений номинального тока) применяются для защиты цепей, питающих электроустановки с высокими пусковыми токами (компрессоры, подъемные механизмы, насосы, станки). Устанавливаются, в основном, в производственных помещениях.
— Тип K (8-12 значений номинального тока) применяются для защиты цепей с индуктивной нагрузкой.
— Тип Z (2,5-3,5 значений номинального тока) применяются для защиты цепей с электронными приборами, чувствительными к сверхтокам.
В быту обычно используются автоматические выключатели с характеристиками B,C и очень редко D. Тип характеристики обозначается на корпусе автомата латинской буквой пред значением номинального тока.
Маркировка «С16» на автоматическом выключателе будет обозначать, что он имеет тип мгновенного расцепления С (т.е. срабатывает при величине тока от 5 до 10 значений от номинального тока) и номинальный ток, равный 16 А.
Время-токовая характеристика автоматического выключателя обычно приводится в виде графика. На горизонтальной оси указывается кратность значения номинального тока, а по вертикальной оси — время срабатывания автомата.
Широкий диапазон значений на графике обусловлен разбросом параметров автоматических выключателей, которые зависят от температуры — как внешней, так и внутренней, поскольку автоматический выключатель нагревается проходящим через него электрическим током, особенно, при аварийных режимах — током перегрузки или током короткого замыкания (КЗ).
На графике видно, что при значении I/Iн≤1 время отключения автоматического выключателя стремится к бесконечности. Другими словами, до тех пор, пока ток, протекающий через автоматический выключатель, меньше или равен номинальному току, автоматический выключатель не сработает (не отключится).
Также график показывает, что чем больше значение I/Iн (т.е. чем больше протекающий через автомат ток превышает номинальный), тем быстрее автоматический выключатель отключится.
При протекании через автоматический выключатель тока, величина которого равна нижней границе диапазона срабатывания электромагнитного расцепителя (3In для «В», 5In для «С» и 10In для «D»), он должен отключиться за время более 0,1с.
При протекании тока, равного верхней границе диапазона срабатывания электромагнитного расцепителя (5In для «В», 10In для «С» и 20In для «D»), автоматический выключатель отключится за время менее 0,1с. Если значение тока главной цепи находится внутри диапазона токов мгновенного расцепления, автоматический выключатель расцепляется либо с незначительной выдержкой, либо без задержки времени (менее 0,1 с).
В следующих статьях мы продолжим рассмотрение характеристик автоматических выключателей, методику и стратегию их расчета и выбора, потому если хотите не пропустить новые интересные материалы по этой теме — подписывайтесь на новости сайта, форма подписки внизу статьи.
В заключении статьи подробное видео Номинал и токовые характеристики автоматических выключателей:
Время-токовые характеристики автоматических выключателей (В, С, D)
Многие, наверное, замечали, что на корпусах модельных защитных выключателей указаны буквы латинского алфавита – B, C или D. Они обозначают време-токовую характеристику или ток мгновенного расцепления данного устройства.
В соответствии с пунктом 3.5.17 ГОСТа Р 50345-99, ток мгновенного расцепления – это минимальные показатели электротока, при котором устройство отключается без электромагнитной защиты, то есть без выдержки времени.
Пунктом 5.3.5 того же ГОСТа установлено, что существует три вида данной характеристики:
1.B– от 3 In до 5 In.
2.C – от 5 In до 10 In.
3.D – от 10 In до 20 In.
In– это номинальный показатель предохранительного элемента.
Рассмотрим эти виды многоцелевого расцепления на примере модульного коммутационного устройства ВА 47-29.
Время-токовая характеристика типа B
На графике приведена зависимость времени срабатывания защитного устройства от величины протекающего электротока. На оси Х указана кратность тока к номинальному электротоку коммутатора. По оси Y– время разъединение (секунд).
График имеет две линии, которые описывают разброс разъединение электромагнитного и теплового расцепителя устройства. Верхняя линия – это холодное состояние автомата после срабатывания, а нижняя – горячее.
Важно! Характеристики большинства автоматов изображаются при температуре 30 градусов по Цельсию.
На представленных характеристиках, пунктирной линией отмечен верхний предел для прибора с номинальным электротоком меньше 32 Ампер.
Анализ графика показывает:
1.Если через коммутационный прибор будет проходить электрический ток в 3 In, то максимальное время его отключения в горячем состоянии составляет 0,02 секунды. В холодном состоянии время срабатывания:
- для автоматов менее 32 А – 35 сек.;
- для автоматов более 32 А – 80 сек.
2.Если через автомат будет проходить электроток в 5 In, то максимальное время разъединения в горячем состоянии – 0,01 секунды, а в холодном – 0,04.
Автоматические выключатели вида B используются преимущественно для защиты потребителей с активным типом нагрузки – цепи освещения, электрические обогреватели и печи.
В магазинах количество подобных устройств довольно ограничено. Хотя для организации питания групп розеток и освещения целесообразно использовать именно такие рубильники, а не тип С. Именно в таком случае удастся соблюсти селективность при коротком замыкании.
Время-токовая характеристика типа C
График время-токовой характеристики вида С:
1.Если через предохранительный коммутатор будет протекать ток в 5 In, то максимальное время отключения в горячем состоянии составит 0,02 секунды. В холодном состоянии наибольшее время разъединение :
- для выключателей менее 32 А – 11 сек.;
- для выключателей более 32 А – 25 сек.
2.Если через защитное коммутационное устройство будет протекать электроток в 10 In, то максимальное время срабатывания в горячем состоянии – 0,01 секунды, а в холодном – 0,03 секунды.
Данный тип автоматов используется в основном для защиты моторов с небольшими пусковыми токами и трансформаторов. Их также можно применять для запитывания цепей освещения. Они широко используются в жилом фонде.
Время-токовая характеристика типа D
График время-токовой характеристики типа D:
1.Если через з предохранительный автомат будет протекать ток в 10 In, то максимальное время отключения в горячем состоянии составит 0,02 секунды. В холодном состоянии максимальное время срабатывания :- для выключателей менее 32 А – 3 сек.;
- для выключателей более 32 А – 7 сек..
Изменение характеристик расцепления автоматов
Как упоминалось в начале статьи, все характеристики предохранительных автоматов приводятся при температуре окружающей среды в 30 градусов по Цельсию. Для того, чтобы узнать время срабатывания механических коммутаторов при других температурах, следует учитывать такие поправочные коэффициенты:
1.Kt – температурный коэффициент окружающего воздуха. На графике ниже можно проанализировать его значения. Чем выше температура воздуха, тем ниже значение данного коэффициента, а значит и снижается номинальный ток выключателя, то есть его нагрузочная способности. Или, иначе, чем холодней, тем меньше нагрузочная способность. По этойпричине в жарких помещениях возможно срабатывания автоматов даже без роста нагрузки.
2.Kn– коэффициент учета количества установленных автоматов в ряд. Когда в одном ряду уставлено несколько защитных автоматов, то они передают часть своего тепла остальным выключателям. На графике ниже представлена зависимость конвекции тепла от количества автоматов. Чем больше устройств в ряду, тем меньше их нагрузочная способность.Для того, чтобы рассчитать электроток, в соответствии с температурой окружающей среды, нужно номинальный ток механического коммутатора умножить на приведенные выше коэффициенты.Теперь рассмотри пример использования коэффициентов на практике. Допустим, распределительный щиток установлен на улице и к нему подключено 4 автомата:
- вводной автомат типа ВА 47-29 С40 – 1 штука;
- групповой автомат типа ВА 47-20 С16 – 3 штуки.
Температура окружающей среды – минус 10 градусов по Цельсию.
Находим поправочные коэффициенты для автомата ВА 47-29 С16:Рассчитываем номинальный ток:
Следовательно, чтобы определить предельное время отключения защитного автомата типа С нужно использовать не соотношение I/In (I/16), а I/In* (I/14,43).
Условный ток неотключение и условный ток отключения
Каждый автомат имеет условный ток неотключения, который рассчитывается как 1,13 In. При таком токе защитное устройство не сработает.
В результате, автоматический выключатель выполняет защитную токовую функцию и одновременно сводит до минимума ложные срабатывания. Именно в этом и заключается основное практическое значение время-токовой характеристики.
В области энергетики нередко возникают ситуации, при которых увеличение тока на короткое время не связано с возникновением аварийного режима работы. В этих случаях защитные устройства не должны реагировать на подобные изменения. Это происходит при включении электродвигателей, когда наблюдается значительный скачок тока, в несколько раз превышающий номинальное значение. Если следовать логическим выводам, должно произойти обязательное отключение автомата. Например, если устройство установлено на 10 А, а пусковой ток составляет 12 А, это приведет к непременному срабатыванию защиты. Чтобы этого не произошло, требуется увеличить порог срабатывания, например, до 16 ампер. Однако в случае короткого замыкания устройство может и не отключиться.
Слишком низкий уровень срабатывания приведет к тому, что автомат будет реагировать даже на незначительные скачки. Решить данную проблему позволяет время-токовая характеристика, определяющая основной режим работы каждого защитного устройства.
Время-токовые характеристики автоматов
Срабатывание автоматических выключателей происходит за счет действия его основных элементов – теплового и электромагнитного расцепителя. Конструкция теплового расцепителя состоит из биметаллической пластины, нагревающейся под действием протекающего тока. В результате, она изгибается и приводит в действие механизм расцепления. Для срабатывания необходима длительная нагрузка, обратно пропорциональная выдержке по времени. Уровень перегрузки напрямую влияет на нагрев пластинки и время срабатывания теплового расцепителя.
Основными составляющими электромагнитного расцепителя служат катушка и сердечник. При достижении током определенного уровня, магнитное поле катушки втягивает сердечник, под действием которого срабатывает расцепляющий механизм. Устройство мгновенно срабатывает при коротких замыканиях, не дожидаясь нагрева теплового расцепителя. Время срабатывания автомата зависит от силы тока, проходящего через автоматический выключатель. Данная зависимость как раз и представляет собой времятоковую характеристику защитного устройства.
На корпусе каждого прибора наносятся латинские символы В, С и D. Каждый из них соответствует кратности уставки электромагнитного расцепителя к номинальному значению автомата. То есть, с помощью этих букв отображается ток мгновенного срабатывания расцепителя или чувствительность автоматического выключателя. Данный параметр обозначает минимальный ток, при котором происходит мгновенное отключение защитного устройства. Таким образом, латинскими буквами обозначается времятоковая характеристика каждого конкретного автомата. Символ «В» соответствует характеристикам 3-5 х ln, «С» – 5-10 х ln и «D» — 10-20 х ln.
Значение этих цифр необходимо рассмотреть на примере двух автоматов, равных по мощности, то есть, с одинаковым номинальным током, например, модели В16 и С16. Для выключателя В16 диапазон срабатывания электромагнитного расцепителя составит 16 х (3-5) = 48-80 А. Соответственно, у автомата С16 этот диапазон будет находиться в пределах 16 х (5-10) = 80-160 ампер. Таким образом, при наличии тока в 100 А, произойдет мгновенное отключение модели В16, а устройство С16 отключится лишь через несколько секунд после нагрева биметаллической пластины.
Для жилых и административных зданий наиболее подходящими вариантами считаются автоматы с маркировкой В и С. Это связано с отсутствием больших пусковых токов и крайне редким включением электродвигателей повышенной мощности. Автоматы категории D используются в основном на тех объектах, где имеются мощные электродвигатели и другие устройства с большими пусковыми токами.
График время токовой характеристики обязательно учитывает температуру самого защитного устройства. В случае первого срабатывания времени на отключение затрачивается больше, поскольку биметаллическая пластинка холодная. При повторном срабатывании, когда пластинка уже была ранее разогрета, отключение происходит быстрее.
График время-токовой характеристики
Данный график показывает время токовые характеристики для различных типов автоматических выключателей – В, С и D. Основным параметром является значение тока, протекающего через устройство защиты, и оказывающего непосредственное влияние на время отключения. Отношение тока, протекающего в цепи, и номинального тока автомата отображается в виде l/ln на оси Х. Время срабатывания устройства, измеряемое в секундах, фиксируется на оси У
Поскольку каждый автомат состоит из электромагнитного и теплового расцепителя, то и представленный график условно делится на два участка. На крутом участке отражается работа теплового расцепителя, защищающего от перегрузок, а в более пологой части отображено действие электромагнитного расцепителя, выполняющего отключение при коротких замыканиях.
На графике наглядно видно, что при различных нагрузках, изменяется и время отключения устройства. Время отключения при одинаковой нагрузке у холодного и горячего автомата будет разным. Таким образом, график времятоковой характеристики позволяет заранее выполнить все необходимые расчеты и выбрать наиболее подходящее защитное устройство для конкретных условий эксплуатации.
Выбор автомата для дома
Для большинства квартир рекомендуются автоматические выключатели категории В, обладающие повышенной чувствительностью. Его срабатывание при перегрузках происходит так же, как и у автомата типа С. Однако в случае короткого замыкания их действия могут отличаться.
Идеальными условиями считается наличие нового дома, хорошего состояния сети, расположение подстанции возле объекта. Большое значение имеет качество всех соединений. В такой ситуации при коротком замыкании может сработать даже вводный автомат.
Совершенно иные условия в старых домах. Как правило в них очень старая электропроводка, обладающая высоким сопротивлением. Тока может оказаться недостаточно, и при коротком замыкании автомат не сработает. На таких объектах времятоковая характеристика автоматического выключателя должна обязательно соответствовать категории В. Это условие касается не только квартир, но также дач и старых сельских домов.
Что такое время токовые характеристики автоматических выключателей
При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.
Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.
Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.
Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.
В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.
При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.
По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.
Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».
Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой
Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.
Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.
Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.
Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.
Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.
Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.
Автоматы имеют несколько характеристик, самыми распространенными из которых являются:
- — B — от 3 до 5 ×In;
- — C — от 5 до 10 ×In;
- — D — от 10 до 20 ×In.
Что означают цифры указанные выше?
Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.
Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3. 5)=48. 80А. Для С16 диапазон токов мгновенного срабатывания 16*(5. 10)=80. 160А.
При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).
В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.
Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.
Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.
Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.
Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.
Что показано на графике время токовой характеристики
На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.
На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.
Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).
Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.
На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.
При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).
Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.
К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.
Автоматы с какими характеристиками предпочтительнее использовать дома
В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.
Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.
Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.
Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.
В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.
Время-токовые характеристики автоматов. | ЭЛЕКТРОлаборатория
Доброе время суток, дорогие друзья!
Сегодня продолжу рассказывать про автоматические выключатели в свете измерения сопротивления петли «фаза-нуль».
В последней статье посвященной измерению сопротивления петли «фаза-ноль» я обмолвился о время-токовых характеристиках автоматических выключателей. Сегодня приведу для примера такие характеристики для автомата типа ВА47-29:
Для каждого автоматического выключателя такая характеристика своя. Обычно она приводится в паспорте на автомат в том виде как показано на рисунке. Т.е. имеется некоторый разброс в параметрах. Как можно заметить разброс этот достаточно большой.
— для характеристики «В» ток отсечки (ток электромагнитного расцепителя) может находиться в интервале от 3Iн до 5Iн;
— для характеристики «С» — от 5Iн до 10Iн;
— для характеристики «D» — от 10Iн до 14Iн.
Значит, измеренный или рассчитанный нами ток короткого замыкания для конкретной линии может, как удовлетворять параметрам автоматического выключателя (быть достаточным для его отключения), так и не удовлетворять.
Реальную же характеристику зависимости времени срабатывания автоматического выключателя от протекающего через него тока для каждого конкретного автомата можно получить только путем проведения проверки параметров этого автомата.
Но многие лаборатории не имеют оборудования для испытания автоматических выключателей. и соответственно, у них нет такого вида работ. Поступают просто. Для проверки соответствия автоматического выключателя параметрам линии ( возможному току короткого замыкания) используют верхнее значение тока отсечки, т.е. для характеристики «С» это 10Iн. Такой подход вполне оправдан, т.к. автомат наверняка отключится при токе большем большего возможного тока срабатывания расцепителя, но в ряде случаев не достаточно достоверен. Потому что если измеренный ток короткого замыкания меньше 10Iн, то, разумеется при исправном состоянии проводов линии, необходима замена автоматического выключателя на подходящий. Хотя при проведении проверки автоматического выключателя может выясниться. что ток срабатывания его составляет, например, 7Iн и в этом случае уже при измеренном нами токе короткого замыкания автомат должен уверенно отключаться, т.е. замена автомата не требовалась.
Вернемся к время-токовой характеристике. Допустим, мы провели проверку автомата и по измеренным параметрам получили его индивидуальную характеристику ( отображена зеленой линией на рисунке).
Что она нам дает?
Согласно ПУЭ п.1.7.79 время автоматического отключения питания в системе TN не должно превышать значения 0,4с при фазном напряжении 220В , но в цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5с.
Таким образом, имеем две точки на характеристике 0,4с и 5с. В зависимости от места установки автоматического выключателя определяем, какая точка нужна нам и находим в этой точке ток срабатывания (отключения) автоматического выключателя.
Из полученной нами характеристики (зеленая линия) видно, автомат отключится за 0,4с при семикратном от номинального токе, а за 5 с при токе 4,5Iн.
Еще раз отвечу на частый вопрос: Зачем измерять сопротивление петли «фаза-нуль»?
Зная сопротивление петли «фаза-нуль» какой-то цепи (линии), можно найти ток короткого замыкания, который в этой линии может развиться. А зная этот ток, можно ответить на вопрос: сработает ли установленный в этой линии автоматический выключатель и за какое время.
Вот на сегодня и все. Если возникли вопросы, спрашивайте.
Кривые характеристики времени и тока для выборочной координации
Характеристические кривыевремя-ток играют важную роль в достижении надлежащей координации защиты между устройствами электробезопасности. Узнайте больше, поскольку мы рассмотрим основы защиты энергосистемы, TCC для твердотельного и термомагнитного отключения, важность, процедуру и правила выборочной координации здесь.
Цель защиты энергосистемы:Основная цель защиты энергосистемы — определить неисправность или любое ненормальное состояние, которое может привести к неисправности системы или вызвать полное отключение питания, и изолировать ее от исправной части.
Необходимы исследования для защиты критически важного оборудования энергосистемы. Селективная координация и координация защиты осуществляется с помощью кривых времени и тока (TCC). В этой статье обсуждается значение координации защиты по мощности и то, как кривые времени и тока используются для селективной координации.
Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по проектированию энергосистем.Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и получите от этого пользу. Принципы защиты энергосистемы:При разработке схемы защиты энергосистемы инженер должен обратить внимание на следующие характеристики, чтобы наша система защиты обеспечивала оптимальную функциональность.
- Чувствительность: Защитное оборудование должно быть чувствительным при точном обнаружении всех видов неисправностей.
- Скорость: Скорость при отключении (отключение питания из здорового региона)
- Экономика: Дешевле. Стоимость не должна превышать 25% от общей стоимости.
- Простота: не должно делать систему в целом сложной
- Селективность: идентификация правильной неисправной детали, чтобы затронуть наименьшую часть. Например, у университета есть свой главный выключатель, и у каждого отдела есть свои собственные выключатели. Предположим, что если в отделе возникает неисправность, он не должен отключать главный выключатель университета, вместо этого должен отключиться главный выключатель этого отдела.
Интенсивность повреждения в энергосистемах пропорциональна величине тока. Желательно, чтобы по мере увеличения тока повреждения уменьшалось время устранения неисправности или FCT. Чтобы гарантировать, что все защитные устройства на входе и выходе согласованы, используется кривая зависимости тока от времени (I от t), которая также известна как TCC или временная кривая тока.
Ниже приведены характеристики TCC:
- В TCC ток указывается по оси x, а время — по оси y.
- TCC нанесен на логарифмическую шкалу, так что все значения тока и времени легко учесть. Например: в системе минимальная ошибка 100 A должна быть устранена в течение 10 с, а для системы с максимальной ошибкой 5000 A она должна быть устранена в течение 50 мс. Логарифмическая шкала в TCC гарантирует, что присутствуют как экстремальные значения тока, так и времени.
- Изгибы реле более резкие и тонкие, чем предохранители и автоматические выключатели, потому что реле используются только для определения неисправности и затем подачи сигнала отключения на выключатели.Обычно они используются в системах среднего и высокого напряжения. Ознакомьтесь с курсом «Основы защиты энергосистемы» , в котором мы кратко обсудили «Типы реле защиты и требования к конструкции».
Твердотельное отключение:
Ниже приведены некоторые ключевые моменты, которые отражены на приведенном выше графике.
- Долговременный номинальный ток в амперах : Это номинальный длительный ток, при котором выключатель не срабатывает.Например, автоматический выключатель рассчитан на 1000 А, а максимальный ток, который будет протекать через выключатель, составляет 800 А. Таким образом, длительная установка силы тока будет изменена на 800 А.
- Long Time Delay : Этот параметр относится к задержке из-за пускового тока трансформатора и пускового тока двигателя. Эта задержка дана в виде наклона.
- Кратковременный датчик: Это от 1,5 до 10 раз больше долговременного номинального тока. Настройка, при которой выключатель имеет тенденцию срабатывать после некоторой задержки.
- Кратковременная задержка : Задержка, заданная для проверки, сбросили ли нижестоящие устройства неисправность, чтобы не возникало проблем с отключением, или после достижения задержки выключатель срабатывает. Доступны две настройки
- Мгновенное срабатывание : Используется, когда отключение требуется без задержки. Его настройка может варьироваться от 2 до 40 раз от долговременного номинального тока.
Термомагнитный расцепитель:
Как видно на графике ниже, кривая прерывателя имеет большую толщину.Эта толщина на графике имеет собственное значение, которое описывается двумя терминами, известными как:
- Минимальное время отключения: Это время, в которое выключатель обнаруживает неисправность.
- Максимальное время отключения: Это время, в которое выключатель выдает сигнал отключения.
Термомагнитные выключатели имеют несколько другие графики характеристик, чем электронные (твердотельные) выключатели, так как у них всего две настройки:
- Отключение с задержкой: Это отключение вызвано перегрузкой по току тепловой частью выключателя.Биметаллическая полоса в выключателе нагревается высоким током, что приводит к разрыву контактов после задержки. По мере увеличения тока нагрев продолжается, и время отключения от сверхтока уменьшается.
- Мгновенное отключение: Нет преднамеренной задержки отключения. Магнитная часть выключателя определяет высокий ток перегрузки или короткое замыкание и выдает сигнал отключения.
Полная селективность означает, что защитные устройства минимизируют влияние короткого замыкания или другого нежелательного события на энергосистему.Предохранитель или автоматический выключатель, ближайший к месту повреждения, размыкается без размыкания предохранителя или автоматического выключателя, который его питает (со стороны входа). Таким образом, у вас не будет отключения электроэнергии, если где-то ниже по течению возникнет неисправность.
Согласно статье 100 NEC, выборочная координация определяется как:
“ Локализация состояния перегрузки по току для ограничения перебоев в цепи или затронутом оборудовании, достигается выбором устройств защиты от перегрузки по току и их номиналов или настроек .”
Чтобы понять, как согласованы защитные устройства, возьмем пример:
Рисунок 1: Неисправность ниже CB5
На приведенном выше рисунке показана неисправность, которая возникает под выключателем 5 (C.B-5). В этом случае C.B-5 должен иметь возможность устранить повреждение в кратчайшие сроки, и никакой другой выключатель (в данном случае C.B-2 и C.B-1) не должен отключиться в течение этого времени. В случае, если выключатель C.B-5 по какой-либо причине не устраняет неисправность, то C.B-2 устраняет ее после некоторой задержки, и если по какой-либо причине, C.B-2 не может устранить неисправность, тогда C.B-1 выдает отключение (что может быть наихудшим сценарием).
Как осуществляется выборочная координация?Защитные устройства должны срабатывать только при неисправностях, которые находятся в их «зоне защиты». При возникновении неисправности в определенной зоне устройство, предназначенное для ее защиты, распознает ток и изолирует неисправность от остальной системы.
Однако, если отказ происходит вне зоны защиты устройства, то это устройство только обнаружит его, но не отключит.Следовательно, регулируя и перестраивая кривые тока времени защитных устройств таким образом, чтобы их настройки или кривые имели минимальное перекрытие или не имели никакого перекрытия, можно добиться избирательной координации.
Достижение выборочной координации с использованием ETAP:
Например, показанная выше простая часть системы, для которой мы сначала получим кривые TCC, а затем настроим кривые, чтобы мы могли достичь координации между всеми устройствами защиты.
- Выберите часть системы, для которой требуется получить TCC.Затем из показанной ниже панели модулей (Рис. 01) мы выберем Star Protective Protection Затем, как показано на Рис. 2, мы выберем Create Star View.
- После щелчка на всплывающем экране появится указанный ниже график. Нижеприведенный график относится к CB 2, который закрашен красным. В этом случае это самый нижний прерыватель, поэтому согласно правилам он должен находиться в крайнем левом положении, потому что мы хотим, чтобы он сработал первым.
Рисунок 2: Координационный CB1
- Поскольку CB-1 (заштрихованный красным ниже) является вторым последним защитным устройством, его график должен быть справа от выключателя CB-2, потому что мы хотим, чтобы он сработал в случае отказа CB-1 или если неисправность возникает в свою зону.Эта ситуация показана на рисунке ниже.
Рисунок 3: Координация CB2
Правила избирательности:
Корпус 1:
Использование настроек срабатывания срабатывания На рис. 2 показано, как кривые с разными значениями срабатывания могут быть избирательными, и показано первое правило селективности, а именно, два устройства являются избирательными, если кривая устройства ниже по потоку расположена слева от кривой устройства выше по потоку. Это может произойти только в том случае, если уставка срабатывания последующего устройства установлена на ток, который меньше, чем установка срабатывания срабатывания вышестоящего устройства.Обратите внимание, что по соглашению для кривых тока времени заканчивается крайняя правая часть кривой на максимальном токе короткого замыкания, который устройство будет ощущать в системе питания, к которой оно подключено. При увеличении настройки срабатывания срабатывания кривая смещается к правому краю графика. В этом примере для любого тока вплоть до максимального тока короткого замыкания левой кривой, кривая слева сработает раньше, чем кривая справа. Токи, превышающие максимальный ток левой кривой, физически невозможны и воспринимаются только устройством, представленным правой кривой.
Рис. 2 — Создание селективности правильным подбором настроек датчика.
Дело 2:
Использование настроек задержки (рис. 3) показывает, как изменение временных задержек может обеспечить избирательность. Увеличение времени задержки сдвигает кривую на графике вверх. Обратите внимание, что для всех токов в пределах диапазона кривых кривая внизу сработает раньше, чем кривая над ней. Итак, второе правило селективности состоит в том, что нижестоящее устройство должно быть расположено на графике ниже, чем вышестоящее, чтобы два устройства работали избирательно.
Рис. 3 — Создание избирательности за счет правильного выбора настроек задержки.
Корпус 3:
Определить избирательность набора кривых время-ток довольно просто. Кривые должны совпадать слева направо или снизу вверх в последовательности от нагрузки к источнику. Кривые не должны перекрывать друг друга и не должны пересекать друг друга. Между кривыми должно быть достаточно места (подробнее об этом позже). Кривые также могут указывать, обеспечивают ли вышестоящие устройства резервную защиту.Это происходит, когда крайняя левая часть резервного устройства выходит за пределы диапазона токов предпочтительного устройства.
На Рисунке 4 устройства выстроены в соответствии с рекомендациями. Обратите внимание, что по мере того, как вы отслеживаете три уровня тока короткого замыкания во времени, устройство, ближайшее к нагрузке, первым завершит свою задержку по времени и сработает раньше других выключателей. Если устройство, ближайшее к нагрузке, не сработает, следующее устройство в восходящем направлении отключится после указанной дополнительной временной задержки и раньше, чем другое оставшееся устройство.
Рис. 4 — Определение полной избирательности
На рисунке 5 показан пример системы, которая не является избирательной на определенных текущих уровнях. Три места повреждения и соответствующие уровни тока показаны с помощью цветных символов и стрелок. Каждый показанный выключатель находится в распределительном щите или панели, которая может содержать другие фидеры или ответвления. Таким образом, срабатывание выключателя 1 или выключателя 2 изолирует гораздо больше, чем одиночная нагрузка, показанная на однолинейной схеме.
Начнем с замыкания, расположенного у зеленого креста, с током замыкания, обозначенным зеленой стрелкой.Место повреждения вызывает протекание тока через все три выключателя. Но величина тока достаточно высока, чтобы сработать только выключатели 1 и 3. Прерыватель 3 срабатывает первым и изолирует неисправность, поэтому система выглядит избирательной. Однако обратите внимание, что в ситуации резервного копирования сработает выключатель 1, а не выключатель 2, что приведет к отключению большей части энергосистемы, чем необходимо.
Рис. 5 — Пример неселективной системы
Повреждение, показанное синим крестиком, расположено на входной стороне выключателя 3, поэтому через этот выключатель не будет протекать ток.Автоматические выключатели 1 и 2 распознают эту неисправность. Из-за пересечения кривых выключателей 1 и 2 выключатель 1 сработает первым при этой неисправности, что нежелательно, так как это приведет к отключению большей части системы, чем необходимо.
Короткое замыкание, показанное желтым крестиком, имеет очень высокий ток, который воспринимается обоими выключателями 1 и 2. В этом случае уровень тока достаточно высок, чтобы пройти через кривые, где выключатели 1 и 2 являются селективными, т. Е. Справа от пересечение их кривых.Следовательно, мы можем видеть, что выключатель 2 обнаружит ток до выключателя 1 и сработает до него. Таким образом, в этом сценарии сохраняется избирательность.
TCC предохранителя:Рисунок 4: TCC предохранителя
Каждый предохранитель представлен полосой: минимальная характеристика плавления (сплошная линия) и полная чистая характеристика (штриховая линия). Полоса между двумя линиями показывает допуск этого предохранителя в определенных условиях испытаний. При заданном перегрузке по току определенный предохранитель при тех же обстоятельствах сработает одновременно в пределах его временного диапазона.Кроме того, предохранители имеют обратнозависимую время-токовую характеристику, что означает, что чем больше перегрузка по току, тем быстрее они срабатывают.
Кривые повреждения кабеля:Кривая повреждения кабеля показывает, какой ток может выдержать кабель без повреждения изоляции и как долго он может выдерживать различные значения токов.
Рисунок 5: Типичная кривая повреждения кабеля
Ампер полной нагрузки: Это постоянный ток или номинальный ток, который будет протекать по кабелю, величина зависит от нагрузки, и кабель должен быть такого размера, чтобы он мог легко переносить этот ток.
Допустимая нагрузка кабеля: Также известная как допустимая нагрузка по току, это максимальный ток в амперах, который кабель может постоянно выдерживать, не повреждая его изоляцию или не превышая его номинальную температуру.
Рисунок 6: Защита кабеля
В идеале мы хотим, чтобы наш автоматический выключатель отключал и изолировал входящие кабели, прежде чем они будут повреждены током короткого замыкания. Поэтому при рисовании TCC мы корректируем наши кривые выключателя слева от кривых повреждения кабеля.Это указывает на то, что прерыватель сработает до того, как ток короткого замыкания повредит какой-либо из кабелей.
Кабель, выбранный не в соответствии с уровнями тока неисправности системы, может быть легко поврежден, а кабель неправильного размера может также перегреться. Таким образом, выбор правильного размера и типа кабеля очень важен с точки зрения затрат на техническое обслуживание, безопасности и надежности.
TCC трансформатора:Высокий пусковой ток, который трансформатор потребляет для возбуждения самого себя, называется пусковым током трансформатора.Отключение из-за пускового тока действительно является неприятностью, потому что мы хотим, чтобы трансформатор продолжал работать после этого, а не отключался.
Мы также можем нанести эту характеристику на TCC. В идеале автоматический выключатель должен располагаться справа и выше кривой броска тока трансформатора. Это указывает на то, что автоматический выключатель не сработает при пусковом токе. Если кривая выключателя находится слева от кривой броска тока, это будет указывать на ложное отключение.
Рисунок 7: Согласование с кривыми броска тока и повреждения трансформатора
Моментальное отключение из-за пускового тока:Иногда в нашей системе возникают временные высокие токи или условия перегрузки, такие как пусковой ток трансформатора, пусковой ток двигателя, токи от моторных приводов или даже случайные скачки напряжения.Они сохраняются в течение короткого времени, в среднем около 10 мс для броска тока трансформатора и нескольких секунд для двигателей.
Однако недопустимо, чтобы наша система рассматривала их как неисправности. Отключение в этих условиях известно как ложное срабатывание, потому что эти условия часто возникают в энергосистемах, и мы не хотим, чтобы наша система срабатывала каждый раз, когда это происходит.
Кривая повреждения трансформатора: IEEE Guide C57.109-1993 (R2008) рассматривает как тепловые, так и механические воздействия на внешний трансформатор в результате неисправности.
Способность трансформатора противостоять этим воздействиям показана на рисунке ниже.
Рисунок 8: Кривая тепловой мощности трансформатора
I2t (I = амперы, t = время) с единицей измерения Ампер в квадрате секунд (A2S) пропорционально увеличению тепловой энергии в проводнике в результате постоянного тока с течением времени. В трансформаторах значение I2t определяется, чтобы показать пределы теплового режима их обмоток до того, как произойдет повреждение.
Кривые повреждения также известны как кривые устойчивости.Прерыватель должен быть согласован с кривой повреждения на TCC, чтобы он защищал устройство от токов, которые могут его повредить. Следовательно, кривая выключателя должна располагаться слева от кривой устойчивости и не перекрываться с ней, чтобы наш трансформатор был полностью защищен от всех значений токов, превышающих его номинальные повреждения.
кривые время-ток
Скорость срабатывания выключателя
Кривые время-ток используются, чтобы показать, насколько быстро выключатель сработает при любой величине тока.На следующем рисунке показано, как работает кривая время-ток. Цифры внизу (горизонтальная ось) представляют ток в амперах. Цифры слева (вертикальная ось) представляют время в секундах.
Чтобы определить, сколько времени потребуется выключателю для отключения при заданном токе, найдите уровень тока в нижней части графика. Проведите вертикальную линию до точки, где она пересекает кривую. Затем проведите горизонтальную линию с левой стороны графика и найдите время до поездки.Например, на этом рисунке автоматический выключатель сработает, когда ток останется на уровне 6 ампер в течение 0,6 секунды.
Видно, что чем выше ток, тем короче время, в течение которого автоматический выключатель остается включенным. Из кривой время-ток на следующей странице видно, что фактические кривые время-ток нарисованы на журнальной бумаге, а горизонтальная линия кратна номинальному постоянному току выключателя.
В информационном окне в верхнем правом углу обратите внимание, что кривая время-ток, показанная на следующей странице, определяет работу автоматического выключателя CFD6.
В этом примере выбран расцепитель на 200 ампер.
Компонент защиты от перегрузки на кривой время-ток
Верхняя часть кривой время-ток показывает характеристики компонента отключения по перегрузке автоматического выключателя. Кривые время-ток показаны в виде полос, и фактическая производительность любого выключателя может упасть в любом месте в пределах диапазона. Используя приведенный в качестве примера автоматический выключатель CFD6 и расцепитель на 200 ампер, время срабатывания автоматического выключателя при любой заданной перегрузке можно легко определить, используя ту же процедуру, что описана ранее.
Например, выключатель сработает от 25 до 175 секунд при токе 600 ампер и температуре окружающей среды 40 ° C, что в 3 раза превышает номинал расцепителя.
Это проиллюстрировано приведенной ниже кривой время-ток.
Компонент мгновенного отключения на кривой время-ток
Нижняя часть кривой время-ток показывает характеристики компонента мгновенного отключения (короткое замыкание) автоматического выключателя. Максимальное время отключения (время, необходимое для полного размыкания выключателей) уменьшается с увеличением тока.Это происходит из-за конструкции контактов с раздувом, в которой используется магнитное поле, создаваемое вокруг контактов.
По мере увеличения тока увеличивается напряженность магнитного поля, что помогает размыкать контакты. Этот автоматический выключатель имеет регулируемую мгновенную точку срабатывания от 900 до 2000 А, что в 4,5–10 раз превышает номинал расцепителя 200 А. Если настройка точки срабатывания установлена на минимум (900 А), и происходит ток короткого замыкания 900 ампер или больше, выключатель сработает в течение 1 цикла (16.8 мс). Если установка точки срабатывания установлена на максимум (2000 А), и происходит ток короткого замыкания в 900 ампер, прерыватель сработает примерно через 12–55 секунд.
Чем больше ток короткого замыкания, тем быстрее срабатывает выключатель.
ИСТОЧНИК: Siemens
Соответствующий контент EEP с рекламными ссылками
% PDF-1.4 % 39 0 объект >>> эндобдж 75 0 объект > поток конечный поток эндобдж 35 0 объект > эндобдж 40 0 объект > / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / Rotate 0 / Thumb 32 0 R / TrimBox [0.p b_4C @ $: #) 8Ft N’I $ Qpevqzu | e «/ WD: 8q_ ֬` N34oMs30 ߁ XV [cði L6vzUG ڐ Դ
ВРЕМЯ — ТЕКУЩИЕ ХАРАКТЕРИСТИКИ (TCC) ОСНОВЫ И Учебные пособия | ПРОЕКТИРОВАНИЕ ТРАНСМИССИОННЫХ ЛИНИЙ и СТУПИЦА ЭЛЕКТРОТЕХНИКИ
Кривая TCC отображает время, необходимое для цепи. выключатель автоматически размыкается в зависимости от проходящего через него тока. Кривая в основном это функция типа расцепителя защиты и его настроек.
Обратно-временная характеристика предназначена для защиты проводники. Обратно-временная характеристика получила свое название от обратной пропорциональность времени срабатывания по отношению к величине тока, протекающего через автоматический выключатель.Другими словами, открытие происходит быстрее, если перегрузка по току. состояние выше.
Кривую удобно разделить на три области:
В котором время открытия измеряется в минутах, максимум до 1 час или 2 часа — в зависимости от размера автоматического выключателя и степени перегрузка по току — для обеспечения характеристики с обратнозависимой выдержкой времени. Предусмотренная временная задержка позволяет переносить прерывистые или циклические нагрузки, превышающие ток срабатывания не вызывая перебоев. Он срабатывает при длительной перегрузке по току для защиты кондукторы и другое оборудование.
В котором время открытия измеряется в секундах или десятых долях секунды. Максимальный ток может быть в диапазоне, ожидаемом в случае блокировки ротора двигателя. или дуговое замыкание на землю. Временная задержка в этой области позволяет запускать и пусковые переходные токи или для выборочной координации со стороны питания или устройства со стороны нагрузки.
В котором открытие не задерживается намеренно и рассчитывается по времени в миллисекундах. Типичная работа — результат короткого замыкания на болтовом вина.Кривые время-ток являются отличным инженерным инструментом, когда время и ток — главные факторы.В зоне короткого замыкания другие факторы (например, коэффициент мощности, момент возникновения короткого замыкания, количество полюсов или фазы в КЗ, поведение другого оборудования в цепи) также может влияют на реакцию и время очистки.
Обычно доступные кривые, построенные в соответствии с NEMA AB 1-1986 показывают широкий диапазон времени отключения для многополюсного прерывания, которое включает влияние этих факторов.
Номинальное значение постоянного тока может быть фиксированным или регулируемым. В некоторых конструкциях может потребоваться замена всего или части расцепителя для изменения непрерывный рейтинг.Характеристики отключения по максимальному току — это функция, многократная, или процент от номинального значения продолжительного тока.
680-211.indd
% PDF-1.3 % 1 0 объект >] / Pages 3 0 R / Type / Catalog / ViewerPreferences >>> эндобдж 2 0 obj > поток 2018-10-16T15: 05: 31-05: 002018-10-16T15: 05: 36-05: 002018-10-16T15: 05: 36-05: 00 Adobe InDesign CC 13.1 (Macintosh) 1uuid: f2f078ba-c534-9941 -b447-f66555edb39cadobe: docid: indd: 6a70bc45-cfd2-11df-80c5-a90b8a3b639dxmp.id: ad2711ff-f5f9-4061-a0bd-086fa24f1231proof: pdfxmp.iid: f9bff517-ea94-44ae-a3a2-348e04bd0802xmp.did: 1ce63908-87bf-4f5f-876c-1576df9c52f7adobe: docid: indd: 6a70bc45-cfd2-11df-80c3fromdbc45-cfd2-11df-80c3fromdfAdobe348d 13.1 (Macintosh) / 2018-10-16T15: 05: 31-05: 00 application / pdf
Данные времени-токовых характеристик (TCC)
Данные время-токовых характеристик (TCC)Большинство данных время-текущих характеристик (TCC) вводятся в библиотеку как время-текущие точки. Кривая TCC может быть представлена рядом временных и текущих координат. При построении кривых EasyPower создает сглаженные линии, проходящие через эти точки. TCC некоторых реле основаны на формулах.
Время-Текущие точки
Пример 1: Реле данных TCC
На рисунке ниже представлена кривая TCC реле GEC IAC-51 для тока срабатывания 1 ампер и настройки шкалы времени 1 секунда. Вдоль кривой отмечены десять точек. Координаты или текущие значения этих точек указаны в скобках.
Рисунок 1: Время-текущие точки реле GEC IAC-51 для набора времени 1
Эти значения вводятся в электронные таблицы в разделе 2 (Time Dial) библиотеки, как показано на рисунке ниже.Значения в самой верхней желтой строке — текущие значения. Соответствующие значения времени вводятся в белые ячейки. Значения времени для точек, показанных на рисунке выше, были введены в строку 2 таблицы ниже. Значения времени для других настроек шкалы времени вводятся в последовательные строки. Обратите внимание, что есть только одна строка для текущих значений. Следовательно, значения времени для разных настроек шкалы времени должны соответствовать одному и тому же набору текущих значений.
Рисунок 2: Секция 2 (шкала времени) реле
Пример 2: Данные TCC по выключателям MCCB
Кривая TCC MCCB Square D KAL 70Amp показана на рисунке ниже.Единицы измерения текущих координат кратны номинальному продолжительному току. Для любого заданного значения тока MCCB может отключиться в любое время между моментами времени, указанными на Минимальной кривой очистки и максимальной кривой очистки. Текущие моменты времени показаны в скобках. Для каждой кривой можно получить любое количество точек. Обычно для представления кривой достаточно от 8 до 10 точек.
Текущие моменты времени вводятся в электронную таблицу в разделе 1 информации MCCB библиотеки.Первые два столбца предназначены для минимальной кривой клиринга, а последние два столбца — для максимальной кривой клиринга. Вам нужно будет указать метод расчета самовывоза. В этом примере расчет срабатывания: «Ipu * Trip Amps», потому что TCC дается кратно номинальному току. Если TCC указывается в фактических токах отключения, тогда для расчета срабатывания срабатывания будет «Ток в амперах».
Рисунок 3: Время-текущие точки квадрата D KAL 70A MCCB
Рисунок 4: Вкладка Секции 1 (Тепловая) MCCB
Время-текущие точки мультисегмента TCC
Устройства, такие как MCCB, твердотельные и нетвердотельные отключения, имеют несколько сегментов в своих TCC.В случае MCCB данные теплового отключения вводятся как время-текущие точки, а данные магнитного отключения обычно вводятся отдельно как мгновенный ток отключения. Однако для MCCB с фиксированным (не регулируемым) магнитным расцепителем данные теплового и магнитного TCC могут быть введены как единый набор точек времени и тока. В таком случае в точке, где тепловая кривая пересекается с магнитной кривой, получаются повторяющиеся точки время-ток. Точно так же дублирующиеся точки берутся на любом пересечении прямых линий с изогнутыми линиями.
Пример 3: Многосегментный TCC квадратного D MCCB EH 100A
Рисунок 5: TCC MCCB с фиксированным магнитным расцепителем: квадрат D EH 100A
Для TCC, показанного выше, точки пересечения вводятся как повторяющиеся точки в таблице, показанной ниже. Данные для них выделены серым цветом.
Рисунок 6: Время-текущие точки квадрата D EH 100A
TCC на основе формул
В некоторых цифровых реле формулы используются для генерации TCC.EasyPower включает в библиотеку следующие формулы:
Чтобы ввести данные TCC для формул, выберите соответствующее имя формулы в поле «Модель» в разделе 2 «Информация о реле», как показано на рисунке ниже.
Рисунок 7: Модель коробки для реле
На приведенном ниже рисунке показан пример формулы Basler. Формула, используемая для расчета TCC, отображается под названием модели. Значения, используемые в формуле, вводятся в электронную таблицу и поля редактирования.
Рисунок 8: Basler Formula
Регулируемый диапазон настроек
Защитные устройства могут иметь регулируемые настройки тока срабатывания или задержки по времени. Вы можете указать любой регулируемый диапазон данных как непрерывный или дискретный.
Дискретный: диапазон считается дискретным, если имеется конечное число дискретных значений, до которых можно отрегулировать настройки. Если вы выбираете какой-либо диапазон как дискретный, вы должны указать все возможные настройки, доступные в строках электронной таблицы.Например, если диапазон ответвлений реле равен {0,5, 0,6, 0,8, 1, 1,2, 1,5, 2}, тогда выберите диапазон данных как «Дискретный» и введите различные значения ответвлений в отдельных строках электронной таблицы под названием « Значения.» Точно так же, если шкала времени реле дискретная, выберите «Дискретный» в диалоговом окне. Все значения дискретного набора времени должны вводиться отдельно в последовательные строки в электронной таблице для набора времени.
Непрерывный: диапазон регулируется плавно, если он делится на значение шага.Когда выполняются настройки, настройка увеличивается или уменьшается на кратное значение шага. Когда вы выбираете любой диапазон как непрерывный, вы также должны указать значение шага. Для непрерывных диапазонов достаточно предоставить только две настройки: минимальное и максимальное значения в диапазоне. Например, если срабатывание реле плавно регулируется от 0,5 до 2 с наименьшим шагом 0,01, введите 0,5 как минимум, 2 как максимум, тип настройки как непрерывный и значение шага как 0.01. Когда вы вводите любой диапазон данных как непрерывный, EasyPower вычисляет промежуточные значения для выбранной настройки путем интерполяции.
Дополнительная информация
Определение предохранителей| Характеристики элемента предохранителя
Описание предохранителей:Определение предохранителей Указывает, что: Предохранители — это короткий кусок металла, вставленный в цепь, который плавится, когда через него протекает чрезмерный ток, и тем самым разрывает цепь.
Плавкий элемент обычно изготавливается из материалов с низкой температурой плавления, высокой проводимостью и минимальным износом из-за окисления, например, серебряная медь и т. Д. Он вставляется последовательно с защищаемой цепью. В нормальных условиях эксплуатации плавкий элемент имеет температуру ниже точки плавления. Следовательно, он пропускает нормальный ток без перегрева. Однако при коротком замыкании или перегрузке ток через предохранитель превышает номинальное значение.При этом повышается температура, и плавкий элемент плавится (или перегорает), размыкая защищаемую им цепь. Таким образом, предохранитель защищает машины и оборудование от повреждений из-за чрезмерных токов.
Время, необходимое для перегорания предохранителя, зависит от величины чрезмерного тока. Чем больше ток, тем меньше времени требуется предохранителю, чтобы перегореть. Другими словами, предохранитель имеет обратнозависимые время-токовые характеристики, как показано на рис. 20.1. Такая характеристика позволяет использовать его для защиты от перегрузки по току.
Преимущества- Это самая дешевая из имеющихся форм защиты.
- Не требует обслуживания.
- Его работа по своей сути полностью автоматическая, в отличие от выключателя, который требует сложного оборудования для автоматического срабатывания.
- Он может отключать сильные токи короткого замыкания без шума и дыма.
- Плавкий элемент меньшего размера создает эффект ограничения тока в условиях короткого замыкания.
- Обратнозависимая время-токовая характеристика определения предохранителей делает его пригодным для защиты от перегрузки по току.
- Минимальное время срабатывания можно сделать намного короче, чем у автоматических выключателей.
- При повторном подключении или замене предохранителя после работы теряется много времени.
- При сильных коротких замыканиях селективность между плавкими предохранителями, включенными последовательно, не может быть получена, если нет достаточной разницы в размерах, указанных в определении предохранителей.
- Токовая характеристика предохранителя не всегда может быть связана с характеристикой защищаемого устройства.
Предохранитель предназначен для пропускания нормального тока без перегрева, но когда ток превышает свое нормальное значение, он быстро нагревается до точки плавления и отключает защищенную им цепь. Для того, чтобы он мог удовлетворительно выполнять эту функцию, предохранительный элемент должен иметь следующие желаемые характеристики:
- низкая точка плавления e.г., олово, свинец.
- высокая проводимость, например, серебро, медь.
- без повреждений, вызванных окислением, например, серебро
- низкая стоимость, например, свинец, олово, медь.
Приведенное выше обсуждение показывает, что ни один материал не обладает всеми характеристиками. Например, свинец имеет низкую температуру плавления, но имеет высокое удельное сопротивление и склонен к окислению. Точно так же медь имеет высокую проводимость и низкую стоимость, но быстро окисляется.Поэтому при выборе материала для определения предохранителей приходится идти на компромисс.
Материалы плавких элементов:Наиболее часто используемые материалы для плавких элементов — свинец, олово, медь, цинк и серебро. Для малых токов до 10 А для изготовления плавкого элемента используется олово или весь сплав свинца и олова (свинец 37%, олово 63%). Для больших токов используется медь или серебро. Обычно медь покрывают оловом для защиты от окисления. Цинк (только в виде ленты) хорош, если требуется определение предохранителей со значительным запаздыванием i.е., тот, который не очень быстро тает при небольшой перегрузке.
Современная тенденция заключается в использовании серебра, несмотря на его высокую стоимость, по следующим причинам:
- Сравнительно не подвержен окислению.
- Не портится при использовании на сухом воздухе.
- Коэффициент расширения серебра настолько мал, что не возникает критической усталости. Следовательно, плавкий элемент может длительное время выдерживать номинальный ток.
- Электропроводность серебра очень высока.Следовательно, для данного номинала плавкого элемента требуется масса металлического серебра меньше, чем у других материалов. Это сводит к минимуму проблему очистки массы испаренного материала, высвободившегося при плавлении, и, таким образом, обеспечивает высокую скорость работы.
- Из-за сравнительно низкой удельной теплоемкости плавкие элементы из серебра могут нагреваться от нормальной температуры до испарения быстрее, чем другие плавкие элементы. Более того, сопротивление серебра резко возрастает по мере достижения температуры плавления, что делает переход от плавления к испарению почти мгновенным.Следовательно, при более высоком работа становится намного быстрее.
- Серебро испаряется при температуре намного ниже той, при которой его пар легко испаряется. Следовательно, когда дуга образуется через испаренную часть элемента, путь дуги имеет высокое сопротивление. В результате ток короткого замыкания быстро прерывается.
При анализе предохранителей часто используются следующие термины:
- Номинальный ток плавкого элемента: Это ток, который элемент плавкого предохранителя может нормально выдерживать без перегрева, или он зависит от повышения температуры контактов держателя предохранителя, материала предохранителя и окружающей среды, указанной в определении предохранителей.
- Ток предохранителя: Это минимальный ток, при котором плавкий элемент плавится и, таким образом, размыкает защищаемую им цепь. Очевидно, его значение будет больше, чем текущий номинал плавкого элемента.
Для круглой проволоки приблизительное соотношение между током плавления I и диаметром d проволоки составляет
., где k — постоянная, называемая константой предохранителя . Его значение зависит от металла, из которого изготовлен элемент предохранителя.Сэр W.H. Прис нашла значение k для различных материалов, как указано в таблице ниже:
Ток предохранителя зависит от различных факторов, таких как:
- материал плавкого элемента
- длина — чем меньше длина, тем больше ток, потому что короткий предохранитель может легко отвести все тепло
- диаметр
- размер и расположение терминалов
- предыдущая история
- тип используемого корпуса
- Коэффициент предохранителя: Это отношение минимального тока предохранителя к номинальному току элемента предохранителя i.е.
Его значение всегда больше единицы. Чем меньше коэффициент плавления, тем труднее избежать износа из-за перегрева и окисления при номинальном токе передачи. Для полузамкнутых или повторно свариваемых предохранителей, в которых в качестве плавкого элемента используется медная проволока, коэффициент плавления обычно равен 2. Более низкие значения коэффициента плавления могут использоваться для картриджных предохранителей закрытого типа, в которых используются серебряные или биметаллические элементы.
- Предполагаемый ток: Рис.20.2 показано, как переменный ток ток отключен предохранителем. Ток короткого замыкания обычно имеет очень большой первый контур, но на самом деле он генерирует достаточно энергии, чтобы расплавить плавкий элемент задолго до достижения пика этого первого контура. Среднеквадратичное значение. значение тока первого контура повреждения известно как предполагаемый ток. Следовательно, предполагаемый ток можно определить как:
Это среднеквадратичное значение. значение первого контура тока короткого замыкания, полученное при замене предохранителя на обычный провод с ничтожно малым сопротивлением.
- Ток отключения: Это максимальное значение тока короткого замыкания, фактически достигаемое перед плавлением предохранителя.
При возникновении неисправности ток короткого замыкания имеет очень большую первую петлю из-за значительной степени асимметрии. Вырабатываемого тепла достаточно, чтобы расплавить плавкий элемент задолго до достижения пика первого контура (точка «а» на рис. 20.2). Ток, соответствующий точке «а», является током отключения. Значение отсечения зависит от
.- Номинальный ток предохранителя
- стоимость перспективных текущих
- Несимметрия тока короткого замыкания
Здесь можно упомянуть, что выдающейся особенностью срабатывания предохранителя является размыкание цепи до того, как ток короткого замыкания достигнет своего первого пика.Это дает Fuses Definition большое преимущество перед автоматическим выключателем, поскольку наиболее серьезные тепловые и электромагнитные эффекты токов короткого замыкания (которые возникают при пиковом значении ожидаемого тока) не испытываются с предохранителями. Следовательно, цепи, защищенные плавкими предохранителями, могут быть спроектированы так, чтобы выдерживать максимальный ток, равный значению отключения. Это соображение вместе с относительной дешевизной предохранителей позволяет значительно снизить затраты.
- Время до возникновения дуги: Это время между началом короткого замыкания и моментом отключения.
При возникновении неисправности ток короткого замыкания быстро возрастает и нагревает плавкий элемент. Когда ток короткого замыкания достигает значения отсечки, плавкий элемент плавится и зажигается дуга. Время от начала короткого замыкания до момента возникновения дуги известно как время до возникновения дуги. Время до возникновения дуги обычно невелико: типичное значение составляет 0,001 секунды
- Время возникновения дуги: Это время между окончанием времени до возникновения дуги и моментом, когда дуга гаснет.