Заряд иона лития: Таблица менделеева — Электронный учебник K-tree

Содержание

чем ион лития отличается от атома лития?

2. Разбавление приготовленного раствора.Отмерьте мерным цилиндром воду объемом 50 см в кубе (плотность воды 1 г/см) и прилейте к ранееприготовленному … раствору. Как изменилась масса раствора и массовая доля растворенноговещества?утрорецкого вещества в растворе если из раствора (из​

даю 25 баллов 1) Вкажіть формулу оксиду, що реагує з хлоридною кислотою: а) CaO: б) CO2 в) CO.2) Який мстал реагуватиме з сульфатною кислотою: а) золо … то; б) залізо; в) срібло.3) Яка сіль утвориться при взаємодії калій гідроксиду з сульфітною кислотою: а) K2S; б) K2SO4 B) K2SO3.4) Із якою речовиною реагує натрій гідроксид: а) кальцій оксид; б) фторидна кислота; б) літій гідроксид.5) З якими з даних речовин реагуватиме сульфідна кислота: цинк, карбон (IV) оксид, ферум (III) оксид, мідь, кальцій гідроксид? Складіть рівняння можливих реакцій.6) Здійсніть перетворення: калій — калій гідроксид—калій сульфат—калій хлорид7) Скільки грамів осаду утвориться при взаємодії 3,175 г ферум (ІІ) хлориду з натрійгідроксидом?​

3. Дописати рівняння реакцій Al + HCl = AlCl 3 + … MgO + HNO 3 = H 2 O + … K 2 O + H 3 PO 4 = K 3 PO 4 + … CaO + H 2 O = … + … = H 2 SO 4 Cu + HCl =

З наведеного переліку формул вибрати формули кислот, солей та дати їм назви СаО, H 2 SiО 3, K 2 SО 4 , HNО 3 , NaОН, СО 2 , NaCl, MgS, Fe 2 (SO 3 ) 3 … , AgNO 3 , BaSO 4 , AlF 3 , KF, K 2 CO 3 , Li 2 S, Al 2 (SO 4 ) 3 , FeCl 3 , Zn(NO 3 ) 2 , Na 3 PO 4 ,Cu SO 3 , CaCl 2 , CaCO 3 , Ca 3 (PO 4 ) 2 , Na 2 SO 3 , LiF , NaNO 3 , СаS , А1 2 (SO 3 ) 3 ,KCl, Mg 3 (PO 4 ) 2 ,Н 3 РО 4 , H 2 S, AgCl, HF, H 2 О, HCl, LiОH, H 2 SО 4 .

1.У двох пробірках міститься натрій сульфат Na 2SО4 і Na2SO3 натрій сульфіт. До обох пробірок додали розчин барій нітрату Ba (NO3)2 . При цьому в обох … пробірках утворився білий осад. У який спосіб можна відрізнити ці два осади? Складіть відповідні рівняння реакцій.

Знайти масу води, яку необхідно долити до 400г розчину солі з масовою часткою солі 6%, щоб отримати розчин з масовою часткою солі 4%.​

Ch4 | Ch4– C– Ch4 | Ch4 НАЙДИТЕ НАЗВАНИЕ СОЕДИНЕНИИ ПО НОМЕНКЛАТУРЕ ЮАК​

помогите, пожалуйстарасположите оксиды в порядке возрастания содержания(на фото)​

Ch4–Ch3–Ch3–Ch4 найдите название соединении по номенклатуре ЮПАК ​

1) Вкажіть формулу оксиду, що реагує з хлоридною кислотою: а) CaO: б) CO2 в) CO.2) Який мстал реагуватиме з сульфатною кислотою: а) золото; б) залізо; … в) срібло.3) Яка сіль утвориться при взаємодії калій гідроксиду з сульфітною кислотою: а) K2S; б) K2SO4 B) K2SO3.4) Із якою речовиною реагує натрій гідроксид: а) кальцій оксид; б) фторидна кислота; б) літій гідроксид.5) З якими з даних речовин реагуватиме сульфідна кислота: цинк, карбон (IV) оксид, ферум (III) оксид, мідь, кальцій гідроксид? Складіть рівняння можливих реакцій.6) Здійсніть перетворення: калій — калій гідроксид—калій сульфат—калій хлорид7) Скільки грамів осаду утвориться при взаємодії 3,175 г ферум (ІІ) хлориду з натрійгідроксидом?​

Опишите строение атома лития. Нарисуйте модель нейтрального атома. Что необходимо сделать, чтобы превратить его в положительный ион, в отрицательный ион? Нарису

Главная > Документ

Сохрани ссылку в одной из сетей:
Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Вариант 1

  1. Опишите строение атома лития. Нарисуйте модель нейтрального атома. Что необходимо сделать, чтобы превратить его в положительный ион, в отрицательный ион? Нарисуйте положительный и отрицательный ионы лития.

  2. Как было доказано существование наименьшего заряда в природе? Как называется эта частица. Какую массу и заряд она имеет?

  3. Если потереть одно тело о другое, то они оба получают заряды. Почему это происходит? Какие это заряды и почему?

Вариант 2

  1. Опишите строение атома бора. Нарисуйте модель нейтрального атома. Что необходимо сделать, чтобы превратить его в положительный ион, в отрицательный ион? Нарисуйте положительный и отрицательный ионы бора.

  2. Что такое электрическое поле? Какими свойствами оно обладает?

  3. Положительно заряженный металлический шар соединили проводником с таким же незаряженным шаром. После этого оба шара оказались заряженными. Объясните процесс передачи заряда от одного шара к другому.

Вариант 3

  1. Опишите строение атома бериллия. Нарисуйте модель нейтрального атома. Что необходимо сделать, чтобы превратить его в положительный ион, в отрицательный ион? Нарисуйте положительный и отрицательный ионы бериллия.

  2. Чтотакое проводники и непроводники (дайте определения). В чем разница в их строении?

  3. Почему незаряженная алюминиевая гильза притягивается к отрицательно заряженной эбонитовой палочке?

Вариант 1

  1. Опишите строение атома лития. Нарисуйте модель нейтрального атома. Что необходимо сделать, чтобы превратить его в положительный ион, в отрицательный ион? Нарисуйте положительный и отрицательный ионы лития.

  2. Как было доказано существование наименьшего заряда в природе? Как называется эта частица. Какую массу и заряд она имеет?

  3. Если потереть одно тело о другое, то они оба получают заряды. Почему это происходит? Какие это заряды и почему?

Вариант 2

  1. Опишите строение атома бора. Нарисуйте модель нейтрального атома. Что необходимо сделать, чтобы превратить его в положительный ион, в отрицательный ион? Нарисуйте положительный и отрицательный ионы бора.

  2. Что такое электрическое поле? Какими свойствами оно обладает?

  3. Положительно заряженный металлический шар соединили проводником с таким же незаряженным шаром. После этого оба шара оказались заряженными. Объясните процесс передачи заряда от одного шара к другому.

Вариант 3

  1. Опишите строение атома бериллия. Нарисуйте модель нейтрального атома. Что необходимо сделать, чтобы превратить его в положительный ион, в отрицательный ион? Нарисуйте положительный и отрицательный ионы бериллия.

  2. Чтотакое проводники и непроводники (дайте определения). В чем разница в их строении?

  3. Почему незаряженная алюминиевая гильза притягивается к отрицательно заряженной эбонитовой палочке?



Похожие документы:

  1. 1. Измерение физических величин. Система единиц

    Документ

    положительными, отрицательными ионами? Во что превратится атом натрия, если из еголития или положительный ион лития? Атом хлора или отрицательный ион хлора? Расчетные задачи В ядре атома … на тело? Что нужно сделать, чтобы увеличить силу притяжения …

  2. Уважаемый читатель, предлагаем Вашему вниманию замечательную книгу Юрия Павловича Батулина – парапсихолога, научного сотрудника Национального научно-исследовательского центра оборонных технологий и военной безопасности Украины, главного эксперта Международной академии биоэнерготехнологий (мабэт)

    Документ

    чтобы есть мясо, с целью пополнения организма белком. Обосновывается это тем, что якобы строение егоиони­зируя (облучая) на своем пути атомыЧтобы превратитьЧто необходима модельего вибрациями (положительными, отрицательныминеобходимо сделать

  3. Общее вступление. На этом сайте собраны посвящённые здоровью материалы, автором которых является Александр Бруснёв. Подборка представляет собой: 3 книги, неодно

    Документ

    нарисоватьего, что ведёт в конечном счёте к полному вырождению. Необходимо принимать все меры к тому, чтобычто его превратилиопишуатомосделать вывод, что по строениюотрицательные ионылитьемоделинейтральноеположительные, то очень отрицательные

  4. Занятие №1. Введение. Учебные вопросы занятия: Понятие о хирургии и хирургических болезнях

    Методическая разработка

    … какой моделью взаимоотношений с … нейтральногоионыОпишитеположительных и отрицательных … особенности строения кругов … Что необходимо сделать для его нормализации? Больному необходимопревратившисьатомов … . 4. Нарисовать в виде … необходимо, чтобылить

  5. Existential psychotherapy

    Документ

    … тридцать нейтральных и … что может сделать, чтобы повлиять на егоОтрицательную волю не следует уничтожать, но необходимо принимать таким образом, чтобы она трансформировалась в положительную … ты превратить его в …

    опишу несколько часто встречающихся моделей

Другие похожие документы..

Иониты лития — Справочник химика 21

    Литий Ь от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе). [c.485]

    Здесь приводятся лишь частные реакции иоиов лития. В общий же аналитический практикум катионов ионы лития не включены. [c.242]


    Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре. Кроме того, нужно иметь в виду, что указанные в таблице 18 стандартные электродные потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Это может нарушать некоторые ожидаемые закономерности в расположении металлов в электрохимическом ряду напряжений металлов. Например, электрохимический ряд напряжений металлов начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов. 
[c.81]

    Связь иона с молекулами растворителя, в частности с молекулами воды, ионно-дипольная, а так как напряженность поля на поверхности нона лития гораздо больше, чем на поверхности иона калия (ибо поверхность первого меньше поверхности второго, а радиус, т. е. расстояние диполей воды от эффективного точечного заряда в центре иона, меньше), то степень гидратации иона лития больше степени гидратации иона калия. Со-г/,асно формуле Стокса, многозарядные ионы должны обладать большей подвижностью, чем однозарядные. Как видно из м 2, скорости движения многозарядных ионов мало. л . очевидно, [c.431]

    Полнота протекания реакции увеличивается при повышении pH раствора (связывании ионов Н ). В некоторых случаях, однако, при повышении pH может образоваться гидроксид металла. Поэтому при работе с комплексонами требуется создание оптимального значения pH раствора, зависящего от прочности комплекса и растворимости соответствующего гидроксида. В табл. 9 приведены константы нестойкости некоторых ионов металлов с ионами этилендиаминтетрауксусной кислоты ( ). Например, ион Ре образует очень прочный комплекс с комплексоном П1 и очень труднорастворимый гидроксид. Реакция комплексообразования может происходить при pH не выше 3. Катион кальция образует сравнительно хорошо растворимый гидроксид и вступает в реакцию с комплексоном П1 при pH 9—10. Поскольку комплекс иона Са + менее прочен, чем комплекс иона Ре , проведение реакции при повышенном pH в случае кальция необходимо. Почти все приведенные в табл. 9 ионы образуют весьма прочные комплексы с комплексоном III. Связывается в комплекс даже такой слабый комплексообразователь, как ион лития. 

[c.153]

    Введение в электролит краун-эфиров (12 краун 4) способствует образованию хелатов с ионами лития, которые препятствуют возникновению литиевых сольватированных комплексов. [c.335]

    На внещней электронной оболочке атомы щелочных элементов имеют по одному электрону. На второй снаружи электронной оболочке у атома лития содержатся два электрона, а у атомов остальных щелочных элементов — по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы довольно легко отдают этот электрон, т. е. характеризуются низкой энергией ионизации (табл. 14.2). Образующиеся при этом однозарядные положительные ионы имеют устойчивую электронную структуру соответствующего благородного газа (ион лития — структуру атома гелия, ион натрия — атома неона и т. д.). Легкость отдачи внешних электронов характеризует рассматриваемые элементы как наиболее типичные представители металлов металлические свойства выражены у щелочных элементов особенно резко. 

[c.382]

    Вычислите стоксовый радиус иона лития в водном растворе при бесконечном разведении при 298 К. Сравните полученное значение с кристаллографическим радиусом Li+, по Бокию, 0,68-10″ нм. [c.307]

    Энтальпия гидратации ионов лития существенно больше, чем ионов калия, и перекрывает различия в энтальпии атомизации и ионизации (рис. 93). Поэтому литий обладает в водном растворе большей восстановительной способностью, чем калий. [c.173]

    Сольватация вносит значительный вклад в свободную энтальпию процесса растворения. Наблюдаются существенные различия в специфическом взаимодействии растворителя и растворенной частицы. Электрофильные частицы, например катионы, сольватируются преимущественно ДПЭ-растворителями. Вследствие присоединения молекул растворителя значительно увеличивается эффективный ионный радиус. Так, например, в диметилсульфоксиде размеры сольватированного иона лития. достигают размеров иона тетрабутиламмония. Основные центры молекул растворителя (атомы О, N или 5) в сольватной оболочке ориентированы к иону металла. Связь имеет характер [c.448]

    Необратимые изменения при первом разряде могут быть связаны с образованием МСС с сольватированными электролитом ионами лития и, по-видимому, происходящим в связи с этим расслоением графитовой матрицы, которая, как видно из рис. 6-27, имеет сильно выраженную текстуру. [c.333]

    Для лития наиболее характерно образование ионной связи. Поэтому координационное число в соединениях в отличие от остальных элементов 2-го периода больше 4. Вместе с тем вследствие небольшого размера ион лития характеризуется высокой энергией сольватации, а в литийорганических соединениях литий образует ковалентную связь. [c.587]

    Ион лития восстанавливается труднее всего и, следовательно, является наиболее слабым окислителем  [c.210]

    Наиболее токсичными из а-элементов являются литий и бериллий. Повышение концентрации ионов лития в крови угнетает функцию почек и нарушает деятельность центральной нервной системы. Бериллий повреждает кожу, вызывает заболевание легких [c.590]

    Наибольшее изменение числа переноса по сравнению со свободным раствором наблюдается для иона лития. Так, по данным, полученным 3. П. Козьминой, изменение числа переноса от [c.158]

    Некоторое несоответствие между химическими свойствами металлов и величинами их стандартных электродных потенциалов связано с тем, что последние зависят не только от активности металлов, но и от прочности сольватной оболочки потенциал-определяющих ионов. Так, ионы лития вследствие их малого размера прочно связаны с полярными молекулами воды. Поэтому переход ионов лития из раствора в металл затруднителен. Именно поэтому стандартный электродный потенциал лития отрицательнее потенциалов более активных металлов натрия и калия. [c.325]

    Различные методы определения чисел сольватации часто дают несовпадающие результаты, причем величины л во многих случаях оказываются меньше координационного числа п, т. е. того числа молекул растворителя, которые составляют ближайшее окружение иона. Для объяснения этих результатов можно воспользоваться предложенной О. Я. Самойловым следующей динамической картиной явлений сольватации. Все частицы раствора — ноны и молекулы растворителя — находятся в непрерывном хаотическом движении, которое осуществляется за счет периодических перескоков этих частиц на расстояния порядка размеров молекул. Пусть Т1 — среднее время, в течение которого ион находится в неподвижном состоянии, а тг — время, необходимое, чтобы диполь растворителя, находящийся вблизи иона, порвал связь с другими диполями, изменил свою ориентацию и вошел в состав сольватной оболочки иона. Если Т1 Т2, то молекулы растворителя успевают порвать водородную или диполь-ди-польную связь с другими молекулами растворителя и войти в сольватную оболочку иона. В этих условиях ион окрулоет прочная сольватная оболочка и пн = пь. Поскольку согласно уравнению (II.9) электрическое поле иона тем сильнее, чем меньше его радиус, то это характерно для небольших ионов. Так, например, результаты по сжимаемости водных растворов солей лития, по энтропии гидратации и по подвижности иона дают среднее значение лл=б, соответствующее координационному числу иона лития. При условии Х1сольватной оболочке очень быстро меняются, а экспериментальное значение пл==0. Такой результат получается для ионов большого радиуса и малого заряда, например для ионов 1 и Сз+. При сравнимых Т1 и Т2 числа сольватации принимают значения от О до Пк, причем различные методы в неодинаковой степени отражают процесс замены диполей в сольватной оболочке иона, и это приводит к значительному расхождению результатов для Пн. [c.32]

    На рис. 48 показаны модели гидратированных ионов лития и магния — LI+-4h30 и Мд +.бНгО. Ион Li+ окружен четырьмя молекулами воды. Они расположены по вершинам правильного тетраэдра, в центре которого находится ион лития. Ион Mg + окружен шестью молекулами воды, расположенными по вершинам правильного октаэдра .  [c.141]

    Монтгомери и Ронка [51] предполагали, что расщепление происходит по радикальному механизму. Кеннер и Ричардс [52], изучавшие разложение углеводов в щелочной среде с образованием метасахариновых кислот, отмечали, что в этой реакции важньш фактором является также катион применяемой щелочи ускоряющий эффект иона лития согласуется с его хорошей координационной способностью из-за малого размера больший эффект ионов стронция и особенно кальция указывает, по мнению авторов, на образование внутреннего комплекса, который оказывает гораздо более сильное действие в этой реакции, чем основность реагента. [c.87]

    В аккумуляторе, построенном на основе полиацетилена, использован принцип обратного легирования. Здесь полиацетилено-вый катод и литиевый анод, а электролитом служит раствор ЫС104. Зарядка аккумулятора по существу сводится к легированию полиацетилена анионами СЮт. Положительно же заряженные ионы лития отправляются при этом на анод. При разрядке все процессы повторяются в обратном порядке. [c.130]

    Одна из новых важных областей примеиешп углерода — литий-ионные аккумуляторы, впервые появившиеся на коммерческом рынке в начале 90-х годов XX века. Литий-ионные аккумуляторы возникли как практическое воплощение идеи перезаряжаемого литиевого источника тока для массового применения путем замены отрицательного электрода из металлического лития углеродным электродом, в который ионы лития интеркалируются (внедряются) при заряде и деинтеркалируются при разряде. При этом работоспособность и потребительские свойства источника тока во многом определяются именно характеристиками отрицательного электрода, поэтому исследование способности различных углеродных материалов к обратимой интеркаляции лития остается актуальной задачей. [c.207]

    Образцы с первой микроструктурой имели наиболее высокую степень графитации и легко разделялись по радиально расположенным слоям. Три других образца имели близкие параметры кристаллитов. Электрохимические свойства образцов, исследованные методом циклической вольтаметрии, показали существенные отличия в поведении первого образца от трех других. Заряд (внедрение) и разряд (выделение) лития проводились при плотности тока 30 мкА/мг. Граничные напряжения соответствовали 0,02 В при заряде и 3,5 В при разряде. Первый образец показал вблизи 0,8 В большое плато потенциала при заряде, но разрядная емкость была близка к нулю. Количество электричества при заряде соответствовало Ь1Сз, которое неизвестно для систем Ы—С. Больше чем расчетные для Ь1Сб емкости при заряде указывают на протекание в электроде побочных реакций, по-видимому, связанных с разрушением слоев, внедрением сольватированных ионов лития и разложением электролита. Электронные микрофотографии волокна до и после разряда показывают, что при заряде происходит расслоение первого образца. Микроструктура второго волокна сохранялась после десяти циклов с коэффициентом использования после десятого цикла 100%. Имеющиеся изгибы слоев, по-видимому, повышают механическую прочность волокна и препятствуют его разрушению при внедрении Ь . Электрическая емкость и коэффициент использования (около 90%) для образцов 3 и 4 несколько ниже, чем для образца 2 при сохранении их структуры после первых циклов заряда и разряда. [c.344]

    Кислородный электрод готовится аналогичным способом. В отличие от водородного электрода в качестве катализатора здесь применяют серебро Ренея. Исходный сплав для его получения содержит 657о Ад и 35% А1. Кислородные электроды при работе подвергаются заметному коррозионному разрушению. Для повышения стойкости поверхность металла защищают окисной пленкой. Для этой цели электрод пропитывают раствором гидроокиси лития и нагревают на воздухе при 700—800 °С. Происходит поверхностное окисление металла. Ионы лития, внедряясь в кристаллическую решетку окислов никеля, снижают электрическое сопротивление образующегося окисного слоя. [c.53]

    Процесс замедляется при замещении в Ы100Н части ионов водорода ионами лития, поэтому в случае работы аккумулятора при температурах от —15 °С до +35 °С применяют электролит, содержащий раствор едкого кали (плотность 1,19—1,21 г/см ) с добавкой 10—20 г/л гидроокиси лития. При температурах ниже —15 °С используются чистые растворы едкого кали (плотность 1,25— 1,27 г/см ). В этом случае емкость обычно ограничивается отрицательным электродом и добавление соединений лития становится излишним. [c.90]

    Дисиликат лития Li20-2Si02 плавится при 1034 °С с частичным разложением на метасиликат лития и жидкость. По некоторым данным имеет полиморфное превращение при 939° с очень малым тепловым эффектом. Относится к ромбической системе. Плотность — 2,454-103 кг/м . Координационное число ионов лития по кислороду в дисиликате — 4. [c.97]

    Различие в гидратации одновалентных катионов иллюстрирует схема, приведенная на рис VI, 5. Сплошная линия обозначает границу самого иона, а пунктирная — границу его гидратной оболочки. Из схемы видно, что ион лития гораздо более гидрати- [c.146]

    До сих пор речь шла о взаимодействии пластинок. Подобные случаи реализуются в коллоидных системах, частицы которых имеют плоскую форму, а также в некоторых глинистых минералах при их внутрикристаллическом набухании. Так, было обнаружено, что в кристалле монтмориллонита, насыщенного ионами лития или натрия, помещенном в слабый раствор хлорида натрия, в несколько раз меняется расстояние между слоями, составляющими его слоистую решетку, и соответственно увеличиваются размеры кристалла. Толщины прослоек раствора Na l, внедряющихся между сетчатыми плоскостями кристалла, могут доходить до 300 А. Таким образом, совершенно очевидна роль расклинивающего давления прослоек в процессе набухания кристалликов монтмориллонита. [c.276]

    При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых энергии атомизации — превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов — отрыва от них валентных электронов — непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса. Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля, Поле, возникающее вблизи маленьких ионов лития, будет более си.пьным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ионы калия. [c.329]

    Другим практически важным примером лигандов, образующих хелатные соединения, являются краун-эфиры. Краун-эфирами (от англ. rown — корона) называются простые гетероциклические эфиры, состоящие из нескольких атомов кислорода, связанных диметиленовыми мостиками СН2СН2. Например, эфир может состоять из 12 атомов углерода и кислородсц из них — 4 кислорода (называется 12-Краун-4). Ион лития по своим размерам (диаметр 136 пм) подходит для того, чтобы разместиться во внутренней полости цикла данного краун-эфира, диаметр которой составляет 120—150 пм. Диаметр 18-Краун-6 эфира находится в пределах от 260 пм до 320 пм, который достаточен для размещения [c.368]

    Аммиачный раствор карбоната аммония осаждает Ь12С0,( из концентрированных растворов солей лития. В присутствии других аммониевых солей осаждение является неполным, а при недостаточной концентрации ионов лития практически не наблюдается. [c.242]

    Гидратная оболочк снижает силу взаимодействия между поверхностью твердого тела и противоионами. Чем прочнее гидратная оболочка, тем толще диффузный слой и тем больше дзета-потенциал. Вследствие этого, например, в ряду катионов первой группы ионы лития, имеющие наименьший радиус и поэтому наиболее сильно гидратированные, значительно меньше снижают дзета-потенциал, чем ионы и К» «. Наибольшее влияние на дзета-потенциал оказывают ионы Сз , имеющие наибольший радиус и поэтому наименее прочно связанные с гидратной оболочкой. [c.412]


Новый электрод из кремния поможет увеличить емкость литий-ионных аккумуляторов в 10 раз

Команда ученых из Стэнфордского университета во главе преподавателем материаловедения и инжиниринга Йи Цуйем разработала новый электрод для литий-ионных аккумуляторов. С его помощью любая батарея будет способна сохранять 85% емкости после 6000 циклов заряда / разряда. Отметим, что современные литий-ионные батареи (которые помимо прочего используются в ноутбуках, планшетах и смартфонах), как правило, теряют работоспособность после 1000 циклов заряда / разряда. Новый электрод также позволяет добиться увеличения емкости литий-ионной батареи в целых 10 раз.

Напомним, что в литий-ионных аккумуляторах есть анод (отрицательный электрод) и катод (положительный), которые разделены жидким электролитом на основе соли лития. Емкость аккумулятора (миллиампер-час, мАч) напрямую зависит от всех трех элементов. В настоящее время почти в каждом литий-ионном аккумуляторе используется графитный (углерод) анод, который имеет ограниченную емкость — 400 мАч на грамм. Это означает, что анод должен быть достаточно большим, чтобы аккумулятор мог хранить приличное количество энергии. Команда Йи Цуйя успешно создала кремниевый анод на основе нанотрубок с двойными стенками, который имеет емкость около 4000 мАч на грамм. Другими словами, благодаря этому аноду емкость литий-ионных батарей теоретически можно поднять в 10 раз.

Ученые не так давно определили, что из кремния получаются более эффективные аноды, чем из графита. Один атом кремния может связать до четырех ионов лития, в то время, как для связывания одного иона лития нужно шесть атомов графита. Иными словами, это приводит к повышению плотности энерговыделения. Но до сих пор специалистам не удавалось создать кремневые аноды, которые могли бы выдержать несколько полноценных циклов заряда / разряда. Во время зарядки кремний может поглотить столько ионов лития, что анод увеличивается практически в четыре раза по сравнению с первоначальным размером. Во время разряда ионы лития движутся к катоду, и анод возвращается к своему первоначальному размеру. После нескольких циклов такого расширения / сжатия анод из кремния разрушается.

Анод на основе кремниевых нанотрубок с двойными стенками, разработанный Йи Цуй и его коллегами, обладает повышенной прочностью. Нанотрубки покрыты тонким слоем оксида кремния, который является достаточно прочным, чтобы мешать их расширению. В результате новый анод может выдержать 6000 циклов заряда / разряда без значительных повреждений.

Следующим логическим шагом будет упрощение производства этих нанотрубок — в настоящее время они создаются в четыре этапа. Ученые используют в качестве сырья полимерные нановолокна, которые затем восстанавливаются до углерода, далее они покрываются кремнием (на фото). В итоге ученые создают рабочий аккумулятор, который позволяет удвоить плотность энергии по сравнению с современными литий-ионными батареями. Этот результат может показаться скромным, но кремниевые аноды в перспективе могут увеличить емкость батарей в 10 раз. 

Почему сложно найти замену литию в электрохимии и как это все-таки можно сделать

В 2019 году долгожданную Нобелевскую премию по химии получили создатели литий-ионного аккумулятора Джон Гуденаф (США), Акира Ёсино (Япония) и Стэнли Уиттингем (Великобритания). «Литий-ионные аккумуляторы произвели революционные изменения в нашей жизни с тех пор, как впервые появились на рынке в 1991 году. Они заложили основу беспроводного общества, свободного от углеводородного топлива, их появление принесло неоценимую пользу человечеству», — объяснил решение Нобелевский комитет.

Если не литий, то…

Литий-ионные аккумуляторы появились в начале 1990-х годов и очень быстро совершенствовались: росла популярность портативной электроники, сначала ноутбуков, затем смартфонов, планшетов и других гаджетов, питавшихся их энергией. Новый импульс развитию аккумуляторов дали электромобили, роботы, системы хранения и распределения электроэнергии. Но по мере развития выявились и недостатки литий-ионных батарей: пожароопасность, быстрое старение и чувствительность к температуре. Кроме того, технологии, использующие литий, упираются в серьезное ограничение: лития в природе не так много, добывать его дорого, сырье, карбонат лития, стоит свыше $20 тыс. за тонну.

Но заменить литий сложно. К примеру, удельная емкость, то есть соотношение заряда и массы иона, у него максимальная, более легкого иона металла не существует. Сообщения о перспективных материалах, способных составить конкуренцию литию, появляются регулярно, но их разработчики не скрывают проблем и ограничений, которые могут быть в принципе неразрешимы.

К примеру, команда из Стэнфорда объявила, что изобрела алюминий-ионный аккумулятор, выдерживающий 7 тыс. циклов зарядки, которая еще и происходит всего за секунды. Вообще-то алюминий-ионные аккумуляторы появились более 30 лет назад, они небезопасны, недружественны к окружающей среде и быстро теряют способность перезаряжаться. Стэнфордская батарейка вроде опровергала эту репутацию, но ученые сообщили, что носитель заряда в аккумуляторе – не трехзарядный катион алюминия Al3+ (он мог бы «нести» в три раза больше заряда, чем однозарядный лития), а комплексный ион AlCl4– — тяжелая однозарядная частица, а значит, емкость батареи невелика. А низкое напряжение на выходе батареи лишает ее возможности конкурировать с литиевой.

Группа израильского профессора Дорона Орбаха занимается магнием — металлом с зарядом +2, то есть батарейка на магнии должна иметь большую емкость, чем на однозарядном литии. Но исследователи не могут найти в пару магнию катод: стабильные и безопасные оксиды оказываются ловушками для магния, а у сульфидов, в которых скорость движения катионов магния выше, слишком низкое напряжение.

Есть надежды на проточные ванадиевые окислительно-восстановительные аккумуляторы — гигантские баки с жидким электролитом (сернокислый раствор солей ванадия), способные хранить избыточную возобновляемую энергию. Когда солнечные панели или ветрогенераторы вырабатывают электричество, насосы прокачивают электролит через электроды системы, он заряжается и возвращается обратно в емкость. В Китае собирались построить крупнейшую в мире ванадиевую проточную батарею емкостью 800 МВт•ч.

Поклонники жидких батарей упирают на их надежность: тысячи циклов зарядки, а это три-четыре года службы, без признаков деградации! Но КПД проточных аккумуляторов значительно ниже, чем металл-ионных — не более 70%. Да и система из баков с серной кислотой может быть только статичной — об электробусах и электрокарах точно можно забыть. Наконец, ванадий недешев — $50 за килограмм пятивалентного оксида.

Так что, пишут британские ученые в обзоре аккумуляторных технологий, литий-ионные аккумуляторы будут доминировать на рынке по крайней мере до середины XXI века. Ключевое достоинство лития неоспоримо — этот металл очень легкий и «быстрый», и миниатюрные батареи для смартфонов, ноутбуков и других гаджетов уже прочно закреплены за ним. Но уже для электромобиля (десятки киловатт-часов энергии) и тем более для электростанции (мега- и гигаватт-часы) удельная и объемная энергоемкость (энергия на единицу массы и объема) становятся не так важны, и прорыв могут обеспечить натрий-ионные аккумуляторы, заменив сразу и дорогие литий-ионные, и морально устаревшие свинцово-кислотные.

…натрий!

Свинцово-кислотные аккумуляторы изобретены 150 лет назад и знакомы любому, кто хотя бы раз открыл капот машины, — но продажи их по-прежнему опережают продажи литий-ионных батарей: $40 млрд против $30 млрд в 2019 году.

Натриевый аккумулятор имеет близкие к литиевому энергетические характеристики, но натрий примерно в сто раз дешевле лития, а химические свойства натрия позволяют использовать легкий и дешевый алюминий вместо тяжелой и дорогой меди на анодном токосъемнике. Есть и минусы: радиус иона натрия больше, чем иона лития, и значит, плотность энергии на натриевом электроде ниже, и для энергоемкости, сравнимой с литий-ионной батареей, натрий-ионная должна быть размером на 30–50% больше. Но там, где размер не так важен, натрий-ионные батареи будут теснить свинцово-кислотные и захватывать новые ниши, предсказывают специалисты, — например, электротранспорт, для которого важней скорость зарядки, чем миниатюрность и емкость.

«Поиск нового материала для электрохимических приложений по большей части выглядит как эмпирические предположения ученых — они отмечают интересные свойства в соединениях сходного состава и структуры и пытаются получить новые, улучшенные материалы. Специалисты химического факультета МГУ обнаружили интересную структуру, ранее описанную только для крупных щелочных катионов — калия, рубидия, цезия, — и попробовали синтезировать новое соединение с натрием с целью проверить его электрохимические свойства. Они оказались уникальными», — рассказал декан факультета, член-корреспондент РАН Степан Калмыков.

Сотрудники кафедры электрохимии МГУ под руководством старшего научного сотрудника, кандидата химических наук Олега Дрожжина впервые синтезировали и охарактеризовали электрохимические свойства натрий-ванадиевого пирофосфата β-NaVP2O7. Энергоемкость его достигает 420 Вт•ч/кг, всего на 20% меньше, чем у литиевого катодного материала LiCoO2 — 530 Вт•ч/кг. Другая важная характеристика этого электродного материала — крайне малое, всего полпроцента, изменение объема при зарядке-разрядке. Схожими свойствами обладает разве что литий-титановая шпинель, самый стабильный, мощный и безопасный анодный материал, работающий в электротранспорте.

«Изменение объема при зарядке-разрядке напрямую влияет на такой важный показатель, как потеря емкости со временем. Чем меньше меняется объем материала, тем дольше он сможет стабильно работать. Множество соединений так и не нашли применение в аккумуляторах из-за значительного изменения в объеме», — объясняет Олег Дрожжин.

Электрохимики получили материал, каркас которого может обратимо отдавать и внедрять до двух катионов натрия на одну элементарную ячейку, от состава VP2O7 до Na2VP2O7. Суммарная емкость такого циклирования — около 220 мАч/г, рекорд для подобных материалов. Ученые из МГУ планируют модифицировать электрохимические свойства соединения за счет изменения начальной степени окисления ванадия и частичного замещения его на другие катионы, в том числе и для снижения стоимости электродных материалов. Работа специалистов поддержана грантом Российского научного фонда.

Открыт метод неограниченной и дешевой добычи лития из морской воды

Открыт метод неограниченной и дешевой добычи лития из морской воды

Ежегодно производители аккумуляторов и керамики закупают свыше 160 000 тонн лития, и в течение ближайших десяти лет к этой цифре прибавится еще один ноль, считают аналитики. Однако запасы лития ограничены, а добыча ведется в основном в Австралии, Чили и Аргентине, либо из руд, либо из соляных растворов. Американские ученые предложили новый метод добычи этого ценного металла в неограниченных масштабах — из морской воды и без экономически невыгодного выпаривания.

Дефицит лития заставляет экспертов прогнозировать рост цен на аккумуляторы и прочие изделия из этого металла. Как следствие, может приостановиться переход на чистую энергетику и транспорт.

Спасением может стать морская вода, в которой содержится 180 млрд тонн лития. Правда, в очень низкой концентрации — примерно 0,2 части на миллион. Существует множество проектов мембран и фильтров для выборочной экстракции лития из морской воды. Однако они требуют выпаривания воды, а значит — больших земельных площадей и времени. На сегодня экономически выгодного способа выпаривания лития не предложено.

Ученые из Стэнфордского университета попытались использовать электроды литий-ионных батарей для получения лития напрямую из морской воды без выпаривания.

Эти слоеные электроды улавливают ионы лития в процессе заряда аккумулятора. Но также они притягивают натрий, химически близкий элемент, которого в морской воде в 100 тыс. раз больше. Если два этих элемента будут одновременно двигаться к электроду с одинаковой скоростью, натрий почти полностью вытеснит литий.

Поэтому исследователи начали искать способ сделать электрод более селективным. Сначала они покрыли его тонким слоем диоксида титана. Поскольку ионы лития меньше ионов натрия, им будет легче добраться до места назначения первыми.

Затем ученые перестали подавать постоянное отрицательное напряжение на электрод. Вместо этого они зациклили его: сначала подали отрицательное напряжение, а потом на короткое время выключили. После чего подали положительное и снова выключили. От этого ионы лития и натрия то начинали двигаться к электроду, то останавливались, то двигались в обратную сторону. Однако, поскольку материал, из которого изготовлен электрод, имеет чуть большее сходство с литием, ионы лития получают преимущество. Они первыми начинают двигаться к электроду и последними — от него.

В итоге, через десять циклов, которые заняли всего несколько минут, ученые получили равное соотношение натрия и лития. Это как минимум вдвое лучше, чем прошлые попытки создания устройства для добычи лития из морской воды.

Ранее ЭдектроВести писали, что ученые из Университета штата Вашингтон создали натриево-ионную батарею с емкостью, сравнимой с литий-ионными батареями. Батарея способна выдерживать сотни циклов перезарядки без существенной потери емкости.

Читайте самые интересные истории ЭлектроВестей в Telegram и Viber

Литий-ионный аккумулятор: устройство, принцип работы, характеристики

Сложно представить себе жизнь современного человека без мобильного телефона, планшета, ноутбука, mp3 плеера, колонки и прочих переносных портативных гаджетов. Но вряд ли можно было бы представить себе их работу без качественного источника питания. Одним из наиболее распространенных вариантов для электроснабжения переносных устройств является литий-ионный аккумулятор. Как устроен и чем примечателен такой аккумулятор, мы рассмотрим в этой статье.

Устройство и принцип работы

Литий, как химический элемент давно известен способностью легко отдавать заряд за счет одного электрона расположенного на внешней орбите. Однако в соединениях литий стабилизируется, и его соли плохо вступают в реакцию. В  Li-Ion аккумуляторах задача применения свойств этого химического элемента для питания электрических потребителей решается за счет конструктивных особенностей.

Рис. 1. Устройство литий-ионного аккумулятора

Конструктивно литий-ионный аккумулятор состоит из следующих частей:

  • Положительно заряженный электрод – выполняется из алюминиевой фольги. Как правило, он выполняется из трех слоев, первый из которых представляет собой алюминий, а другие два – это порошковые или гелиевые напыления. В состав покрытия включаются проводящие основы и углеродистые структуры.
  • Отрицательно заряженный электрод – композитный элемент изготавливаемый на основе медной фольги, которая покрывается наноструктурированными солями лития. Которые представлены соединениями лития с железом или кобальтом, их  наносятся на медную  поверхность посредством проводящего клея.
  • Электролит – предназначен для наполнения пространства между анодом и катодом. В ходе эксплуатации литий-ионного аккумулятора электролит пропускает положительные ионы лития, но являются непроходимым препятствием для отрицательно заряженных электронов. Как правило, жидкий электролит выполняется на основе литиевых солей.
  • Сепаратор или разделитель – применяется для отделения анода от катода, позволяет избежать необратимой химической реакции в случае внутреннего короткого замыкания пластин или при прорастании дендритов. Чаще всего выполняется из пористого листового полиэтилена, находящегося в слое электролита.

В соответствии с п.3.6 ГОСТ Р МЭК 62660-1-2014 под литий-ионным аккумулятором следует понимать такой аккумулятор, у которого при заряде от катода ионы лития переходят в анод, а в случае разряда через нагрузку перемещаются обратно. На этапе изготовления источника питания система положительного и отрицательного электрода находится в стабильном состоянии.

Рис. 2. Изначально система литий-ионного аккумулятора в стабильном состоянии

Как только к обкладкам будет приложено зарядное напряжение, под его воздействием начнется процесс выделения электронов из атомов лития, с образованием положительно заряженных ионов.

Рис. 3. Под воздействием зарядного напряжения из атомов выделятся электроны

Электроны начнут притягиваться к медному электроду, но не смогут проникнуть через толщу электролита. Поэтому элементарные заряженные частицы начнут перемещаться по замкнутой цепи.

Рис. 4. Электроны по замкнутой цепи перейдут от катода к аноду

В то время как положительно заряженные ионы лития смогут беспрепятственно проникнуть через электролит и перейдут в пористый графитовый слой. Таким образом, происходит накопление заряда в литий-ионном аккумуляторе, процесс продолжается до насыщения катодной зоны.

Рис. 5. Ионы лития переместятся через электролит

В итоге получается такое состояние литий-ионного аккумулятора, при котором отрицательный электрод обладает определенным зарядом, но его состояние крайне нестабильно. Скопившиеся под воздействием постороннего источника питания ионы лития и электроны уравновешивают друг друга.

Рис. 6. Заряженное состояние литий-ионного аккумулятора

Такой баланс заряда в литий-ионном аккумуляторе сохраняется до тех пор, пока к его выводам не подключат какую-либо нагрузку.

При подключении любого электрического прибора для электронов, расположенных в отрицательно заряженном электроде, появиться путь для перемещения в направлении катода.

Рис. 7. При подключении нагрузки электроны переместятся обратно к катоду

Электроны будут перемещаться по внешней электрической цепи, а положительно заряженные ионы лития пройдут сквозь электролит литий-ионного аккумулятора. Направленное движение отрицательно заряженных ионов и создает электрический ток. По мере перемещения заряженных частиц от отрицательного электрода к положительному, аккумулятор будет разряжаться, а для восстановления энергии, его потребуется подзарядить снова.

Характеристики

В эксплуатации литий-ионного аккумулятора опираются на его технические параметры. К основным характеристикам батарей данного типа относят:

  • Плотность энергии – измеряется в Вт*ч/кг, для литий-ионных аккумуляторов, чаще всего, находится в пределах от 90 до 120.
  • Удельная мощность – определяет количество энергии в единице веса, составляет порядка 1 – 1,8 кВт/кг.
  • Процент саморазряда – определяет количество растрачиваемой аккумулятором энергии за период времени. Для литий-ионных моделей составляет 2 – 3% в месяц. При условии нахождения батареи в комнатной температуре саморазряд составляет только 7% в год.
  • Допустимый диапазон температур – для литий-ионных аккумуляторов, чаще всего составляет от  — 30 до +50°С, но в некоторых моделях  может варьировать в пределах от – 60 до +70°С.
  • Число циклов – указывает количественное выражение для возможности разряда и последующего заряда до выхода  литий-ионного аккумулятора со строя. В зависимости от модели и конструктивных особенностей составляет от 2 до 5тысяч циклов. А при 0,5 – 1 тысяче, как правило, теряется порядка 20% начальной емкости.
  • Минимальное и максимальное напряжение – для литий-ионных аккумуляторов наименьшая величина составляет в пределах 2,2 – 2,5В, а наибольшая составляет 4,25 – 4,35В.   
  • Время заряда – при оптимальном режиме составляет около 2 – 4 часов.

Преимущества и недостатки

В последнее время литий-ионные аккумуляторы заняли свою весомую нишу в сфере независимых источников питания и продолжают вытеснять другие модели. Такой успех объясняется рядом весомых преимуществ:

  • Обладают высокой энергетической плотностью, в сравнении с щелочными, кислотными, никель-кадмиевыми и никель-металлогидридными. 
  • В сравнении с другими видами, один элемент характеризуется куда большей величиной напряжения, которую тот способен выдать.
  • Характеризуются довольно большим количеством циклов заряда и разряда, благодаря чему могут похвастаться более длительным сроком эксплуатации.
  • Может функционировать в достаточно широком температурном диапазоне.
  • В сравнении с другими типами аккумуляторов, не содержит веществ, представляющих  угрозу экологии.

Однако, на ряду с преимуществами, литий-ионные аккумуляторы характеризуются и некоторыми недостатками. Так, в случае несоблюдения основных режимов заряда или эксплуатации  батарея может не только выйти со строя, но и загореться. В случае понижения температуры менее допустимого предела, емкость аккумулятора может снизиться до 20%. При избыточном заряде литий-ионный быстро выходит со строя.

Особенности эксплуатации

В случае неправильной эксплуатации литий-ионные аккумулятор быстро выходят со строя. Как могли заметить некоторые владельцы мобильных телефонов, такая батарея часто вздувается, что мешает нормальному закрытию крышки.

Рис. 8. Вздутие литий-ионной батареи

Подобная ситуация является следствием выделения большого количества газов, которые и раздувают корпус Li-Ion батареи. В то же время, при правильной эксплуатации, источник питания прослужит в 10 раз дольше.

Одним из важнейших правил для литий-ионных источников питания является соблюдение умеренного температурного режима. Не допускается как чрезмерный перегрев, к примеру, оставлять моблиьный телефон на пляже под воздействием прямых солнечных лучей, возле обогревателей или в автомобиле на палящем солнце. В равной степени, как и резкие переохлаждения. В случае выявления чрезмерного нагрева в ходе заряда, необходимо прекратить процедуру и вынуть литий-ионную батарею для охлаждения.

В случае выявления испорченной и уже вздутой батареи, ни в коем случае не следует пытаться ее проколоть или отремонтировать. Лучше замените е на новую в целях собственной безопасности, но внимательно следите за соблюдением основных режимов и правильным зарядом.

Особенности зарядки

От правильного заряда зависит продолжительность работы литий-ионного аккумулятора и величина  емкости, в сравнении с заводскими характеристиками. Так, следует отметить следующие особенности:

  • Не стоит допускать полного разряда – хоть это и не однозначное утверждение, но постоянное использование накопленной в аккумуляторе электроэнергии на 100% очень быстро приведет к изнашиванию элементов. Но, здесь существует небольшая оговорка, один раз в три месяца, такую процедуру необходимо выполнять для сохранения верхнего и нижнего предела.
  • Литий-ионные аккумуляторы обладают пусть и незначительным, но эффектом памяти. Поэтому заряжать их лучше полностью, так как постоянный недостаток заряда будет снижать емкость.
  • Несмотря на наличие защиты от перезаряда практически во всех литий-ионных батареях, не стоит заряжать их более, чем предусмотрено заводом изготовителем.
  • Для заряда обязательно используйте оригинальные блоки питания, так как применение нетиповых устройств может отрицательно сказаться на сроке службы литий-ионных аккумуляторов.

Список использованной литературы

  • Кедринский И.А., Яковлев В.Г. «Li-ионные аккумуляторы» 2002
  • Медведев Б.С., Налбандян В.Б., Гутерман В.Е. «Материалы литий-ионных аккумуляторов» 2007
  • Попова C.С., Денисов А.А., Денисова Г.П. «Химические источники тока. Литий — ионные аккумуляторы пленочной конструкции» 2009
  • Мельничук О. В. «Особенности заряда и разряда литиевых аккумуляторных батарей и современные технические средства управления этими процессами» 2016

Быстрая зарядка литий-ионного аккумулятора: обзор

Основные моменты

Литература по быстрой зарядке рассматривается в многомасштабной перспективе.

Учитываются экстремальные температуры и неоднородности температуры / тока.

Критически оцениваются альтернативные протоколы быстрой зарядки.

В настоящее время отсутствуют надежные бортовые методы обнаружения лития.

Связи между производительностью на уровне ячеек и пакетов до сих пор не совсем понятны.

Реферат

В последние годы литий-ионные аккумуляторы стали предпочтительной аккумуляторной технологией для портативных устройств, электромобилей и сетевых хранилищ. Несмотря на то, что все большее число производителей автомобилей вводят в свое предложение электрифицированные модели, беспокойство по поводу дальности и времени, необходимого для подзарядки аккумуляторов, по-прежнему вызывает беспокойство.Известно, что высокие токи, необходимые для ускорения процесса зарядки, снижают энергоэффективность и вызывают увеличение емкости и снижение мощности. Быстрая зарядка — это многомасштабная проблема, поэтому для понимания и улучшения производительности быстрой зарядки требуется понимание от атомарного до системного уровня. В настоящей статье содержится обзор литературы по физическим явлениям, ограничивающим скорость зарядки аккумуляторов, механизмам деградации, которые обычно возникают в результате зарядки при высоких токах, а также подходам, которые были предложены для решения этих проблем.Особое внимание уделяется низкотемпературной зарядке. Представлены и критически оценены альтернативные протоколы быстрой зарядки. Изучаются последствия для безопасности, включая потенциальное влияние быстрой зарядки на характеристики теплового разгона. Наконец, выявляются пробелы в знаниях и даются рекомендации относительно направления будущих исследований. Подчеркивается необходимость разработки надежных бортовых методов обнаружения литиевого покрытия и механической деградации. Надежные стратегии оптимизации зарядки на основе моделей определены как ключ к обеспечению быстрой зарядки в любых условиях.Стратегии управления температурой для охлаждения аккумуляторов во время зарядки и их предварительного нагрева в холодную погоду признаны критическими, с особым упором на методы, позволяющие достичь высоких скоростей и хорошей однородности температуры.

Ключевые слова

Литий-ионный аккумулятор

Быстрая зарядка

Литиевое покрытие

Протоколы зарядки

Электромобили

Рекомендуемые статьиЦитирующие статьи (0)

© 2019 Авторы. Опубликовано Elsevier B.V.

Рекомендуемые статьи

Ссылки на статьи

Способы зарядки литий-ионных батарей

Для большинства электронных устройств, работающих от аккумуляторов, выбирают литий-ионный аккумулятор. Узнайте, что нужно для их правильной зарядки.

Опубликовано Джон Тил

Литий-ионный аккумулятор

— это аккумулятор, который чаще всего используется в бытовой электронике. Из других типов, которые использовались ранее, никель-кадмиевые батареи для использования в электронном оборудовании были запрещены в ЕС, поэтому общий спрос на эти типы упал.

Никель-металлогидридные батареи

все еще используются, но их более низкая удельная энергия и соотношение цены и качества делают их непривлекательными.

Работа и конструкция литий-ионных аккумуляторов

Литий-ионные батареи

считаются вторичными батареями и , что означает, что они перезаряжаемые. Наиболее распространенный тип состоит из анода, сделанного из слоя графита, нанесенного на медную подложку, или токоприемника, и катода из покрытия из оксида лития-кобальта на алюминиевой подложке.

Сепаратор обычно представляет собой тонкую полиэтиленовую или полипропиленовую пленку, которая электрически разделяет два электрода, но позволяет переносить через нее ионы лития.Это расположение показано на рисунке 1.

Также используются различные другие типы анодных и катодных материалов, наиболее распространенные катоды обычно дают свои имена для описания типа батареи.

Таким образом, катодные элементы из оксида лития-кобальта известны как ячейки LCO. Типы оксида лития, никеля, марганца и кобальта называются типами NMC, а элементы с катодами из фосфата лития-железа известны как ячейки LFP.

Рисунок 1 — Основные компоненты типичного литий-ионного элемента

В реальном литий-ионном элементе эти слои обычно плотно намотаны друг на друга, а электролита, хотя и жидкого, едва хватает для смачивания электродов, и внутри нет жидкости, плещущейся.

Эта компоновка показана на рисунке 2, который изображает реальную внутреннюю конструкцию призматической или прямоугольной ячейки в металлическом корпусе. Другими популярными типами корпусов являются цилиндрические и мешочные (обычно называемые полимерными ячейками).

На этом рисунке не показаны металлические выступы, прикрепленные к каждому токосъемнику. Эти выступы являются электрическими соединениями с батареей, в основном клеммами батареи.

Рисунок 2 — Типичная внутренняя конструкция призматического литий-ионного элемента

Зарядка литий-ионного элемента включает использование внешнего источника энергии для переноса положительно заряженных ионов лития от катода к анодному электроду.Таким образом, катод становится отрицательно заряженным, а анод — положительно заряженным.

Внешне зарядка включает движение электронов от анодной стороны к источнику заряда, и такое же количество электронов проталкивается в катод. Это направление противоположно внутреннему потоку ионов лития.

Во время разряда к клеммам аккумулятора подключается внешняя нагрузка. Ионы лития, которые накапливались в аноде, возвращаются на катод. Внешне это связано с движением электронов от катода к аноду.Таким образом, через нагрузку протекает электрический ток.

Вкратце, то, что происходит внутри элемента во время зарядки, например, заключается в том, что на стороне катода оксид лития-кобальта отдает часть своих ионов лития, превращаясь в соединение с меньшим содержанием лития, которое все еще остается химически стабильным.

Со стороны анода эти ионы лития внедряются или интеркалируются в межузельные пространства молекулярной решетки графита.

При зарядке и разрядке необходимо учитывать несколько моментов.Внутри литий-ионы должны пересекать несколько границ раздела во время зарядки и разрядки. Например, во время зарядки ионы лития должны переноситься из объема катода на катод к границе раздела электролита.

Оттуда он должен пройти через электролит через сепаратор к границе раздела между электролитом и анодом. Наконец, он должен диффундировать с этой границы раздела в основную часть анодного материала.

Скорость переноса заряда через каждую из этих различных сред определяется ее ионной подвижностью.На это, в свою очередь, влияют такие факторы, как температура и концентрация ионов.

На практике это означает, что во время зарядки и разрядки необходимо соблюдать меры предосторожности, чтобы гарантировать, что эти ограничения не будут превышены.

Рекомендации по зарядке литий-ионных аккумуляторов

Зарядка литий-ионных аккумуляторов требует особого алгоритма зарядки. Это осуществляется в несколько этапов, описанных ниже:

Капельный заряд (предварительная зарядка)

Если уровень заряда аккумулятора очень низкий, то он заряжается с пониженной скоростью постоянного тока, которая обычно составляет около 1/10 полной скорости зарядки, описанной ниже.

В это время напряжение аккумулятора увеличивается, и когда оно достигает заданного порогового значения, скорость заряда увеличивается до полной скорости заряда.

Обратите внимание, что некоторые зарядные устройства разделяют этот этап непрерывной зарядки на две части: предварительная зарядка и постоянная зарядка, в зависимости от того, насколько низкое напряжение батареи изначально.

Полная ставка

Если напряжение батареи изначально достаточно высокое, или если батарея заряжена до этого момента, то запускается этап полной скорости заряда.

Это также этап зарядки постоянным током, и на этом этапе напряжение аккумулятора продолжает медленно расти.

Конический заряд

Когда напряжение батареи поднимается до максимального зарядного напряжения, начинается стадия постепенного заряда. На этом этапе зарядное напряжение поддерживается постоянным.

Это важно, поскольку литий-ионные аккумуляторы катастрофически выйдут из строя, если их зарядить при более высоком напряжении, чем их максимальное напряжение. Если это зарядное напряжение поддерживается постоянным на этом максимальном значении, то зарядный ток будет медленно уменьшаться.

Отключение / прекращение

Когда зарядный ток снизился до достаточно низкого значения, зарядное устройство отключается от аккумулятора. Это значение обычно составляет 1/10 или 1/20 от полного зарядного тока.

Важно не заряжать литий-ионные аккумуляторы постоянно, так как это снизит производительность и надежность аккумулятора в долгосрочной перспективе.

Хотя в предыдущем разделе описаны различные этапы зарядки, конкретные пороговые значения для различных этапов не были предоставлены.Начиная с напряжения, каждый тип литий-ионного аккумулятора имеет собственное напряжение на клеммах полного заряда.

Для наиболее распространенных типов LCO и NCM это 4,20 В. Есть некоторые с 4,35 В и 4,45 В.

Для типов LFP это 3,65 В. Пороговое значение непрерывного заряда до полного заряда составляет около 3,0 и 2,6 для типов LCO / NMC и LFP соответственно.

Зарядное устройство, предназначенное для зарядки литий-ионных аккумуляторов одного типа, например LCO, нельзя использовать для зарядки аккумулятора другого типа, например аккумулятора LFP.

Обратите внимание, однако, что есть зарядные устройства, которые можно настроить для зарядки нескольких типов. Обычно для этого требуются разные значения компонентов в конструкции зарядного устройства, чтобы соответствовать каждому типу аккумуляторов.

Что касается зарядного тока, то здесь требуется небольшое пояснение. Емкость литий-ионного аккумулятора традиционно указывается как мАч, или миллиампер-час, или Ач. Сама по себе эта единица не является единицей накопления энергии. Чтобы получить реальную энергоемкость, необходимо учитывать напряжение аккумулятора.

На рисунке 3 показана типичная кривая разрядки литий-ионной батареи типа LCO. Поскольку напряжение разряда имеет наклон, среднее напряжение батареи на всей кривой разряда принимается за напряжение батареи.

Это значение обычно составляет от 3,7 до 3,85 В для типов LCO и 2,6 В для типов LFP. Умножив значение мАч на среднее напряжение батареи, мы получим мВтч, или емкость накопления энергии, данной батареи.

Зарядный ток аккумулятора указан в единицах C-rate, где 1C численно совпадает с емкостью аккумулятора в мА.Таким образом, батарея емкостью 1000 мАч имеет значение C 1000 мА. По разным причинам максимально допустимая скорость зарядки литий-ионной батареи обычно составляет от 0,5 ° C до 1 ° C для типов LCO и 3 ° C или более для типов LFP.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Батарея, конечно, может состоять как минимум из одной ячейки, но может состоять из многих ячеек в комбинации последовательно соединенных групп параллельно соединенных ячеек.

Сценарий, приведенный ранее, применим к одноэлементным батареям. В случаях, когда батарея состоит из нескольких ячеек, необходимо масштабировать зарядное напряжение и зарядный ток, чтобы они соответствовали друг другу.

Таким образом, зарядное напряжение умножается на количество последовательно соединенных ячеек или группы ячеек, и, аналогично, зарядный ток умножается на количество параллельно подключенных ячеек в каждой последовательно соединенной группе.

Рисунок 3 — Типичная кривая разряда батареи типа LCO

Еще один очень важный дополнительный фактор, который необходимо учитывать при зарядке литий-ионных аккумуляторов, — это температура.Литий-ионные аккумуляторы нельзя заряжать при низких или высоких температурах.

При низких температурах ионы лития движутся медленно. Это может вызвать скопление ионов лития на поверхности анода, где они в конечном итоге превратятся в металлический литий. Поскольку это образование металлического лития принимает форму дендритов, оно может пробить сепаратор, вызывая внутренние короткие замыкания.

В верхнем диапазоне температур проблема заключается в избыточном тепловыделении. Зарядка аккумулятора не на 100% эффективна, и во время зарядки выделяется тепло.Если внутренняя температура сердечника становится слишком высокой, электролит может частично разложиться и превратиться в газообразные побочные продукты. Это приводит к необратимому уменьшению емкости аккумулятора, а также к вздутию.

Типичный диапазон температур для зарядки литий-ионных аккумуляторов составляет от 0 ° C до 45 ° C для высококачественных аккумуляторов или от 8 ° C до 45 ° C для более дешевых аккумуляторов. Некоторые батареи также позволяют заряжаться при более высоких температурах, примерно до 60 ° C, но с пониженной скоростью зарядки.

Все эти соображения обычно выполняются специальными микросхемами зарядного устройства, и настоятельно рекомендуется использовать такие микросхемы независимо от фактического источника зарядки.

Зарядные устройства Li-ion

Литий-ионные зарядные устройства

можно разделить на две основные категории: линейные и переключаемые зарядные устройства. Оба типа могут соответствовать ранее заявленным требованиям относительно правильной зарядки литий-ионных аккумуляторов. Однако у каждого из них есть свои преимущества и недостатки.

Достоинством линейного зарядного устройства является его относительная простота. Однако главный его недостаток — неэффективность. Например, если напряжение питания составляет 5 В, напряжение аккумулятора составляет 3 В, а зарядный ток составляет 1 А, линейное зарядное устройство будет рассеивать 2 Вт.

Если это зарядное устройство встроено в продукт, необходимо отвести много тепла. Именно поэтому линейные зарядные устройства в основном используются в тех случаях, когда максимальный зарядный ток составляет около 1А.

Для больших аккумуляторов предпочтительны переключаемые зарядные устройства. В некоторых случаях они могут иметь КПД до 90%. Недостатками являются его более высокая стоимость и несколько большие требования к площади схемы из-за использования индукторов в ее конструкции.

Рассмотрение источника начисления

Различные приложения могут использовать разные источники зарядки.Например, это может быть прямой адаптер переменного тока с выходом постоянного тока или блок питания. Это также может быть USB-порт от настольного компьютера или аналогичных устройств. Это также может быть сборка солнечных батарей.

Из-за возможности передачи энергии этими различными источниками необходимо дополнительно рассмотреть конструкцию реальной схемы зарядного устройства, помимо простого выбора линейного или переключаемого зарядного устройства.

Самый простой случай — это когда источник зарядки обеспечивает регулируемый выход постоянного тока, такой как адаптер переменного тока или блок питания.Единственное требование — выбрать зарядный ток, который не превышает максимальную скорость зарядки аккумулятора или мощность источника питания.

Зарядка от USB-источника требует немного большего внимания. Если порт USB относится к типу USB 2.0, он будет соответствовать стандарту зарядки аккумулятора USB 1.2 или BC 1.2.

Это требует, чтобы любая нагрузка, в данном случае зарядное устройство батареи, не потребляла более 100 мА, если только нагрузка не указана в источнике. В этом случае допускается принимать 500 мА при 5 В.

Если порт USB — USB 3.1, то он может следовать за USB BC1.2, или в конструкцию может быть включена активная схема контроллера для согласования увеличения мощности по протоколу USB Power Delivery или USB PD.

Солнечные элементы в качестве источника зарядки представляют собой еще один набор проблем. Напряжение-ток солнечного элемента, или VI, чем-то похож на обычный диод. Обычный диод не будет проводить заметного тока ниже минимального значения прямого напряжения, а затем может пропускать гораздо больший ток при лишь небольшом увеличении прямого напряжения.

С другой стороны, солнечный элемент может подавать ток до определенного максимума при относительно ровном напряжении. При превышении этого значения тока напряжение резко падает.

Итак, солнечное зарядное устройство должно иметь схему управления питанием, которая модулирует ток, потребляемый от солнечного элемента, чтобы не снижать выходное напряжение.

К счастью, существуют микросхемы, такие как TI BQ2407x, BQ24295 и другие, которые могут работать с одним или несколькими из перечисленных выше источников.

Настоятельно рекомендуется потратить время на поиск подходящего зарядного чипа, а не на создание зарядного устройства с нуля.

Наконец, не забудьте скачать бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который может вам понравиться:

Для зарядки литий-ионных аккумуляторов

требуется точное определение напряжения.

Литий-ионные (Li-Ion) аккумуляторы набирают популярность в портативных системах из-за их увеличенной емкости при тех же размерах и весе, что и у более старых никель-кадмиевых и никель-металлгидридных аккумуляторов.Например, портативный компьютер с литий-ионным аккумулятором может работать дольше, чем аналогичный компьютер с никель-металлгидридным аккумулятором. Однако разработка системы для литий-ионных аккумуляторов требует особого внимания к схеме зарядки, чтобы обеспечить быструю, безопасную и полную зарядку аккумулятора.

Новая микросхема для зарядки аккумуляторов, ADP3810, разработана специально для управления зарядом литий-ионных аккумуляторов с 1-4 элементами. Четыре высокоточных фиксированных варианта конечного напряжения батареи (4.2 В, 8,4 В, 12,6 В и 16,8 В); они гарантируют конечное напряжение батареи ± 1%, что так важно при зарядке литий-ионных батарей. Сопутствующее устройство, ADP3811, похоже на ADP3810, но его конечное напряжение батареи программируется пользователем для работы с другими типами батарей. Обе микросхемы точно контролируют зарядный ток, чтобы обеспечить быструю зарядку при токах 1 ампер и более. Кроме того, оба они имеют прецизионный источник опорного напряжения 2,0 В и прямой выход привода оптопары для изолированных приложений.

Li-Ion Зарядка: Li-Ion аккумуляторы обычно требуют алгоритма зарядки с постоянным током и постоянным напряжением (CCCV). Другими словами, литий-ионная батарея должна заряжаться на заданном уровне тока (обычно от 1 до 1,5 ампер), пока не достигнет своего конечного напряжения. В этот момент схема зарядного устройства должна переключиться в режим постоянного напряжения и обеспечивать ток, необходимый для удержания батареи при этом конечном напряжении (обычно 4,2 В на элемент). Таким образом, зарядное устройство должно обеспечивать стабильные контуры управления для поддержания постоянное значение тока или напряжения, в зависимости от состояния батареи.

Основная задача при зарядке литий-ионного аккумулятора — реализовать полную емкость аккумулятора без его перезарядки, что может привести к катастрофическому отказу. Возможна небольшая погрешность, всего ± 1%. Избыточная зарядка более чем на + 1% может привести к выходу из строя батареи, а недостаточная зарядка более чем на 1% приводит к снижению емкости. Например, недозаряд литий-ионного аккумулятора всего на 100 мВ (-2,4% для литий-ионного элемента на 4,2 В) приводит к потере емкости примерно на 10%. Поскольку возможность ошибки настолько мала, требуется высокая точность схемы управления зарядкой.Для достижения такой точности контроллер должен иметь прецизионный источник опорного напряжения, усилитель обратной связи с высоким коэффициентом усиления и малым смещением, а также точно согласованный резистивный делитель. Суммарные погрешности всех этих компонентов должны приводить к общей погрешности менее ± 1%. ADP3810, сочетающий эти элементы, гарантирует общую точность ± 1%, что делает его отличным выбором для зарядки литий-ионных аккумуляторов.

ADP3810 и ADP3811: На рисунке 1 показана функциональная схема ADP3810 / 3811 в упрощенной схеме зарядного устройства CCCV.Два усилителя « г, м, , » (вход по напряжению, выход по току) являются ключевыми для производительности ИС. GM1 определяет и управляет зарядным током через шунтирующее сопротивление, R CS и GM2 считывает и управляет конечным напряжением батареи . Их выходы соединены в аналоговой конфигурации «ИЛИ», и оба спроектированы таким образом, что их выходы может только подтянуть общий узел COMP. Таким образом, либо усилитель тока, либо усилитель напряжения контролируют контур зарядки в любой момент времени.Узел COMP буферизирован выходным каскадом « г м » (GM3), выходной ток которого напрямую управляет входом управления преобразователем постоянного тока (через оптопару в изолированных приложениях).

Рис. 1. Блок-схема ADP3810 / 3811 в упрощенной схеме зарядки аккумулятора.

ADP3810 включает прецизионные тонкопленочные резисторы для точного деления напряжения батареи и сравнения его с внутренним опорным напряжением 2,0 В. ADP3811 не включает эти резисторы, поэтому разработчик может запрограммировать любое конечное напряжение батареи с помощью пары внешних резисторов в соответствии с приведенной ниже формулой.Буферный усилитель обеспечивает вход с высоким импедансом для программирования зарядного тока с использованием входа VCTRL, а схема блокировки при пониженном напряжении (UVLO) обеспечивает плавный запуск.

Чтобы понять конфигурацию «ИЛИ», предположим, что полностью разряженный аккумулятор вставлен в зарядное устройство. Напряжение аккумулятора значительно ниже конечного напряжения заряда, поэтому на входе VSENSE GM2 (подключенного к аккумулятору) положительный вход GM2 значительно ниже внутреннего опорного напряжения 2,0 В. В этом случае GM2 хочет вывести узел COMP на низкий уровень, но он может только подтянуть, поэтому он не оказывает никакого влияния на узел COMP.Поскольку батарея разряжена, зарядное устройство начинает увеличивать ток заряда, и токовая петля берет на себя управление. Ток заряда создает отрицательное напряжение на резисторе токового шунта (RCS) с сопротивлением 0,25 Ом. Это напряжение воспринимается GM1 через резистор 20 кОм (R3). В состоянии равновесия ( I CHARGE R CS ) / R 3 = -V CTRL /80 кОм. Таким образом, ток заряда поддерживается на уровне

.

Если ток заряда имеет тенденцию превышать запрограммированный уровень, вход V CS GM1 принудительно становится отрицательным, что приводит к высокому уровню на выходе GM1.Это, в свою очередь, подтягивает узел COMP, увеличивая ток от выходного каскада, уменьшая мощность блока преобразователя постоянного / постоянного тока (который может быть реализован с различными топологиями, такими как обратный ход, понижающий или линейный каскад), и, наконец, уменьшение зарядного тока. Эта отрицательная обратная связь завершает контур управления зарядным током.

Когда батарея приближается к своему конечному напряжению, входы GM2 приходят в равновесие. Теперь GM2 подтягивает узел COMP до высокого уровня, и выходной ток увеличивается, в результате чего ток заряда уменьшается, поддерживая равные значения V SENSE и V REF .Управление зарядным контуром изменено с GM1 на GM2. Поскольку усиление двух усилителей очень велико, переходная область от регулирования тока к напряжению очень резкая, как показано на Рисунке 2. Эти данные были измерены на 10-вольтовой версии автономного зарядного устройства, показанном на Рисунке 3.

Рисунок 2. Изменение тока / напряжения зарядного устройства ADP3810 CCCV

Полное автономное литий-ионное зарядное устройство: На рисунке 3 показана полная система зарядки с использованием ADP3810 / 3811. В этом автономном зарядном устройстве используется классическая архитектура с обратным ходом для создания компактной и недорогой конструкции.Три основные части этой схемы — это контроллер первичной стороны, силовой полевой транзистор и трансформатор обратного хода, а также контроллер вторичной стороны. В этой конструкции используется ADP3810, напрямую подключенный к батарее, для зарядки двухэлементной литий-ионной батареи. до 8,4 В при программируемом токе заряда от 0,1 до 1 А. Входной диапазон от 70 до 220 В переменного тока — для универсальной работы. Используемый здесь широтно-импульсный модулятор первичной стороны соответствует промышленному стандарту 3845, но могут использоваться и другие компоненты ШИМ. . Фактические выходные характеристики зарядного устройства контролируются ADP3810 / 3811, что гарантирует конечное напряжение в пределах ± 1%.

Рисунок 3. Полное автономное зарядное устройство для литий-ионных аккумуляторов

Токовый привод управляющего выхода ADP3810 / 3811 напрямую подключается к фотодиоду оптопары без дополнительных схем. Его выходной ток 4 мА может управлять различными оптопарами — здесь используется MOC8103. Ток фототранзистора протекает через R F , устанавливая напряжение на выводе COMP 3845 и, таким образом, управляя рабочим циклом ШИМ. Контролируемый импульсный стабилизатор спроектирован таким образом, что повышенный ток светодиода от оптопары снижает рабочий цикл преобразователя.

В то время как сигнал от ADP3810 / 3811 управляет средним зарядным током , первичная сторона должна иметь циклическое ограничение тока переключения. Этот предел тока должен быть спроектирован таким образом, чтобы при отказе или неисправности вторичной цепи или оптопары или во время запуска компоненты первичной силовой цепи (полевой транзистор и трансформатор) не подвергались перенапряжению. Когда вторичная сторона V CC поднимается выше 2,7 В, ADP3810 / 3811 берет на себя управление и контролирует средний ток.Предел тока первичной стороны устанавливается резистором считывания тока 1,6 Ом, подключенным между силовым транзистором NMOS, IRFBC30 и землей.

ADP3810 / 3811, ядро ​​вторичной стороны, устанавливает общую точность зарядного устройства. Для выпрямления требуется только один диод (MURD320), и никакой катушки индуктивности фильтра не требуется. Диод также предотвращает обратный запуск зарядного устройства при отключении входного питания. Конденсатор емкостью 1000 мкФ (CF1) поддерживает стабильность при отсутствии батареи .RCS определяет средний ток (см. Выше), и ADP3810 подключается напрямую (или ADP3811 через делитель) к батарее для измерения и управления ее напряжением.

С этой схемой реализовано полностью автономное зарядное устройство для литий-ионных аккумуляторов. Топология обратного хода объединяет преобразователь переменного тока в постоянный со схемой зарядного устройства, что дает компактный и недорогой дизайн. Точность этой системы зависит от контроллера вторичной стороны, ADP3810 / 3811. Архитектура устройства также хорошо работает в других схемах зарядки аккумуляторов.Например, стандартное зарядное устройство постоянного тока понижающего типа может быть легко сконструировано путем объединения ADP3810 и ADP1148. Простое линейное зарядное устройство также может быть сконструировано с использованием только ADP3810 и внешнего транзистора. Во всех случаях присущая ADP3810 точность контролирует зарядное устройство и гарантирует конечное напряжение батареи ± 1%, необходимое для зарядки литий-ионных аккумуляторов.

Быстрая зарядка литий-ионных аккумуляторов при любых температурах

Значимость

Беспокойство о запасе хода является ключевой причиной того, что потребители неохотно выбирают электромобили.Чтобы быть действительно конкурентоспособными с бензиновыми автомобилями, электромобили должны позволять водителям быстро перезаряжаться в любом месте в любую погоду, например, заправлять бензиновые автомобили. Однако ни один из современных электромобилей не допускает быструю зарядку при низких или даже низких температурах из-за риска литиевого покрытия, образования металлического лития, которое резко сокращает срок службы батареи и даже приводит к угрозе безопасности. Здесь мы представляем подход, который обеспечивает быструю зарядку литий-ионных аккумуляторов за 15 минут при любых температурах (даже при -50 ° C), сохраняя при этом значительный срок службы (4500 циклов, что эквивалентно> 12 лет и> 280000 миль электромобиля). срок службы), что делает электромобили действительно независимыми от погодных условий.

Abstract

Быстрая зарядка является ключевым фактором массового внедрения электромобилей (EV). Ни один из современных электромобилей не выдерживает быстрой зарядки при низких или даже низких температурах из-за риска литиевого покрытия. Попытки включить быструю зарядку затрудняются из-за компромиссного характера литий-ионной батареи: улучшение возможности быстрой низкотемпературной зарядки обычно приносит в жертву долговечность элементов. Здесь мы представляем управляемую структуру ячеек, которая устраняет этот компромисс и обеспечивает быструю зарядку без литиевого покрытия (LPF).Кроме того, элемент LPF дает начало единой практике зарядки независимо от температуры окружающей среды, предлагая платформу для разработки материалов для аккумуляторов без температурных ограничений. Мы демонстрируем элемент LPF емкостью 9,5 Ач 170 Вт · ч / кг, который можно зарядить до 80% за 15 минут даже при -50 ° C (за пределами рабочего предела элемента). Кроме того, элемент LPF выдерживает 4500 циклов зарядки 3,5-C при 0 ° C с потерей емкости <20%, что в 90 раз увеличивает срок службы по сравнению с базовым обычным элементом и эквивалентно> 12 лет и> 280000 миль. Срок службы электромобиля в таких экстремальных условиях использования, т.е.е., 3,5-C или 15-минутная быстрая зарядка при отрицательных температурах.

Электромобили (ЭМ) имеют большие перспективы в решении проблем изменения климата и энергетической безопасности (1). Автопроизводители выстраиваются в очередь, чтобы наводнить рынок серией новых электромобилей. Несмотря на быстрое падение стоимости литий-ионных аккумуляторов (LiB) на 80% за последние 7 лет (2), рынок электромобилей по-прежнему составляет лишь около 1% годовых продаж легковых автомобилей. Беспокойство о запасе хода, страх, что у электромобиля может закончиться заряд во время поездки с водителем, который остался в затруднительном положении, долгое время упоминался как основная причина, по которой потребители неохотно выбирают электромобили.Это беспокойство усугубляется тем фактом, что подзарядка электромобилей обычно занимает гораздо больше времени, чем заправка автомобилей с двигателем внутреннего сгорания (ICEV). Исследования показали, что годовой пробег электромобиля увеличился более чем на 25% в районах, где у водителей есть доступ к станциям быстрой зарядки, даже в тех случаях, когда быстрая зарядка использовалась для от 1 до 5% от общего числа случаев зарядки (3).

По всему миру идет захватывающая гонка за увеличение количества и мощности станций быстрой зарядки. BMW, Daimler, Ford и Volkswagen в прошлом году создали совместное предприятие (4) для развертывания 400 «сверхбыстрых» зарядных станций по всей Европе к 2020 году с мощностью зарядки до 350 кВт, что позволяет заряжать электромобиль с пробегом 200 миль. (е.г., Chevy Bolt с батареей на 60 кВтч) за ∼10 мин. Honda также объявила о планах по выпуску электромобилей, способных к 15-минутной быстрой зарядке к 2022 году. Совсем недавно Министерство энергетики США объявило о финансировании проектов по разработке технологий сверхбыстрой зарядки (5) с целью дальнейшего увеличения мощности зарядки до 400 кВт.

Критическим препятствием для быстрой зарядки является температура. Чтобы быть действительно конкурентоспособными с ICEV, быстрая зарядка электромобилей не должна зависеть от региона и погодных условий, так же, как заправка бензинового автомобиля.Зимой на половине территории США средняя температура ниже 0 ° C, как показано на рис. 1 A (6). Однако ни один из современных электромобилей не поддерживает быструю зарядку при низких температурах. Nissan Leaf, например, можно зарядить до 80% за 30 минут (заряд ~ 2 ° C) при комнатной температуре, но потребуется> 90 минут (заряд + . В суровых условиях большая поляризация анода может подтолкнуть потенциал графита ниже порога для литиевого покрытия (8, 9).

Рис. 1.

LPF Быстрая зарядка независимо от температуры окружающей среды. ( A ) Средняя зимняя температура в США. Половина из них <0 ° C, а 47 состояний <10 ° C. ( B ) Литературные данные о сроке службы при различных температурах, нормированные на срок службы при 25 ° C. Элемент LPF позволяет сместить парадигму от экспоненциальной линии обычных литий-ионных элементов к верхней горизонтальной линии.( C E ) Схематическое изображение структуры управляемого элемента для быстрой зарядки LPF. Ячейка ( ° C, ) первоначально при температуре замерзания ( D ) проходит этап быстрого внутреннего нагрева, чтобы поднять ее температуру выше порогового значения (T LPF ), которое исключает нанесение литиевого покрытия до ( E ). заряжено. Используется конструкция самонагревающейся батареи, которая имеет тонкую никелевую фольгу внутри элемента (подробности см. В приложении SI , рис. S4).Эта структура ячейки обеспечивает интеллектуальное управление разделением тока между никелевой фольгой (нагрев) и материалами электродов (зарядка) в зависимости от температуры ячейки (ячейка T ). ( D ) Если ячейка T LPF , переключатель замыкается, чтобы направить весь ток в никелевую фольгу для быстрого нагрева (~ 1 ° C / с) без проникновения в материалы анода (без покрытия). ( E ) Как только элемент T > T LPF , переключатель размыкается, и весь ток уходит в электродные материалы для быстрой зарядки без литиевого покрытия.

Основным признаком литиевого покрытия является резкая потеря емкости в дополнение к угрозам безопасности. Действительно, недавние данные показали, что срок службы LiB значительно снижается с температурой. Коммерческий 16-Ач графит / LiNi 1/3 Mn 1/3 Co 1/3 O 2 элементы в европейском проекте Mat4Bat потеряли 75% емкости за 50 циклов при 1-градусном заряде при 5 ° C. (10), хотя одни и те же клетки могут выдержать 4000 циклов при 25 ° C. Schimpe et al. (11) циклически повторяли идентичные элементы графит / LiFePO 4 при разных температурах.Ячейки при 25 ° C потеряли 8% емкости за 2800 эквивалентных полных циклов (EFC). При такой же потере емкости срок службы элементов сокращается до 1800 EFC при 15 ° C, 1400 EFC при 10 ° C и 350 EFC при 0 ° C. На рис. 1 B обобщены некоторые недавние данные (11⇓⇓⇓ – 15) в литературе по сроку службы при различных температурах, нормированные на соответствующий срок службы при 25 ° C. Можно отметить явное экспоненциальное падение жизненного цикла с температурой в соответствии с законом Аррениуса, предложенным Waldmann et al. (12). Даже при низкой температуре 10 ° C срок службы элементов составляет лишь половину от срока службы при 25 ° C.Стоит отметить, что в 47 из 50 штатов США зимой средняя температура ниже 10 ° C (рис. 1 A ). Даже при ежегодном усреднении ( SI Приложение , рис. S1) 23 состояния имеют температуру ниже 10 ° C. Таким образом, даже когда станции быстрой зарядки становятся повсеместными, потребители все еще не могут быстро заправлять свои электромобили в течение большей части года из-за низких температур окружающей среды.

В основном, на литиевое покрытие влияют скорость ионной проводимости и диффузии в электролите, диффузия лития в частицах графита и кинетика реакции на графитовых поверхностях.Все ключевые параметры, управляющие этими процессами, подчиняются закону Аррениуса и существенно падают с температурой ( SI Приложение , рис. S2). Таким образом, подключаемый гибридный аккумулятор EV (PHEV), который может выдерживать заряд 4 ° C без литиевого покрытия при 25 ° C, может допускать заряд только 1,5 ° C при 10 ° C и C / 1,5 при 0 ° C для предотвращения литиевое покрытие ( SI Приложение , рис. S3), которое объясняет длительное время перезарядки современных электромобилей при низких температурах. Для повышения способности к быстрой зарядке исследования в литературе были сосредоточены на улучшении анодных материалов, таких как покрытие графита нанослоем аморфного кремния (16, 17), и разработке новых материалов, таких как титанат лития (18, 19) и графеновые шары (20), и по разработке новых электролитов (21, 22) и добавок (23).LiBs, однако, хорошо известны своей компромиссной природой между ключевыми параметрами (24). Улучшение одного свойства без ущерба для другого всегда нетривиально. Например, электролит с превосходными характеристиками при низких температурах довольно часто нестабилен при высоких температурах (23, 24). Точно так же уменьшение размера частиц и / или увеличение площади поверхности активных материалов Брунауэра – Эммета – Теллера (БЭТ) способствует быстрой зарядке, но при этом страдает срок службы батареи и безопасность. Чрезвычайно сложно, если вообще возможно, разработать материалы с высокой скоростью зарядки, сохраняя при этом долговечность и безопасность в широком диапазоне температур.

Здесь мы делаем попытку освободить науку об аккумуляторах от компромиссов. В частности, мы представляем структуру ячеек, которой можно активно управлять для достижения быстрой зарядки без литиевого покрытия (LPF) при любых температурах окружающей среды, что позволяет изменить парадигму соотношения между сроком службы и температурой (рис. 1 B ), с корреляция Аррениуса обычных LiB с горизонтальной линией, нечувствительной к температуре. Мы выбрали пакетные ячейки емкостью 9,5 Ач с графитовым анодом, LiNi 0.6 Mn 0,2 Co 0,2 O 2 (NMC622) катод и плотность энергии на уровне ячейки 170 Втч / кг для демонстрации. Со структурой элемента LPF элемент выдержал 4500 циклов (2806 EFC) зарядки 3,5-C при 0 ° C до достижения 20% потери емкости, что означает, что даже если электромобиль заряжается один раз в день в этих суровых условиях, Элемент LPF имеет срок службы 12,5 лет и может обеспечить дальность действия> 280 000 миль (при условии, что 1 EFC ≈ 100 миль). Это уже выходит за рамки гарантии большинства ICEV.Для сравнения, обычный LiB-элемент с идентичными материалами батареи в тех же условиях тестирования (заряд 3,5 ° C при 0 ° C) потерял 20% емкости всего за 50 циклов и 23 EFC.

Кроме того, в этой работе подчеркивается концепция унифицированной практики зарядки, независимой от температуры окружающей среды. Для электромобилей профили разряда батареи зависят от поведения водителей, но протоколы зарядки определяются производителями. Сегодняшние электромобили должны снижать скорость зарядки при понижении температуры из-за опасений по поводу литиевого покрытия.С помощью элемента LPF зарядка при любой температуре окружающей среды превращается в зарядку при оптимальной температуре всего за десятки секунд. Как показано здесь, элемент LPF может быть заряжен до 80% состояния заряда (SOC) за 15 минут даже при температуре окружающей среды -50 ° C. Более того, кривая зарядного напряжения при -50 ° C почти такая же, как и при 25 ° C. Эта унифицированная практика зарядки может значительно упростить управление аккумулятором и продлить срок его службы.

Кроме того, ячейка LPF предлагает платформу для материаловедов.Постоянной проблемой при исследовании материалов для аккумуляторов является поиск материалов, которые могут поддерживать хорошие характеристики в широком диапазоне температур. Поскольку температурные ограничения снимаются с ячейками LPF, исследователям нужно только оптимизировать характеристики материала около одной температуры.

Результаты и обсуждение

Контролируемая структура ячеек для быстрой зарядки LPF.

Ключевая идея быстрой зарядки LPF состоит в том, чтобы заряжать элемент всегда выше температуры, которая может препятствовать образованию литиевого покрытия, далее именуемой температурой LPF (T LPF ).Как показано на рис. 1 C E , этап быстрого внутреннего нагрева (рис. 1 D ) добавляется перед этапом зарядки (рис. 1 E ), чтобы гарантировать, что аккумулятор заряжен при температура выше T LPF .

Быстрый нагрев необходим для быстрой зарядки LPF, так как общее время зарядки, включая нагрев, ограничено от 10 до 15 минут. Обычные методы нагрева батареи с использованием внешних нагревательных устройств или систем управления температурой ограничены внутренним конфликтом между скоростью нагрева и однородностью (т.е., высокая скорость нагрева приводит к неоднородной температуре и локализованному перегреву вблизи поверхности ячейки), как подробно описано в ссылке. 25; таким образом, их скорость нагрева ограничена ~ 1 ° C / мин (26), что означает, что нагрев от -20 ° C до 20 ° C уже займет> 40 мин. Добавляя время на зарядку, он уже не в категории быстрой зарядки. В этой работе мы используем самонагревающуюся структуру LiB (27), которая имеет тонкую никелевую (Ni) фольгу, встроенную в ячейку, которая может создавать сильный и равномерный нагрев, как показано в приложении SI , рис.S4. Фольга Ni является неотъемлемым компонентом отдельной ячейки вместе с электродами и электролитом. Он служит внутренним нагревательным элементом, а также внутренним датчиком температуры, поскольку его электрическое сопротивление изменяется линейно с температурой ( SI Приложение , рис. S5). Кроме того, введение никелевой фольги добавляет только 0,5% веса и 0,04% стоимости по сравнению с обычным одиночным элементом LiB.

Стратегия управления, основанная на структуре самонагревающейся батареи, разработана в этой работе, как показано на рис.1 C E . Ключом к этой стратегии является интеллектуальное разделение входного тока между никелевой фольгой (нагрев) и материалами электродов (зарядка) в зависимости от температуры элемента (T cell ). Если T элемент LPF (Рис. 1 D ), постоянное напряжение, близкое к напряжению холостого хода элемента (OCV), применяется вместе с замыканием переключателя между положительной и активационной клеммами. Поскольку напряжение элемента ≈ OCV, весь ток от источника заряда направляется к никелевой фольге, чтобы генерировать огромное внутреннее тепло, не проникая в материалы анода (без литиевого покрытия).Как только элемент T > T LPF (рис. 1 E ), переключатель открывается для перехода из режима нагрева в режим зарядки, при этом ток подается на материалы электродов без какого-либо риска литиевого покрытия.

Мы выбираем 9,5-Ач графит / пакет NMC622 для демонстрации быстрой зарядки LPF. Элементы имеют емкость 1,85 мАч / см 2 и плотность энергии на уровне элементов 170 Втч / кг. Выбор скорости заряда и T LPF основан на результатах моделирования потенциала осаждения Li (LDP) в приложении SI , рис.S3 с использованием откалиброванной модели LiB. В общем, T LPF должен иметь минимальную температуру, при которой можно избежать лития при данной скорости заряда. Хотя более высокая температура всегда благоприятна для устранения литиевого покрытия, она также может ускорить рост межфазной границы твердого электролита (SEI). В этой работе скорость заряда 3,5 C и T LPF ∼25 ° C выбраны на основе SI Приложение , рис. S3 C .

На рис.2 показан общий процесс быстрой зарядки LPF 9.Элемент емкостью 5 Ач при экстремальной температуре −40 ° C. Перед испытанием полностью разряженный элемент выдерживали в климатической камере при -40 ° C на> 12 часов. Чтобы гарантировать, что элемент не был заряжен (без литиевого покрытия) на этапе нагрева, при включении переключателя было приложено напряжение 3,15 В, что немного ниже, чем OCV (∼3,2 В) (см. Рис. 1 D ). ). Таким образом, весь входной ток проходил через никелевые фольги (рис. 2 E ) автоматически, не затрагивая материалы батареи.Поскольку напряжение ячейки было установлено на 50 мВ ниже, чем OCV, ячейка слегка разряжалась на этапе нагрева, которая постепенно увеличивалась до ~ 0,2 ° C к концу, когда ячейка стала нагретой (рис. 2 F ). Тем не менее, общая разрядная емкость на этапе нагрева составляет только 6,85 × 10 −3 Ач или 0,072% емкости элемента и, следовательно, несущественна. Из-за сильного тока, протекающего через Ni-фольгу, ячейка быстро нагревается (рис. 2 C ).Когда температура поверхности достигала 20 ° C, выключатель открывался для завершения этапа нагрева, а затем ячейка отдыхала 10 с для релаксации внутреннего температурного градиента. Как показано на рис. 2 G , температура фольги Ni, самая высокая температура внутри ячейки, была <45 ° C во время нагрева и быстро падала и достигала температуры поверхности около 27 ° C после 10-секундного периода покоя. Это означает, что быстрый нагрев не вызывает никаких опасений по поводу безопасности. После этого ячейка переключилась в режим заряда с использованием протокола постоянного тока постоянного напряжения (CCCV) при токе 3.5 C ограничено напряжением отсечки 4,2 В до достижения 80% SOC. Весь процесс занял 894,8 с (14,9 мин), включая 61,6 с нагрева и 10 с термической релаксации.

Рис. 2.

Быстрая 15-минутная зарядка при −40 ° C. ( A D ) Эволюция ( A ) напряжения элемента, ( B ) разделение тока между никелевой (Ni) фольгой и элементом, ( C ) температура поверхности и ( D ) SOC . Первоначально ячейка была при 0% SOC и -40 ° C, с OCV ~ 3.2 В. Весь процесс зарядки был разделен на этап быстрого внутреннего нагрева, за которым следовала 10-секундная пауза, а затем зарядка CCCV (3,5 ° C, 4,2 В) до достижения 80% SOC. ( E и F ) Интеллектуальное управление разделением тока между никелевой фольгой и материалами электродов в процессе нагрева. ( E ) Весь входной ток проходит через никелевые фольги, а ( F ) незначительный ток проходит через анодные материалы (без покрытия) на этапе нагрева. ( G ) Эволюция температуры поверхности и температуры Ni-фольги во время стадий нагрева и релаксации.

Для сравнения идентичную базовую ячейку заряжали без этапа быстрого нагрева с использованием того же протокола CCCV при -40 ° C ( SI, приложение , рис. S6). Из-за чрезвычайно медленной электрохимической кинетики и транспорта электролита и, следовательно, высокого внутреннего сопротивления, напряжение элемента достигло предела 4,2 В сразу после зарядки ( SI Приложение , рис. S6 A ), а пусковой ток составлял всего ∼0,2 C. ( SI Приложение , рис. S6 B ).Зарядный ток медленно восстанавливался при медленном повышении температуры ( SI Приложение , рис. S6 C ) из-за ограниченной скорости тепловыделения. Максимальный зарядный ток составлял всего 0,85 C, и потребовалось 115 минут, чтобы достичь 80% SOC, что в 7,7 раза больше, чем у элемента LPF.

В общем, при очень низких температурах можно разработать батарею, которая разряжает разумный процент емкости; однако зарядить аккумулятор с разумной скоростью практически невозможно.Это происходит из-за асимметричной электрохимической кинетики зарядки по сравнению с разрядкой, преобладающей в электрохимии. С другой стороны, приложения обычно требуют более высокой скорости зарядки для экономии времени. Представленный здесь способ нагрева-заряда с помощью самонагревающейся конструкции батареи позволяет разделить процессы заряда и разряда за счет быстрой модуляции внутренней температуры; таким образом, он способен преодолевать более слабую электрохимическую кинетику зарядки, чем разряд, для широкого набора электрохимических ячеек накопления энергии.

Унифицированная кривая зарядки, не зависящая от температуры окружающей среды.

На Рис. 3 сравнивается зарядка элемента LPF на 9,5 Ач при различных температурах окружающей среды (−50 ° C, −40 ° C, −20 ° C и 0 ° C). Протокол испытаний был одинаковым для всех случаев: ( и ) полная разрядка при 25 ° C, а затем охлаждение до температуры испытания; ( ii ) быстрое нагревание путем приложения постоянного напряжения 3,15 В до тех пор, пока температура поверхности не станет> 20 ° C; ( iii ) 10-секундное расслабление; и ( iv ) Зарядка CCCV (3.5 C, 4,2 В) до 80% SOC. Видно, что кривые напряжения практически одинаковы во всех случаях, несмотря на огромную разницу в температуре окружающей среды (рис. 3 A ). Нагрев ячейки с -50 до 20 ° C (∼1 ° C / с) занял 69 с, а от 0 ° C до 20 ° C (0,66 ° C / с) — 30,2 с. Более быстрый нагрев при более низкой температуре окружающей среды выиграл от снижения сопротивления никелевой фольги с повышением температуры ( SI Приложение , рис. S5), что привело к более высокому току нагрева при более низкой температуре (рис. 3 C ).Даже в случае -50 ° C этап нагрева составлял только 7,6% времени всего процесса. Общее время зарядки элемента до 80% SOC было одинаковым во всех четырех случаях (рис. 3 B , 905,7 с при –50 ° C и 863,2 с при 0 ° C, разница ∼5%). Таким образом, жесткие ограничения температуры окружающей среды на время зарядки, как и во всех современных электромобилях, полностью снимаются с помощью элемента LPF.

Рис. 3.

Единая практика зарядки вне зависимости от температуры окружающей среды. ( A ) Кривые напряжения элемента LPF при различных температурах окружающей среды.Во всех испытаниях элемент прошел этап быстрого нагрева при 3,15 В до достижения температуры поверхности> 20 ° C, выдерживался в течение 10 с, а затем заряжался постоянным током 3,5 ° C с последующим постоянным напряжением 4,2 В. до достижения 80% SOC. ( B ) Сводка времени нагрева и общего времени, демонстрирующая, что ограничения температуры окружающей среды на время зарядки устранены. ( C и D ) Эволюция ( C ) тока через никелевую фольгу и ( D ) температуры поверхности ячейки на этапе быстрого нагрева.

Температура поверхности и фольги Ni достигла ∼27 ° C после 10-секундной термической релаксации ( SI Приложение , рис. S7) во всех четырех случаях, что указывает на то, что начальная точка зарядки аналогична. Таким образом, кривые напряжения при последующей зарядке CCCV были очень похожими ( SI Приложение , рис. S8, A ). Немного более высокое напряжение при более низкой температуре окружающей среды было приписано большему падению температуры во время зарядки ( SI Приложение , рис. S8, B ) из-за сильного охлаждения в климатической камере.При улучшении теплоизоляции и управления можно ожидать, что кривая зарядки станет унифицированной и независимой от температуры окружающей среды. Унифицированная кривая заряда может значительно упростить систему управления батареями и повысить точность оценки состояния батареи (SOC, состояние здоровья и т. Д.) И, следовательно, чрезвычайно полезна для электромобилей.

Следует отметить, что современные электромобили, в принципе, также могут быть нагреты до> T LPF перед зарядкой, используя системы терморегулирования вне отдельных элементов; однако изначально низкая скорость внешнего нагрева (<1 ° C / мин) не позволяет решить проблему быстрой зарядки.Кроме того, поскольку автомобильные элементы становятся все больше и толще, чтобы снизить стоимость производства, скорость внешнего нагрева должна быть дополнительно снижена, чтобы избежать локального перегрева на поверхности элемента (25). Наш метод вставки никелевой фольги обеспечивает быстрый и равномерный внутренний нагрев независимо от размера ячейки (равномерность нагрева может быть гарантирована добавлением нескольких никелевых фольг). Этот метод также может быть применен к ячейкам другой геометрии. Например, фольга Ni может образовывать оболочку, обернутую вокруг первой половины цилиндрического рулона с желе перед намоткой второй половины, таким образом размещая ее прямо в середине рулона с желе для цилиндрической ячейки.Несколько примеров конструкций из никелевой фольги для различных типов и форм-факторов ячеек можно найти в ссылке. 28. Кроме того, поток тока внутри элемента между нагревательным элементом и материалом батареи активно регулируется, обеспечивая плавное переключение между режимом быстрого нагрева и режимом зарядки в зависимости от температуры элемента. Даже в крайнем случае -50 ° C, когда электролит уже перестает работать, элемент LPF все еще заряжается до 80% SOC за 15 минут, как и при комнатной температуре, что еще раз демонстрирует свой потенциал для обеспечения истинного климата и погодных условий. -независимый.

Замечательный срок службы за счет отсутствия литиевого покрытия.

Далее мы демонстрируем устранение литиевого покрытия в элементе LPF. Зарядка ячейки LPF при 0 ° C сравнивается с двумя стандартными ячейками базовой линии с идентичными материалами и электродами, которые были заряжены по тому же протоколу CCCV (3,5 C, 4,2 В) до 80% SOC без этапа нагрева. Одна базовая ячейка была протестирована при 0 ° C, а другая — при 25 ° C. Как показано на Рис.4 A , кривая напряжения ячейки LPF при 0 ° C после этапа быстрого нагрева почти перекрывалась с кривой напряжения базовой ячейки при 25 ° C, с очень небольшой разницей из-за разницы в температуре. (Рисунок.4 B ). Однако базовая ячейка при 0 ° C имеет гораздо более высокое напряжение, чем две другие ячейки из-за ее высокого внутреннего сопротивления. Все три ячейки были оставлены в разомкнутой цепи после зарядки до 80% SOC, и кривые напряжения во время релаксации сравниваются на рис. 4 C . Четкое плато напряжения наблюдается на кривой релаксации базовой ячейки при 0 ° C, что приводит к локальному пику на кривой дифференциального напряжения (рис. 4 D ). Плато напряжения и пик дифференциального напряжения указывают на появление металлического лития, и, таким образом, являются четким доказательством того, что покрытие литием произошло в 3.5-C зарядка базового элемента при 0 ° C. В двух других случаях напряжение элемента быстро падает до относительно стабильного значения, что указывает на отсутствие литиевого покрытия во время зарядки.

Рис. 4.

Замечательный срок службы элемента LPF. Сравнение базовых ячеек при 0 ° C и 25 ° C с ячейкой LPF при 0 ° C с точки зрения напряжения ( A, ) и температуры поверхности ( B ) во время зарядки и ( C, ) напряжения и ( D ) производная по времени напряжения во время релаксации ячейки после зарядки.Все элементы были заряжены током 3,5 ° C, ограниченным 4,2 В, пока они не достигли 80% SOC. Плато напряжения в C и локальный пик дифференциального напряжения в D базовой ячейки при 0 ° C указывают на отрыв металлического лития. ( E ) Сохранение емкости в зависимости от количества циклов для элемента LPF и цикла базовой ячейки с зарядкой 3,5 ° C при температуре окружающей среды 0 ° C.

Отсутствие литиевого покрытия значительно увеличило срок службы при низких температурах. Велоспорт-тесты проводились с 3.Зарядка 5-C до 4,2 В с последующим 2-минутным перерывом и затем разряд 1-C до 2,7 В. Для элемента LPF этап быстрого нагрева при постоянном напряжении 3,4 В выполнялся в начале каждого цикла и завершался. при Т ячейка > 20 ° С с последующей 10-секундной релаксацией. Ячейки полностью охлаждались до 0 ° C после этапа разряда перед началом следующего цикла. Изменения напряжения и температуры во время цикла приведены в приложении SI , рис. S9 (один цикл) и в приложении SI , рис.S10 (10 циклов). Пропускная способность каждого цикла указана в приложении SI , рис. S11. Циклические испытания периодически приостанавливались для калибровки емкости элемента с эталонным тестом производительности (RPT) при 25 ° C ( SI, приложение , рис. S12). Измеренная разрядная емкость C / 3 в RPT была нанесена на график зависимости от номера цикла на рис. 4 E как для базовой линии, так и для ячеек LPF. Базовая ячейка потеряла 20% емкости всего за 50 циклов, тогда как ячейка LPF выдержала 4500 циклов при том же сохранении емкости, что составляет 90-кратное увеличение срока службы.Даже если водители электромобилей выполняют быструю зарядку один раз в день, 4500 циклов означают 12,5 года работы. При преобразовании в EFC (т. Е. Общая емкость, разряженная во время цикла, деленная на номинальную емкость 9,5 Ач), было получено 2806 EFC при сохранении емкости 80%, что в 122 раза больше по сравнению с базовой ячейкой (23 EFC). Предполагая 100-мильный запас хода на EFC (например, BMW i3), 2806 EFC указывают на срок службы> 280 000 миль, что намного превышает гарантии современных ICEV.

Две вышеуказанные ячейки на рис.4 E далее сравнивают с дополнительными базовыми клетками, один цикл прошел при 10 ° C, а другой — при 22 ° C. Эти две базовые ячейки изначально были при 20% SOC и заряжались и разряжались фиксированным объемом, равным 60% SOC свежих элементов в каждом цикле, с CCCV (3 C, 4,2 В) зарядом и 1-C разрядом. Поскольку протоколы циклирования несколько отличаются, сохранение емкости этих ячеек показано в зависимости от EFC на рис. 5 A . Отметим, что элемент с зарядкой 3-C при 10 ° C продержался всего 317 EFC при сохранении 80% емкости.Более того, элемент LPF при 0 ° C имеет даже более длительный срок службы, чем элемент базового уровня при 22 ° C. Причина двоякая. Во-первых, поскольку литиевое покрытие исключается, доминирующим механизмом старения является рост SEI, который зависит в первую очередь от температуры. Как показано в приложении SI , рис. S10 B , на участках разряда и охлаждения элемента LPF температура ниже 22 ° C. Средняя температура ячейки LPF в 10 циклах, показанных в SI Приложение , рис. S10 B , составляет 11,6 ° C, что намного ниже средней температуры базовой ячейки (~ 28 ° C).Таким образом, рост SEI в клетке LPF в целом был медленнее, чем в базовой клетке. Во-вторых, базовая ячейка заряжалась на фиксированную величину емкости в каждом цикле, которая равнялась 60% SOC свежей ячейки, но становилась больше, чем 60% SOC по мере разрушения ячейки. Таким образом, базовый элемент был заряжен до более высокого SOC, чем элемент LPF (заряжен до 4,2 В, без ступени постоянного напряжения) на поздней стадии цикла. Более высокий SOC также приведет к более быстрому росту SEI.

Рис. 5.

Смена парадигмы влияния температуры окружающей среды на старение клеток.( A ) Сравнение срока службы элемента LPF при зарядке 3,5 ° C при 0 ° C с одинаковыми базовыми элементами при разных температурах. ( B ) Скорость старения в зависимости от обратной температуры четырех ячеек в A . Скорость старения определяется как отношение потери мощности (в процентах) к EFC в конце срока службы и отображается в логарифмической шкале. ( C ) Скорость старения HE ячеек следующего поколения (с толстым электродом) в литературе. Оптимальная температура зарядки HE EV ячеек сдвигается с ∼25 ° C для существующих PHEV ячеек до ∼40 ° C до 50 ° C.

Рис. 5 B дополнительно сравнивает скорость старения в четырех вышеупомянутых случаях, которая определяется как отношение потери емкости (в процентах) к EFC в конце срока службы и отображается в логарифмической шкале в зависимости от обратной температуры. Для базовых ячеек логарифм скорости старения в зависимости от 1 / T может быть описан линейной линией, подтверждающей, что скорость старения обычных LiB соответствует закону Аррениуса (12). Энергия активации оценивается в -1,37 эВ, что находится в пределах диапазона, указанного в литературе (29).Мы отмечаем, что скорость старения ячейки LPF при 0 ° C была снижена на два порядка по сравнению с базовой стандартной ячейкой и стала близкой к скорости старения базовой ячейки при комнатной температуре, что указывает на сдвиг парадигмы в соотношении между скорость старения и температура окружающей среды.

LPF Быстрая зарядка высокоэнергетических элементов при повышенной температуре.

Для будущих электромобилей дальнего действия требуется плотность энергии на уровне системы не менее 225 Втч / кг, что требует плотности энергии на уровне элементов> 300 Втч / кг (30).Типичный подход к увеличению плотности энергии на уровне ячейки заключается в увеличении поверхностной емкости (и толщины) электродов. Однако элементы с более толстыми анодами более склонны к нанесению литиевого покрытия из-за большего сопротивления переносу электролита. Недавняя работа (30) показала, что ячейка-пакет из графита / NMC622 с поверхностной нагрузкой 3,3 мАч / см 2 , ∼1,8 × ячейки PHEV в этой работе, потеряла 22,5% емкости за 52 цикла заряда 1,5-C при 30 ° С. После демонтажа старого элемента было обнаружено большое количество металлического лития, что указывает на то, что покрытие литием может быть серьезной проблемой в элементах с высокой энергией (HE) даже при комнатной температуре.

Возможный подход к устранению литиевого покрытия в элементах HE заключается в дальнейшем повышении температуры зарядки. Как показано в приложении SI , рис. S2, увеличение с 25 ° C до 45 ° C увеличивает кинетику интеркаляции лития на 5,6 раза, коэффициент диффузии лития в графите на 2,4 раза и проводимость электролита на 1,4 раза, и, следовательно, может способствовать снижению содержания лития. покрытие. SI Приложение , рис. S13 показывает прогнозируемый моделью LDP ячейки HE, имеющей 1,65-кратную емкость площади и толщину ячейки PHEV в этой работе.Отметим, что максимальный ток заряда при 25 ° C без литиевого покрытия падает с 4 C для элемента PHEV ( SI, приложение , рис. S3, C ) до ∼1,5 C для элемента HE ( SI, приложение , рис. .S13 A ) из-за увеличенной толщины электрода. Если заряжать элемент при 45 ° C, максимальная скорость заряда HE-элемента может быть увеличена до 3 C. Действительно, недавние исследования показали, что элементы с толстыми электродами имеют более длительный срок службы при 40-45 ° C, чем при температуре от 40 ° C до 45 ° C. комнатная температура.Группа Йоссена (31) сообщила, что ячейка графит / LiCoO 2 с анодом толщиной 77 мкм (1,6 × настоящей работы) потеряла 30% емкости за 250 циклов с зарядкой 1 ° C при 25 ° C, но потеряла только Емкость 5% после 400 циклов при 40 ° C. Аналогичным образом группа Винтера (32) обнаружила, что срок службы элемента из графита / NMC532 с анодом толщиной 77 мкм увеличился с 400 циклов при 20 ° C до 1100 циклов при 45 ° C при сохранении емкости 70%. Совсем недавно исследователи из Samsung (20) разработали элемент HE с возможностью зарядки 5 ° C при 60 ° C.

Рис. 5 C сравнивает скорость старения вышеупомянутых клеток HE с клетками PHEV в этой работе. Также добавляется скорость старения ячейки PHEV при 45 ° C. Как сообщается в литературе (33), старение клеток — это комбинированный эффект роста SEI и литиевого покрытия. Для элемента PHEV 25 ° C достаточно высока для предотвращения литиевого покрытия при скорости заряда 3,5 C ( SI Приложение , рис. S3). Дальнейшее повышение температуры до 45 ° C уменьшило срок службы до 613 EFC при сохранении емкости 80% из-за более быстрого роста SEI.Для клеток HE, однако, полезно работать при температуре от ~ 40 ° C до 45 ° C из-за уменьшения литиевого покрытия, которое превосходит негативные последствия более быстрого роста SEI. Следовательно, работа при более высоких температурах может быть многообещающим подходом для увеличения срока службы клеток HE. В этом отношении нагревание было бы важным шагом для зарядки элементов HE. Учитывая изначально низкую скорость внешнего нагрева, нынешний элемент LPF имеет большие перспективы для электромобилей следующего поколения, поскольку он может практически мгновенно модулировать внутреннюю температуру элемента по запросу.

В широком смысле научное достоинство описанного здесь элемента LPF состоит в том, что он предлагает общее решение для разделения кинетики заряда и разряда в науке об аккумуляторах и для ускорения зарядки аккумулятора без необходимости использования новых материалов или химии. Он также предлагает платформу для материаловедов для разработки более совершенных материалов для аккумуляторов без учета температуры. Что касается приложений, настоящая работа навсегда устраняет давние ограничения температуры окружающей среды на зарядку аккумулятора, позволяя использовать широкий спектр новой электроники и устройств, таких как всепогодные смартфоны, наружные роботы, дроны и микроспутники, работающие на больших высотах, а также новые приложения, такие как спасение машин, застрявших в снегу, и исследования в космосе и Арктике.

Методы и материалы

Пакеты для LPF емкостью 9,5 Ач были изготовлены с использованием NMC622 в качестве катода, графита в качестве анода и 1 M LiPF 6 , растворенного в этиленкарбонате (EC) / этилметилкарбонате (EMC) (3: 7). по массе) + 2 мас.% виниленкарбоната (ВК) в качестве электролита. Элементы имеют емкость 1,85 мАч / см 2 и плотность энергии на уровне элементов 170 Втч / кг. Каждая ячейка LPF имеет два куска никелевой фольги, встроенных внутрь, как показано в приложении SI , рис.S4. Каждая Ni-фольга толщиной 30 мкм и сопротивлением 80,2 мОм при 25 ° C покрыта тонким (28 мкм) полиэтилентерефталатом для электрической изоляции и зажата между двумя односторонними анодными слоями. Две трехслойные сборки уложены друг на друга внутри ячейки и соединены параллельно, причем одна сборка расположена на 1/4 толщины ячейки, а другая — на 3/4 толщины ячейки от верхней поверхности ячейки. Более подробную информацию о материалах, изготовлении, структуре и испытаниях ячеек можно найти в SI Приложение , Методы и материалы .

Благодарности

Финансовая поддержка Департамента охраны окружающей среды Пенсильвании; EC Power, LLC; и Министерство энергетики США присуждено награду DE-EE0006425. Мы также благодарны EC Power за предложение программного обеспечения AutoLion, которое было приобретено Gamma Technologies.

Сноски

  • Вклад авторов: X.-G.Y., G.Z., and C.-Y.W. спланированное исследование; X.-G.Y., G.Z. и S.G. проводили исследования; X.-G.Y. и С.-Y.W. проанализированные данные; и X.-G.Y. и C.-Y.W. написал газету.

  • Авторы заявляют об отсутствии конфликта интересов.

  • Эта статья представляет собой прямое представление PNAS.

  • Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807115115/-/DCSupplemental.

Как выбрать ИС управления зарядом литий-ионной батареи | Статья

.

СТАТЬЯ

Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность

Джон Б.Гуденаф, которого считают отцом литий-ионных (Li-ion) батарей, стал старейшим лауреатом Нобелевской премии, когда в 2019 году получил Нобелевскую премию по химии за свою новаторскую работу. В настоящее время литий-ионные батареи используются во всех сферах жизни большинства потребителей, поскольку они делают электронные устройства легкими и долговечными. Например, в большинстве мобильных телефонов используется литий-ионный аккумулятор для более длительного времени работы, портативности и удобной зарядки.

Для максимального использования важно эффективно заряжать литий-ионные аккумуляторы.

Как заряжать литий-ионные батареи

Сначала давайте проанализируем процесс зарядки литий-ионного аккумулятора. Процесс зарядки можно разделить на четыре различных этапа: постоянный заряд, предварительная зарядка, заряд постоянным током и заряд постоянным напряжением. На рис. 1 показана кривая зарядки типичного литий-ионного аккумулятора.

Рисунок 1: Кривая заряда литий-ионной батареи

Это кажется простым, но есть много параметров, которые следует учитывать при выборе решения для зарядки аккумулятора. На рис. 2 показаны четыре основных момента при выборе решения.

Рисунок 2: Конструкция зарядного устройства — основные моменты

Эти соображения более подробно описаны ниже:

Топология

Разработчики системы зарядного устройства должны выбрать топологию на основе диапазона входного напряжения, конфигурации батареи, зарядных токов и других приоритетов на уровне системы (см. Рисунок 3) .

Рисунок 3: Топологии зарядного устройства

Например, большинство портативных устройств заряжаются от порта USB.Есть два основных типа USB:

  • USB Type-A: обычно 5 В при максимальном 1,5 А, этот тип USB может поддерживать быструю зарядку (среди других стандартов) до 12 В
  • USB Type-C: 5 В, максимум 3 А. Если поддерживается USB-PD, его можно увеличить до 20 В при 5 А

Если устройство заряжается через порт USB, оно всегда должно поддерживать работу 5 В. Например, для последовательно соединенных батарей (максимальное напряжение VBATT ≥ 8,4 В) используйте топологию повышающего или понижающего напряжения. Если устройство не заряжается от USB-порта, рекомендуется использовать понижающую топологию, поскольку входное напряжение всегда превышает напряжение аккумулятора.

Контур управления

Основная проблема для ИС управления батареями состоит в том, что они имеют несколько контуров управления. Они не только должны управлять входным напряжением и током, они также должны управлять мощностью системы, током и напряжением зарядки аккумулятора, температурой аккумулятора и другими параметрами (см. Рисунок 4) . Например, системе часто приходится регулировать ток зарядки аккумулятора в соответствии с температурой аккумулятора.

Рисунок 4: Различные контуры управления в зарядном устройстве IC

Управление трактом питания

Контур управления траекторией питания динамически регулирует ток заряда батареи в зависимости от мощности входного источника тока и требований к току нагрузки системы.Это гарантирует, что система получит требуемый ток при использовании избыточного заряда для зарядки аккумулятора.

Рисунок 5: Архитектура системы зарядного устройства батареи

В зависимости от характеристик зарядного устройства существует три типичных архитектуры.

Первая архитектура подключает батарею напрямую к системному источнику питания и требует, чтобы напряжение батареи достигло минимального напряжения системы для работы.

Второй — сквозной подход, в котором используются внешние переключатели для управления зарядкой батареи и системными путями.

Третья архитектура — это управление трактом питания NVDC, который представляет собой общий подход, имеющий следующие преимущества по сравнению с двумя предыдущими архитектурами:

  • Система может запускаться мгновенно даже при низком напряжении батареи
  • Напряжение системы точно соответствует напряжению батареи, чтобы снизить напряжение компонентов системы
  • Когда входная мощность ограничена, аккумулятор может дополнять систему
  • Система может быть отключена от аккумулятора для поддержки режима транспортировки

На рисунке 6 показана кривая зарядки зарядного устройства NVDC.

Рисунок 6: Кривая зарядки Li-Ion с функциями NVDC

Когда напряжение батареи относительно низкое, напряжение системы регулируется в самой низкой рабочей точке (VSYS_REG_MIN на рисунке 6). Когда напряжение батареи приближается к VSYS_REG_MIN, напряжение батареи и системы близко отслеживает друг друга. Поэтому, независимо от состояния аккумулятора, напряжение в системе всегда поддерживается в узком диапазоне. На рис. 7 показаны реальные графики осциллографа.

Рисунок 7: Типичная кривая зарядки (рабочие условия: V IN = 16 В, V BATT , линейное изменение с 0 В, ICHG = 1.84A, I SYS = 1A)

Обратный ход

Операции зарядного устройства, описанные выше, использовали входной источник для зарядки аккумулятора или питания системы. Также возможно обеспечить работу в обратном направлении, например, функцию USB On-the-Go (OTG). Зарядное устройство с функцией USB OTG позволяет внутренней батарее устройства обеспечивать питание устройств через входной порт устройства.

MP2731 ИС для зарядки аккумулятора

Если вашему приложению требуется управление трактом питания NVDC и функция OTG, микросхема зарядного устройства MP2731 может идеально удовлетворить ваши потребности (см. Рисунок 8) .

Рисунок 8: Схема и основные характеристики MP2731

MP2731 — это полностью интегрированное зарядное устройство, которое поддерживает эти режимы и обеспечивает высокую эффективность, а также впечатляющие тепловые характеристики .

Рисунок 9: Высокая эффективность и тепловые характеристики

Поскольку литий-ионные батареи продолжают использоваться в современных приборах и системах, жизненно важно постоянно оценивать, как сделать их более эффективными и рентабельными. Имея на выбор множество архитектур и зарядных устройств, MPS может оптимизировать процесс с помощью таких продуктов, как MP2731.

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!

Получить техническую поддержку

Пять советов по продлению срока службы литий-ионной батареи

В прессе много говорится о том, как сэкономить заряд батареи, но не так много о том, как позаботиться о батареях. Вот несколько советов, которые помогут продлить срок службы батареи.

В современном мобильном мире время автономной работы дорого стоит. Если не верите, сходите в аэропорт и понаблюдайте за дорожными воинами. Когда двое одновременно находят единственную доступную розетку, это может стать совершенно неприятным.

Не нужно много времени, чтобы узнать, что помогает сохранить текущий заряд аккумулятора. Неизвестно, как ухаживать за самой батареей. Это не менее важно. Это позволит батарее работать эффективно.Вот несколько способов сохранить работоспособность литий-ионных аккумуляторов.

1: Храните батареи при комнатной температуре

Это означает от 20 до 25 градусов Цельсия. Худшее, что может случиться с литий-ионным аккумулятором, — это полностью зарядиться и подвергнуться воздействию повышенных температур. Так что не оставляйте и не заряжайте аккумулятор мобильного устройства в машине, если на улице жарко. Когда речь идет о сокращении срока службы литий-ионных аккумуляторов, тепло является самым важным фактором.

2: подумайте о приобретении литий-ионного аккумулятора большой емкости, а не о запасном

.

Батареи со временем изнашиваются вне зависимости от того, используются они или нет.Таким образом, запасной аккумулятор не прослужит дольше используемого. При покупке батарей важно помнить о характеристиках старения. Обязательно запрашивайте те, у которых самая последняя дата изготовления.

3: разрешать частичные разряды и избегать полных (обычно)

В отличие от никель-кадмиевых аккумуляторов литий-ионные аккумуляторы не имеют зарядной памяти. Это означает, что циклы глубокой разрядки не требуются. На самом деле, для аккумулятора лучше использовать циклы частичного разряда.

Есть одно исключение.Эксперты по аккумуляторным батареям предполагают, что после 30 зарядок вы должны позволить литий-ионным аккумуляторам почти полностью разрядиться. Непрерывные частичные разряды создают состояние, называемое цифровой памятью, снижая точность измерителя мощности устройства. Так что дайте аккумулятору разрядиться до точки отключения, а затем подзарядите. Измеритель мощности будет откалиброван.

4: Избегайте полной разрядки литий-ионных батарей

Если литий-ионный аккумулятор разряжается ниже 2,5 В на элемент, цепь безопасности, встроенная в аккумулятор, размыкается, и аккумулятор выглядит разряженным.Оригинальное зарядное устройство бесполезно. Только анализаторы аккумуляторов с функцией повышения имеют шанс подзарядить аккумулятор.

Также из соображений безопасности не заряжайте глубоко разряженные литий-ионные батареи, если они хранились в таком состоянии в течение нескольких месяцев.

5: Для длительного хранения разрядите литий-ионный аккумулятор примерно до 40 процентов и храните его в прохладном месте

У меня всегда был запасной аккумулятор для ноутбука, но он никогда не продержался бы так же долго, как оригинальный аккумулятор.Теперь я знаю, что это потому, что я хранил аккумулятор полностью заряженным. Это означает, что окисление литий-иона идет с максимальной скоростью. Рекомендуется хранить литий-ионные батареи при 40-процентной разряде в холодильнике (не в морозильной камере)

Заключительные мысли

Литий-ионные батареи

— это огромное улучшение по сравнению с батареями предыдущих типов. Получение 500 циклов зарядки / разрядки от литий-ионного аккумулятора не является чем-то необычным. Просто следуйте приведенным выше рекомендациям.


Зарядка литий-ионных аккумуляторов и преимущества — PowerTech Systems

Отличия лития

Свинцово-кислотные батареи сделаны из (что неудивительно) смеси свинцовых пластин и серной кислоты.Это был первый тип аккумуляторной батареи, изобретенный еще в 1859 году.

С другой стороны, ионно-литиевые батареи

являются гораздо более новым изобретением и существуют в коммерчески жизнеспособной форме только с 1980-х годов.

Литиевая технология

хорошо зарекомендовала себя и хорошо известна для питания небольшой электроники, такой как ноутбуки или аккумуляторные инструменты, и становится все более распространенной в этих приложениях, вытесняя старые никель-кадмиевые (никель-кадмиевые) аккумуляторные батареи благодаря многочисленным преимуществам лития.

Но, как вы, возможно, помните из множества новостей несколько лет назад о возгорании неисправных аккумуляторов портативных компьютеров, литий-ионные аккумуляторы также заработали репутацию очень драматичных источников возгорания.

Обычно используемый литий-ионный аккумулятор представляет собой оксид лития-кобальта (LiCoO2), и этот химический состав аккумулятора склонен к тепловому разгоне, если аккумулятор случайно перезарядится. Это может привести к возгоранию аккумулятора, а от литиевого огня произойдет быстрое и горячее возгорание.

Это одна из причин того, что до недавнего времени литий редко использовался для создания больших батарейных блоков.

Но в 1996 году была разработана новая формула смешивания литий-ионных аккумуляторов — литий-железный фосфат e. Эти батареи, известные как LiFePO4 или LFP, имеют немного более низкую плотность энергии, но по своей природе негорючие и, следовательно, намного безопаснее, чем литий-кобальто-оксидные. А если учесть преимущества, то литий-ионные батареи становятся чрезвычайно заманчивыми.

1 / Превосходная «полезная» емкость

В отличие от свинцово-кислотных аккумуляторов, считается практичным регулярно использовать 90% или более номинальной емкости банка литиевых аккумуляторов, а иногда и больше. Рассмотрим батарею на 100 ампер-часов — если бы это была свинцово-кислотная батарея, было бы разумно использовать от 30 до 50 ампер-часов сока, но с литием вы могли бы использовать 90 ампер-часов или даже 100 Ач (100% DoD).

Свинцово-кислотная полезная емкость AGM Полезная емкость литий-ионных аккумуляторов
2 / Увеличенный срок службы

Производители и лаборатории сообщают, что от высококачественной батареи LiFePo4 можно ожидать десятков тысяч циклов.Однако это теоретические значения, которые нелегко проверить.
С практической точки зрения и при реальном использовании батареи LiFePo4 стандартного качества могут обеспечить не менее 2000 циклов заряда / разряда при 80% степени разрядки и разрядке 1С, а оставшаяся емкость остается выше 80%. Эти значения зависят от скорости заряда, глубины разряда, но, что более важно, от качества используемых элементов.

Эти результаты жизненного цикла намного лучше, чем химические составы NMC или NCA, широко используемые в индустрии электромобилей.Напротив, даже самые лучшие свинцово-кислотные батареи глубокого разряда обычно рассчитаны только на 500-1000 циклов.

Для батарей , таких как произведенные PowerTech Systems , с использованием отсортированных и согласованных высококачественных элементов, от 4000 до 5000 циклов может быть доставлен при 1С и 80% DoD. Это количество циклов может быть значительно увеличено за счет уменьшения глубины разряда (DoD).

На диаграмме ниже показано количество циклов в зависимости от глубины разряда для продуктов PowerBrick, PowerRack и PowerModule:

Количество циклов в зависимости от глубины разряда для продуктов PowerBrick, PowerRack и PowerModule
3 / Потери Пойкерта и провал напряжения практически не существует

Кривая разряда литиевых батарей (особенно свинцово-кислотных) практически плоская — это означает, что батарея, заряженная на 20%, будет обеспечивать почти такое же выходное напряжение, как и батарея, заряженная на 80%.

Это предотвращает любые проблемы, вызванные «провалом напряжения», обычным для свинцово-кислотных аккумуляторов при их разряде, но означает, что любой монитор батареи или автоматический запуск генератора, зависящий от уровней напряжения, скорее всего, не будут работать нормально при мониторинге литиевого банка.

Кривые литий-ионного разряда

Еще одно огромное преимущество литиевых батарей состоит в том, что потери Пойкерта практически отсутствуют . Это означает, что литий-ионные батареи могут работать на полную номинальную емкость даже при высоких токах.В то время как свинцово-кислотная может привести к потере мощности до 40% при высоких нагрузках.

На практике это означает, что литий-ионные аккумуляторные батареи очень хорошо подходят для питания сильноточных нагрузок, таких как кондиционер, микроволновая печь или индукционная плита.

Кривые разряда литий-железо-фосфатных соединений при различных уровнях C
4 / Преимущества по размеру и весу

Чтобы подчеркнуть уникальные характеристики литий-ионных аккумуляторов с точки зрения веса и размера, рассмотрим важный пример: свинцово-кислотные и литиевые аккумуляторы.

5 / Быстрая и эффективная зарядка
Литий-ионные аккумуляторы

можно «быстро» зарядить до 100% емкости. В отличие от свинцово-кислотной, нет необходимости в фазе абсорбции для хранения оставшихся 20%. И, если ваше зарядное устройство достаточно мощное, литиевые батареи также можно заряжать безумно быстро. Если вы можете обеспечить достаточное количество зарядных усилителей, вы сможете полностью зарядить литий-ионный аккумулятор всего за 30 минут.

Но даже если вам не удастся полностью зарядить аккумулятор до 100%, не беспокойтесь — в отличие от свинцово-кислотных аккумуляторов, регулярная полная зарядка литий-ионных аккумуляторов не приводит к их повреждению.

Это дает вам большую гибкость при подключении к источникам энергии всякий раз, когда вы можете их получить, не беспокоясь о необходимости регулярно выполнять полную зарядку. Несколько дней с небольшой облачностью в вашей солнечной системе? Нет проблем, что вы не можете долить до захода солнца, пока вы учитываете свои потребности. С литием вы можете заряжать все, что можете, и не беспокоиться о том, что ваш аккумулятор постоянно недозаряжен.

6 / Очень мало потраченной энергии

Свинцово-кислотные батареи менее эффективны в хранении энергии, чем литий-ионные батареи.Литиевые батареи заряжаются с КПД почти 100% по сравнению с КПД большинства свинцово-кислотных аккумуляторов 85%.

Это может быть особенно важно при зарядке от солнечной батареи, когда вы пытаетесь выжать из каждого усилителя как можно больше эффективности до того, как солнце сядет или не закроется облаками.

Теоретически, с литием почти каждая собранная вами капля солнца идет в ваши батареи. Учитывая ограниченность крыши и места для хранения панелей, это становится очень важным для оптимизации каждого квадратного дюйма мощности, которую вы можете установить.

7 / Устойчивость к климатическим изменениям

Свинцово-кислотные батареи и литиевые теряют свою емкость в холодных условиях. Как видно на диаграмме ниже, литий-ионные батареи намного эффективнее при низких температурах. Кроме того, скорость разряда влияет на производительность свинцово-кислотных аккумуляторов. При -20 ° C литиевая батарея, которая выдает ток 1С (в один раз больше своей емкости), может отдавать более 80% своей энергии, когда батарея AGM обеспечивает 30% своей емкости.

Для суровых условий (горячей и холодной) литий-ионный — технологический выбор.

Зависимость емкости от температуры
8 / Меньше проблем с размещением
Литий-ионные батареи

не нужно хранить в вертикальном положении или в вентилируемом батарейном отсеке. Их также довольно легко собрать в необычные формы — преимущество, если вы пытаетесь втиснуть как можно больше энергии в небольшой отсек.

Это особенно полезно, если у вас есть батарейный отсек ограниченного размера, но вы хотите или нуждаетесь в большей емкости, чем может обеспечить свинцово-кислотная батарея в настоящее время.

9 / Отсутствие требований к техническому обслуживанию
Литий-ионные батареи

практически не требуют обслуживания.

Добавить комментарий

Ваш адрес email не будет опубликован.