Защита от пропадания нуля – 5 способов защиты от обрыва нуля: двухфазные, трехфазные системы

Содержание

5 способов защиты от обрыва нуля: двухфазные, трехфазные системы

Всем известно, что ток в электрической сети течет по замкнутому контуру, питая при этом разнообразную бытовую технику и промышленное оборудование. Сеть подачи электроэнергии в частные дома, квартиры и дачи является одним из направлений распределения электричества в глобальной системе энергоснабжения разнообразных объектов. Все это говорит о том, что для питания бытовых электроприборов необходимы как минимум два электрических проводника, которые создадут замкнутую цепь электропитания домашней техники.

Защита обрыва

Эти проводники называются фазным (L) и рабочим нулевым (N). «Ноль» не опасен для человека при прикосновении к нему, так как на нем отсутствует напряжение сети. Но это не значит, что через него не протекает электрический ток. В идеальном случае, в однофазной сети, величина тока, проходящего через фазный проводник полностью совпадает со значением этого параметра, протекающего через нейтральный провод. В этой статье мы рассмотрим вопрос, причины обрывы или обгорания нулевого проводника, что происходит в случае такой аварийной ситуации, последствия этой аварии и какая защита от обрыва «нуля» способна исключить такое негативное явление.

Защита обрыва 2

Внимание! Обгорание нейтрального проводника в трехфазной магистральной линии электроснабжения способен вызвать изменение величины напряжения от минимального до максимального значения в 380 В, а обрыв «нуля» внутренней электропроводки обесточит сеть с появлением фазы на нулевом контакте розетки.

Причины обрыва нулевого проводника

Обрыв или обгорание нейтрального рабочего проводника часто происходит в домах старой постройки, где электрическая сеть была спроектирована на низкую нагрузку не более 2 кВт на отдельную квартиру или дом. В современных условиях насыщенность объектов недвижимости мощной бытовой техникой объектов недвижимости резко увеличилась и электрическая проводка часто не выдерживает таких нагрузок. Где тонко, там и рвется! Чаще всего обгорание «нуля» происходит в месте соединения N-проводника с нулевой шиной в распределительном квартирном щите, но такая авария может произойти и в другом месте, например, на подстанции или в силовом трансформаторе.

Защита обрыва 3

Следует различать обрыв нулевого проводника в трехфазной и однофазной сетях. Однофазная электрическая проводка предназначена для энергоснабжения квартир и частных домов непосредственно внутри помещения. До распределительного щита, чаще всего, электроэнергия подается по трехфазной схеме и только в нем происходит разделение на однофазные линии питания. Для дачных поселков, как правило, используется однофазная магистральная линия доставки электроэнергии до потребителя от силового трансформатора. Все эти нюансы влияют на последствия, которые происходят после обрыва или обгорания «нуля».

Защита обрыва 4

Как и в однофазной, так и в трехфазной сети может произойти обрыв нейтрального проводника, но последствия будут разные. В любом случае причиной обрыва «нуля» может быть либо перегрузка, либо некачественный монтаж проводки или другие причины: коррозия, механическое повреждение нулевой жилы и так далее. В однофазных сетях «ноль» не склонен к обгоранию, но обрыв может произойти по другим причинам. Трехфазная сеть в большей степени склонна к обгоранию нулевого проводника. Ниже мы рассмотрим вопрос, почему происходит отгорание «нуля» в трехфазной сети.

Внимание! Нейтральный проводник отгорает, как правило, при его плохом контакте с другими элементами сети. Поэтому необходимо уделять особое внимание монтажу нулевой жилы при различных переходах как в распределительном щите, так и в монтажных коробках.

Обрыв нулевого проводника в трехфазной сети

В однофазной электрической сети «нулем» является тот проводник, на котором отсутствует напряжение сети, но ток через него при подключенной нагрузке равен току через фазный провод. В случае трехфазной сети все совершенно по-другому! Главная загвоздка в том, что все сети электропередач построены по трехфазной системе и подключение потребителей выполняется по традиционной схеме «звезда». Вот здесь то и появляется термин «нулевой проводник»! Если нагрузка на каждую фазу одинаковая, то токи всех отдельных фаз компенсируются, так как они сдвинуты на 1/3 по отношению друг к другу. В этом случае, через нейтральный проводник, подключенный к средней точки «звезды», ток не течет и обгореть он не может.

Защита обрыва 5

Но это только в идеале! Даже в одной квартире к разным фазам могут быть подключены различные нагрузки, что уж говорить о многоквартирном доме. Невозможно предсказать, какую нагрузку может подключить к сети каждый из потребителей. Один включит одну люстру, запитанную от одной фазы, а следующий подключит несколько электроприборов, сидящих на другой фазе. Все это приводит к колебанию мощности нагрузок, поэтому в определенный момент одна из фаз будет сильно перегружена при отсутствии тока в других фазных проводниках. При таком раскладе в нулевом проводнике возникнет сильный ток, уравнивающий систему, что может привести к обгоранию нуля. Чтобы этого не произошло необходима защита от отгорания «нуля» в трехфазной сети.

Последствия при обрыве «нуля»

Последствия при обрыве нейтрального проводника могут быть совершенно разные. Все зависит от того в какой сети произошло аварийное отключение нуля: трехфазной или однофазной. Рассмотрим оба случая отдельно друг от друга.

  1. Трехфазная сеть. Отгорание или обрыв нейтрального проводника в трехфазной сети может привести к полному перекосу питающих фаз в результате которого на одной линии электропроводки, питающей бытовую технику и осветительные приборы может возникнуть повышенное напряжение в 380 В, а на другой понизиться вплоть до нулевой величины. Перенапряжение, а также снижение напряжения электрической сети, является опасным для любых электроприборов и электронных устройств. Предельные величины напряжения в электропроводке могут вызвать возгорание как самих проводов, так и электроприборов, что приведет к пожару в помещение.Защита обрыва 6

    Важно! Обрыв или отгорание «нуля» в трехфазной сети приводит к большим и непредсказуемым перепадам напряжения, в ту или другую сторону. В результате этого явления могут выйти из строя дорогостоящие бытовые приборы и электронная техника, для которых очень опасны как повышение напряжения, так и его понижение относительно нормального уровня в 220 В!

  2. Однофазная сеть. Совершенно другая картина возникает при обрыве «нуля» в однофазной сети, которая заводится в квартиры и дома от распределительного щита. Каждая линия питания группы осветительных приборов и бытовой техники состоит из двух проводников: «нуля» и фазы. К тому же в большинстве современных многоэтажных домах кабель электропроводки имеет третью жилу для подключения к электроприборам защитного заземления, чего нет в старых постройках. При обрыве «нуля» в однофазной сети на нулевом проводе появляется опасное для человека напряжение в 220 В.Защита обрыва 7

    Важно! Если монтаж заземления в квартире выполнен с нарушениями, то от корпуса электроприбора можно получить удар электрическим током. При правильном заземлении бытовой техники обрыв «нуля» в однофазной сети не принесет никаких негативных последствий, кроме обесточивания помещения и отключения всей бытовой техники и осветительных приборов!

Как мы видим, при обрыве нейтрального провода в любой сети как трехфазной, так и однофазной, может возникнуть ряд негативных и опасных последствий. Что делать, чтобы исключить такое развитие событий? Конечно, выход есть! Необходима защита от отгорания «нуля» или его обрыва! Ниже мы рассмотрим все виды защиты от обрыва или отгорания «нуля» в трехфазных и однофазных сетях.

Защита от обгорания или обрыва нуля

Итак, обрыв и отгорание нейтрального проводника является очень опасным и довольно частым происшествием. Есть ли необходимость в защите электросети от этого негативного явления? Конечно же, есть! Защита от отгорания «нуля» в трехфазной сети позволит вам сохранить свою дорогостоящую бытовую технику в рабочем состоянии. Защита от обрыва «нуля» в однофазной сети обеспечит вашу личную безопасность. Все эти виды обеспечения безопасности человека и бытовых электроприборов от последствий, возникающих при обрыве нейтрального проводника, выполняются с использованием специального оборудования и приемов электромонтажа, которые мы рассмотрим ниже.

  1. Реле максимального и минимального напряжения. Это основное устройство, которое следует использовать для защиты электросетей от обгорания или обрыва нулевого проводника. Применяется на всех типах недвижности. Промышленность изготавливает модели реле напряжения как для однофазных, так и трехфазных сетей. Принцип действия устройства заключается в разрыве цени электроснабжения при отклонении величины напряжения в сети сверх установленных значений.Защита обрыва 8
  2. УЗИП — ограничитель перенапряжения. Это устройство для защиты и отключения оборудования при перенапряжении в электропроводке, возникающего вследствие обрыва или отгорания «нуля», удара молнии и по некоторым другим причинам. В основном используется в частных домовладениях. Принцип работы устройства заключен в увеличении собственного внутреннего сопротивления электротоку при больших перепадах напряжения.Защита обрыва 9
  3. Устройство защитного отключения (УЗО). Такой модуль, имеющий сокращенное название УЗО, способен создать эффективную защиту для человека от удара электрическим током при обрыве нейтрального проводника в однофазных линиях. УЗО мгновенно обесточит сеть при попадании фазы на нулевой провод в том случае, если заземление бытовых приборов выполнено с нарушением ПУЭ (правил устройства электроустановок).Защита обрыва 10
  4. Дифференциальный автомат с расширенными функциями. Дифавтомат — это защитное модульное устройство, позволяющее одновременно отключать фазу и нейтральный провод при возникновении любых аварийных ситуаций. Этот модуль совмещает в своей конструкции автоматический выключатель при КЗ (коротком замыкании) в нагрузке и защитное устройство (УЗО). При обгорании «нуля» в магистральных сетях с тремя фазами и обрыве нулевого провода в однофазных линиях он способен защитить электрические приборы и другую технику от выхода из строя, а человека от удара электротоком.Защита обрыва 11
  5. Многократное повторное заземление. Этот технологический прием способен защитить бытовые приборы и человека от последствий обрыва и обгорания «нуля», но он сложен в исполнении, решает ограниченный спектр задач и применяют его в основном специалисты энергоснабжающих организаций на магистральных линиях электропередач.Защита обрыва 12

Заключение

Полностью застраховать себя от проблем, возникающих в процессе эксплуатации электрических сетей, никто не в состоянии. Даже если электрическая проводка в частном доме, квартире или на даче выполнена с соблюдением всех правил и норм, нейтральный проводник может оборваться или обгореть по независящим от вас причинам. Поэтому заранее позаботьтесь о защите своей бытовой техники и собственной жизни от последствий, которые могут возникнуть вследствие обрыва «нуля»!

Видео по теме

profazu.ru

Обрыв нуля в трехфазной и однофазной сети

Даже те, кто не имеет электротехнического образования, наверняка слышали о такой аварийной ситуации, как перекос фаз. В некоторых предыдущих публикациях мы уже упоминали, чем грозит обрыв нуля, и кратко упоминали о способах защиты от несимметрии фазных напряжений. Сегодня мы более подробно рассмотрим данную тему.

Что такое обрыв нуля?

Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.

Штатная работа системыСхема 1. Штатная работа системы

Как видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.). В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем. Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.

Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться. К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети. По итогу, в трехфазной системе питания возникнет несимметрия напряжений.

Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.

Что происходит в электросети при обрыве нуля?

Рассмотрим отдельно, изменение режима работы трехфазной сети при обрыве магистрального нуля и как поведет себя однофазная электрическая проводка, если отгорание нулевого проводника произойдет на вводе.

Отгорание нуля в трехфазной сети

Внесем изменения в рисунок 1, вызванные аварией, а именно отключением нуля .

Оборвался нулевой магистральный проводникОборвался нулевой магистральный проводник

В данном случае обрыв общего нулевого провода приведет к тому, что движение электрического тока по нему прекратиться. В результате все квартиры R1-R3 будут запитаны по типу подключения «звезда без нулевой магистрали». Другими словами, при обрыве нуля на каждую квартиру будет поступать не фазное, а линейное напряжение.

Контур из квартир 1 и 2Контур из квартир 1 и 2

Для примера предлагаем рассмотреть, как сложится ситуация в квартирах 1 и 2. Нагрузка электрических приборов суммируется в данном контуре при прохождении через него тока I12. Соответственно, уровень напряжения для квартир установится в зависимости от нагрузки подключенных к сети приборов. То есть: U= I12*R1, а U= I12* R2. Из этого следует, что суммарная величина силы тока составит I12 = U12 / (R1+R2)  :

Обратим внимание, что суммарное напряжение контура будет равно линейному в данной электросети, то есть U12 = 380 вольт. Но при этом показатели U1 и U2 могут варьироваться в диапазоне 0-380 вольт и, естественно, существенно отличаться друг от друга. На данные значения может влиять как нагрузка подключенных приборов в каждой из квартир, так и ее активная и пассивная составляющая.

В результате если произойдут проблемы с нейтралью трансформатора (нулем источника), велика вероятность выхода из строя подключенных к сети приборов. Причина – повышение уровня напряжения в сети.

Обрыв нуля в однофазной сети

В данной ситуации последствия будут не такими печальными, как в описанном выше случае, но, тем не менее, если отгорает вводный ноль в системе TN-C, это может представлять серьезную опасность для жизни человека.

Отгорание нуля в схеме однофазного потребителяОтгорание нуля в схеме однофазного потребителя

Для однофазных нагрузок обрыв нуля будет аналогичен отключению напряжения, за исключением того фактора, что на фазном проводе останется потенциал, представляющий опасность для жизни. Причем, он также проявится там, где был ранее защитный ноль в контактах розеток. Если корпуса электроприборов заземлялись рабочим нулем, то весьма велика вероятность негативных последствий. В системах TN-C-S фактор риска существенно сокращается, за счет использования PEN проводника.

Как защититься?

Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:

  • Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
  • Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
  • Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.

В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.

Подведем итоги

Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.

Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.

Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:

  • Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
  • Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
  • Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
  • Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
  • Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
  • Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
  • Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.

Собственно, только многоуровневая защита может обеспечить максимальную безопасность.

Видео по теме статьи



www.asutpp.ru

Простейшая защита от обрыва (отгорания) нулевого провода

29 июля 2014 k-igor

Обрыв нулевого провода не частое явление, но все же случается и влечет за собой значительные материальные убытки. Совсем недавно, общаясь на форуме, мне пришла одна очень простая идея защиты от обрыва нуля (отгорания) в ВРУ. Проще и дешевле уже некуда.

В своей статье обрыв нулевого провода я уже рассказывал про различные варианты обрыва нулевого провода.

Сегодня поговорим о многоквартирном жилом доме. Если вы хотите защитить свои электрические бытовые приборы от обрыва нулевого провода, то лучше всего в квартирном щитке установить аппараты, отключающиеся при повышенном напряжении. Это может быть расцепитель минимального-максимального напряжения, ограничитель перенапряжения, реле напряжения или другое специализированное устройство. В этом случае ваша квартира будет защищена от любых обрывов нулевого провода.

Как защититься от отгорания или обрыва нулевого провода в ВРУ?

В жилых домах квартирные щитки подключат (или должны подключать) к кабельной магистрали, идущей от ВРУ, при помощи ответвительных сжимов (их еще называют «орехи»). В таких случаях обрыв нулевого провода за пределами ВРУ практически невозможен, поскольку идет цельный провод без разрыва и контактных соединений. Все ответвления выполняются сжимами. Получается единственное уязвимое место – точка подключения к шине «N».

Вот что предлагаю делать я:

Защита от отгорания нулевого провода

Берем ответвительный сжим и дублируем подключение к шине «N». Согласно теории вероятности, отгорание двух проводников одновременно практически невозможно. Затраты минимальные, а надежность увиливаем в разы.

А что вы скажете по этому поводу? Имеет ли право на жизнь моя идея? Может быть так и делают?

Советую почитать:

220blog.ru

Обрыв нуля в трехфазной и однофазной сети – последствия

О последствиях обрыва нуля в трехфазной и однофазной сети должен знать каждый электрик, особенно самоучка. Данное явление может быть очень опасным как для бытовой техники, так и для жизни человека. Чтобы Вы знали, чем опасно повреждение нулевого провода и почему данный режим является аварийным, далее мы подробно рассмотрим неблагоприятные ситуации и советы по их устранению.

Виды повреждений

На стояке подъезда

Для начала в общих чертах рассмотрим, что собой представляет электросеть городского многоэтажного дома. Источником питания в данном случае является трансформаторная подстанция, от которой протянуты провода к главному распределительному щиту постройки. Напряжение в главном щитке трехфазное, то есть сеть 380 Вольт. Отсюда уже выводятся группы проводов на каждую квартиру. В самих квартирах сеть уже однофазная – 220 В. Если произойдет обрыв общего нуля на стояке подъезда, это может стать причиной выхода бытовой техники из строя. Приводит это к неравенству — в трехфазной схеме питания произойдет перекос фаз и вместо симметричной нагрузки образуется несимметричная, проходящая в четырехпроводной цепи.Электрический щиток на этаже

Простыми словами можно это объяснить так: от главного щитка в подъезде к каждой отдельной квартире подается одинаковое напряжение – 220 В. Если произойдет обрыв нулевого провода, может получиться так, что к одной квартире поступит 300 Вольт, а к другой 170 (как пример). Результат – перенапряжение и «недонапряжение» станет причиной выхода электроприборов из строя. Обычно если происходит повреждение нуля, ломается техника, имеющая двигатель: стиральная машина, холодильник, кондиционер и т.д. Помимо этого может произойти пожар, что еще хуже.

Что собой представляет перекос фаз

Внутри жилого помещения

Совсем противоположная ситуация может произойти при обрыве нуля в однофазной сети 220 Вольт, то есть внутри Вашей квартиры, частного дома либо на даче. В этом случае последствием может стать поражение человека электрическим током. Происходит это потому, что в розетке у Вас появиться одноименная фаза на обоих зажимах. Сейчас мы расскажем, чем вызвано появление так называемой второй фазы.Квартирный щит

От Вашего вводного щитка ток проходит по фазному проводу, а так как большинство потребителей электроэнергии постоянно подключены к сети (та же люстра), при обрыве напряжение перейдет от фазы к нулю. Результат – в двух отверстиях розетки будет присутствовать электрический ток. Но это еще не самое страшное, т.к. главная опасность заключается в том, что удар током может произойти от любой техники. Причина этому – неправильная система заземления сети в квартире либо доме. Если Вы подключите «землю» в распределительном щитке к нулевой шине (чего делать нельзя), при прикосновении к заземленному корпусу бытовой техники Вас сразу же ударит током. Последствия, как Вы понимаете, могут быть плачевными. Сразу же предоставляем к Вашему вниманию правильный вариант защиты от обрыва нуля в доме — сеть с системой заземления TN-S:Правильное заземление в однофазной сети 220 В

Защита сети 380 Вольт

Подведя итог по поводу последствий обрыва нуля в трехфазной и однофазной сети, следует отметить следующее: при повреждении нулевого провода на стояке подъезда опасность распространиться на бытовую технику, а при повреждении рабочего нуля в самой квартире угроза распространится на Вас.

Увидеть, что может произойти, если оборвется нулевая жила, Вы можете на данном видео:

Наглядный обзор неисправности

Как определить опасность?

Чтобы найти место повреждения нулевого провода, можно воспользоваться специальным тестером, который сможет точно показать, где произошел обрыв даже под отделкой стен, как показано на фото ниже (если проводка скрытая). О том, как найти провод в стене, мы рассказывали в соответствующей статье.Поиск места повреждения в стене

Еще один вариант поиска – визуальный осмотр всей цепи. Просмотрите все соединения проводов в распределительном щитке. Возможно, ноль отгорел на одном из автоматов, что не сложно определить и устранить. Если же обрыв нулевого провода произошел на стояке подъезда, тут уже дело не Ваше и поиском неисправности займется ЖКХ либо специальная служба, которую они вызовут для осмотра силового трансформатора и вторичной цепи в том числе.

Чем защитить домашнюю электропроводку?

Для защиты бытовой электросети от обрыва нулевого провода нужно использовать специальные устройства: реле контроля и ограничители напряжения. Рекомендуем обязательно подключить данные устройства на вводном щитке, чтобы самостоятельно защититься от неблагоприятных последствий.

Обзор защитных устройств

Причины явления

Ну и последнее, о чем хотелось бы рассказать – почему происходит обрыв нуля в квартире. Причин может быть множество, но наиболее реальными, судя по комментариям на форумах и личному опыту можно выделить:

  1. Отгорание нулевого провода при скачке напряжения либо коротком замыкании.
  2. Некачественное подключение жил либо слабый контакт.
  3. Механическое повреждение линии стихией (к примеру, при сильном ветре) либо неосторожностью человека при ремонтных работах.
  4. Электропроводка старая и попросту провода измучены временем.
  5. Хищение либо злой умысел (иногда и такое случается).

Вот мы и рассмотрели виды и последствия обрыва нуля в трехфазной и однофазной сети, а также способы защиты от данного явления и советы по поиску неисправности. Если Вы сделаете правильное заземление в частном доме, а также защитите проводку специальными устройствами, то когда ноль оборвется, никаких бед не произойдет!

Также читают:

samelectrik.ru

Отгорание нуля и защита от отгорания нуля

отгорание нуля

Привет, друзья. Сталкивались когда-нибудь с явлением «отгорание нуля»?  Если нет, то вы счастливый человек. Но знать об этом, особенно электрикам, будет полезно. Поговорим о том, почему этот таинственный ноль имеет тенденцию отгорать, что происходит при этом и какая бывает защита от отгорания нуля? Для того чтобы понять это, немного вспомним физику.

Нашел в интернете хорошее видео по теме, коротко и ясно, если не любите читать, смотрите ниже. Итак, начнем.

Ноль, для однофазной цепи, это название проводника, который не находиться под высоким потенциалом относительно земли. Фаза, это второй проводник , она имеет высокий потенциал переменного напряжения относительно земли. В России, чаще всего, это 220-230 Вольт. Ноль при этом не проявляет тенденции к отгоранию.

компенсация тока

Основная загвоздка — все линии электропередачи, являются трехфазными. Рассмотрим традиционную схему «звезда»:

трехфазная нагрузка

Здесь и появляется понятие «нулевой проводник».

В трех одинаковых нагрузках, переменный ток каждой фазы сдвинут по фазе на 1/3. В идеале, эти токи компенсируют друг друга. При такой нагрузке, в средней точке, векторная сумма токов равна нулю.

Получается, что через нулевой провод, подключенный к средней точке, ток не течет (он практически не нужен).

Незначительный ток на нулевом проводнике все же возникает. Это происходит, когда нагрузки на фазах не полностью компенсируют  друг друга, тоесть разные. Прямое доказательство этому можно увидеть на практике, посмотрите на четырехжильные кабели для трехфазных цепей, нулевая жила вдвое меньшего сечения, чем фазные. Зачем тратить дефицитную медь, если тока в жиле практически нет? Имеется смысл…

При сосредоточенной нагрузке, в трехфазной цепи, ноль тоже не расположен к отгоранию.

Интересное начинается тогда, когда к трехфазной цепи начинают подключать однофазные нагрузки (многоквартирных домах, например). Каждая нагрузка представляет случайно выбранное устройство.

При использовании одной фазы из трехфазной цепи, их стараются распределить по мощности так, чтобы на каждую приходилась  примерно одинаковая нагрузка.

электрическая схема звезда

Все понимают, что полного равенства при этом не достигнуть.  Жители дома будут случайным образом включать, выключать электроприборы, поэтому нагрузка будет постоянно меняться. Полной компенсации токов в средней точке происходить не будет, но ток нулевого проводника обычно не достигает максимального значения, большего току в одной из фаз. Ситуация предсказуемая, отгорание нуля при этом бывает крайне редко.

ноль не расположен к отгоранию

Почему происходит отгорание нуля?

Сегодня мы регулярно пользуемся большим количеством электрических приборов, большинство из них это импульсные источники питания. Это телевизоры, радиоприемники, компьютеры итд. Характер потребления тока этими приборами сильно отличается от прежних.

В цепи, возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Прибавляем к ним некомпенсированные, вызванные разностью однофазных нагрузок и получаем ток, близкий к самому большому току одной из фаз, или даже превышающий его.

отгорание нуля

Вот мы и пришли к благоприятным условиям для отгорания нуля. Чаще всего отгорание происходит в слабых местах, где: поврежден провод, занижено сечение кабеля, плохой контакт.

С каждым днем в обиходе появляется все больше электроприборов, соответственно ситуация ухудшается. Поэтому при монтаже электропроводки, необходимо учитывать высокую вероятность отгорания нулевого проводника. Пренебрегать этим не стоит.

 

Что происходит при отгорании нуля?

В лучшем случае погаснет свет, перестанут работать розетки. О плохом писать не хочется, думаю, понимаете, что перегрузка приводит к нагреву провода, плавке, пробою изоляции итп.

Кроме того, при отгорании нуля, в цепи могут происходить серьезные скачки напряжения. На фазе, где было повышенное потребление, напряжение падает практически до нуля. В то же время, на фазе где потребление было меньше всего, оно вырастает до 380 Вольт. Чувствуете чем пахнет?

Подобное явление может вывести из строя вашу технику!

Что делать, спросите вы? Существует защита.

 

Защита от отгорания нуля.

Для защиты от вышеуказанных инцестов  умные люди придумали реле контроля напряжения. Если напряжение выходит за допустимые пределы, реле отключает его, защищая тем самым все подключенные приборы и оборудование.

реле контроля напряжения

Напоследок небольшое видео, где наглядно можно увидеть, что происходит при отгорании нуля.

 

 

Такие вот дела. Если есть, что дополнить, оставьте комментарий.

Также советую подписаться на обновления блога, чтобы , получать новые статьи прямо к себе на e-mail.

 

Статьи по теме:

 

Теперь вы знаете, что такое отгорание нуля, что происходит при отгорании нуля и какая бывает защита от отгорания нуля.

P.S. Если данная информация оказалась полезной для вас, поделитесь ссылкой с друзьями социальных сетях. Спасибо за внимание.

elektrobiz.ru

Обрыв нулевого провода в трехфазной сети

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Я Вам всегда рекомендовал, и даже принудительно заставлял, для защиты электрооборудования и электрических приборов своих квартир и домов от повышения или понижения напряжения в сети устанавливать однофазное или трехфазное реле напряжения, в зависимости от Вашей сети.

В качестве реле однофазного напряжения можно применять устройства разных производителей, например, РН-113 от «Новатек-Электро», УЗМ-51 от «Меандр», RV-32A от EKF, CM-EFS.2 от АВВ, АЗМ-40А от «Ресанта», ZUBR D40t от «ДС Электроникс» и другие им подобные.

В качестве трехфазных реле напряжений могу порекомендовать: цифровое реле напряжения V-protector 380V от «Digitop», РНПП-311 от «Новатек-Электро», РКН-3-15-15 и УЗМ-3-63 от «Меандр», CM-MPS.11 от АВВ.

Все перечисленные выше устройства контролируют входное напряжение сети, и если напряжение по каким-то причинам вышло за пределы заданных уставок, то они должны отключить потребителей, тем самым защищая и спасая их от выхода из строя.

Напомню, что согласно ГОСТа 29322-92, табл.1, номинальное напряжение однофазной сети должно быть 230 (В), а трехфазной — 400 (В). А по ГОСТу 13109-97, п.5.2, предельно-допустимое отклонение напряжения не должно превышать ±10%, т.е. для однофазной сети это напряжение от 207 (В) до 253 (В), а для трехфазной — от 360 до 440 (В).

Причин для отклонения напряжения может быть множество, и в одной из своих статей я их уже перечислял. Но сегодня я хотел бы остановиться на одной очень распространенной причине, как обрыв нуля.

В Интернете имеется не мало статей по этой теме, но вся представленная информация в основном теоретическая и поверхностная. Я же в данной статье расскажу Вам очень подробно про возникновении такой ситуации, произведу расчеты токов и напряжений в нормальном режиме и при обрыве нуля, исходя из реальных нагрузок на примере нескольких квартир, а в самом конце сымитирую ситуацию с обрывом нуля в трехфазной сети на реальном примере.

Итак, поехали.

Расчет несимметричного режима трехфазной сети с нулевым проводом

Для интереса, теорию будем рассматривать не в чистом виде, а на наглядном примере. Предположим, что на площадке у нас расположено три квартиры.

Вот пример такого этажного щита на три квартиры, о котором у меня написана отдельная и подробная статья.

Каждая квартира питается с подъездного щита, но с разных фаз — обычное дело. Квартира №1 запитана с фазы А, квартира №2 — с фазы В, а квартира №3 — с фазы С.

Возьмем за условность, что в какой-то определенный момент времени в квартире №1 был включен в розетку электрический чайник мощностью 2000 (Вт), в квартире №2 — горели лампы накаливания общей мощностью 400 (Вт), а в квартире №3 — горела одна единственная лампа накаливания мощностью 75 (Вт).

Я специально в качестве примера привел чисто активную нагрузку, чтобы не усложнять расчеты и векторные диаграммы углами сдвига и т.п. Естественно, что в реальности чисто активной нагрузки по квартирам не бывает, но тем не менее смысл остается прежним.

А теперь вспомним немного ТОЭ.

Нагрузку каждой квартиры представим в виде сопротивлений, которые обозначим «Z». Z — это и есть полное сопротивление цепи, с учетом активной и реактивной составляющей, но как я уже сказал выше, реактивной составляющей у нас нет (нагрузка чисто активная), поэтому в нашем случае Z=R. Получается следующее:

  • Zа = Ra = 24,2 (Ом) — сопротивление нагрузки квартиры №1

  • Zb = Rb = 121 (Ом) — сопротивление нагрузки квартиры №2

  • Zc = Rc = 645,3 (Ом) — сопротивление нагрузки квартиры №3

Как видите, нагрузка по квартирам разная, т.е. это типичный несимметричный режим работы четырехпроводной трехфазной сети с нейтральным проводом при соединении нагрузки по схеме «звезда». В этой схеме есть свои особенности, но об этом чуть позже.

Итак, номинальное линейное (межфазное) напряжение сети составляет 400 (В), а фазное напряжение (между фазой и нулем) — 230 (В).

На источнике питания линейные напряжения обозначаются, как UAB, UBC и UCA, а фазные UA, UB и UC. На нагрузке такие же обозначения, только с маленькими буквами (индексами).

Но на практике такие идеальные значения редко встречаются по нескольким причинам. Изначально на трансформатор может приходить высокое питающее напряжение с неидеальными линейными напряжениями, которое преобразуется на низкую сторону тоже с некоторой разницей. К тому же сам трансформатор может иметь какие-то наиболее загруженные фазы, на которых напряжение будет чуть снижено, по сравнению с другими.

Я возьму реальный пример из практики, поэтому линейные и фазные напряжения у меня имеют следующие значения:

Будем считать, что нейтральный (нулевой) проводник от трансформаторной подстанции (ТП) до этажного щита у нас идеальный (ZN=0), т.е. я пренебрегаю его сопротивлением, которое складывается из сопротивлений переходных контактов и самих проводов. Сопротивления контактных соединений и проводников фаз я тоже учитывать не буду.

Таким образом получается, что напряжение между нулем источника питания (в моем случае это трансформатор) и нулем нагрузки (потребители) равно нулю, т.е. эти точки имеют одинаковый потенциал.

Напряжение между этими точками называется напряжением смещения нейтрали и его обозначают, как UnN.

В рассматриваемом случае напряжение смещения нейтрали равно нулю (UnN = 0), а значит фазные напряжения у источника питания (трансформатор) и на нагрузке (потребители) совершенно одинаковые:

  • UA = Ua = 239 (В)
  • UB = Ub = 225 (В)
  • UC = Uc = 232 (В)

Векторная диаграмма напряжений будет иметь следующий вид. Для наглядности хотел построить ее в масштабе, но не нашел достойного онлайн сервиса, а рисовать ее на миллиметровой бумаге, как в университете, у меня нет времени.

Естественно, что фазные напряжения сдвинуты относительно друг друга на 120 электрических градуса.

Теперь нам нужно узнать токи нагрузки по фазам, которые рассчитаем по закону Ома для участка цепи, зная фазные напряжения и сопротивления нагрузок. Расчет фазных токов буду производить в показательной форме комплексного числа.

Теперь отложим полученные значения токов на нашей векторной диаграмме. Т.к. нагрузка у нас чисто активная, то векторы токов будут сонаправлены с векторами фазных напряжений.

Вот это нормальный режим работы, когда нет обрыва нейтрального проводника, т.е. это несимметричный режим работы четырехпроводной трехфазной сети с нулевым проводом.

Ради интереса можно рассчитать ток в нулевом проводе, который равен геометрической сумме всех фазных токов. Для удобства сложения комплексных чисел переведу их из показательной формы в алгебраическую, а результат запишу опять в показательной.

Получилось, что значение тока в нуле составляет 8,86 (А).

Расчет несимметричного режима трехфазной сети без нулевого провода

Но сейчас перейдем к самому интересному!

Предположим, что в этажном щите из-за плохого контакта у нас отгорел магистральный ноль N (PEN), или же электрик, выполняя работу, ошибочно его разорвал, например, в этом месте (место разрыва я указал не схеме красным крестиком). Я лишь указал две причины обрыва нуля, на самом деле их может быть множество.

Вот фотография подобного по исполнению этажного щита. Кстати, этот щит находится в аварийном состоянии и о нем у меня есть отдельная статья, где я подробно рассказываю, как и что в нем нужно устранить и исправить.

Так что же произойдет при обрыве магистрального нуля N (PEN)?!

При обрыве нулевого провода все три сопротивления окажутся включенные звездой, но без нуля. Произойдет смещение нейтрали и перераспределение (перекос) фазных напряжений квартир. По сути, у нас получилась трехфазная трехпроводная сеть без нулевого проводника, но с неодинаковыми нагрузками.

А чтобы понять, как именно распределятся фазные напряжения, сначала необходимо найти напряжение смещения нейтрали (по методу узловых напряжений).

Таким образом получилось, что при обрыве нуля между нейтралью трансформатора и отгоревшей нейтралью в этажном щите появится потенциал около 181 (В).

Если у Вас в жилом доме применена устаревшая система заземления TN-C, в которой все открытые металлические конструкции присоединены к нейтрали (занулены), то эта разность потенциалов (напряжение) окажется на всех зануленных металлических частях, а в нашем примере под напряжением окажется металлический корпус этажного щита и все, что подключено к нулевой колодке N, а это у нас нулевые проводники всех трех наших квартир.

Задев корпус щита или любой нулевой проводник, Вы попадете под действие электрического тока.

Про последствия я рассказывать не буду, об этом уже написано несколько статей на сайте с реальными случаями, знакомьтесь:

Если же в этажном щите Вы сделали разделение PEN проводника и перешли с системы заземления TN-C на TN-C-S, то эта разность потенциалов окажется не только на отгоревшем нуле и на конструкции щита, но и на корпусах всех Ваших электрических приборов и техники, что значительно увеличивает шансы попасть под действие электрического тока. Кстати, это еще одно доказательство тому, что разделение PEN проводника необходимо выполнять не в этажном щите, а в ВРУ.

Но это еще не все.

Определим фазные напряжения на нагрузке с учетом смещения нейтрали.

И что мы видим?! А видим мы перекос фаз в трехфазной сети.

В фазе А напряжение снизится с 239 (В) до 65 (В), в фазе В — напряжение с 225 (В) увеличится до 335 (В), а в фазе С — напряжение с 232 (В) увеличится до 372 (В).

Естественно, что в квартире №1 при таком низком напряжении 65 (В) с электрическим чайником ничего не произойдет, он просто напросто не станет работать. Но вот если вместо чайника был бы подключен холодильник, кондиционер или другие потребители с двигательной нагрузкой, то большая вероятность, что они вышли бы из строя.

А вот в квартирах №2 и №3 последствия будут весьма печальными. При напряжении 335 (В) и 372 (В) лампы в них моментально сгорят. Если вместо ламп будет включена другая нагрузка, будь это телевизор, компьютер и прочая бытовая техника, то они тоже моментально выйдут из строя, если конечно в них нет встроенной защиты от перепадов напряжения. Не исключено, что может возникнуть даже пожар.

Да, кстати, вот так примерно будет выглядеть наша векторная диаграмма после отгорания нуля.

Как видите, точка нейтрали n сдвинулась в точку n’, т.е. к наиболее загруженной фазе А. В наиболее загруженной фазе напряжение снизилось, а в менее загруженных, наоборот, увеличилось и практически до линейного напряжения.

При изменении сопротивлений фазных нагрузок напряжение смещения нейтрали UnN может изменяться в широких пределах, при этом точка нейтрали n’ может находиться в разных местах векторной диаграммы, а фазные напряжения у потребителя могут иметь величины от нуля и вплоть до линейного напряжения.

При всей этой ситуации фазные напряжения на источнике питания (трансформаторе) останутся неизменными, т.е. несимметрия нагрузки никак не влияет на систему напряжений источника питания.

А теперь, опять же ссылаясь на закон Ома, рассчитаем фазные токи.

Проведем проверку наших расчетов по первому закону Кирхгофа — геометрическая сумма токов всех фаз при обрыве нулевого провода должна быть равна нулю. Вот и проверим это тождество.

Тождество верно, с учетом небольших погрешностей, возникших при расчетах.

Но и это еще не все. После того, как от повышенного напряжения выйдут из строя потребители, начнется очередное перераспределение фазных напряжений, но уже с учетом этих сгоревших потребителей, и тогда напряжение может повыситься уже в другой фазе. В общем такая бесконечная реакция будет продолжаться до того момента, пока все не сгорит.

Выводы

Какой же вывод можно сделать?!

В данном примере я смоделировал обрыв нулевого проводника в этажном щите, с которого питались однофазные нагрузки трех квартир с разных фаз. Если рассмотреть в целом многоквартирный дом, то ситуация будет аналогичной, т.к. нагрузка по фазам сильно колеблется и в любом случае будет несимметричной. Аналогичная ситуация может произойти и в частном доме, имеющий трехфазный ввод.

Таким образом, из расчетов следует, что при обрыве нулевого проводника в трехфазных сетях с глухозаземленной нейтралью при несимметрии нагрузок фазные напряжения могут достигать опасных значений. Напомню, что в рассматриваемом примере в фазе В и фазе С напряжение увеличилось до 335 (В) и 372 (В) соответственно, т.е. возросло почти до линейного.

Здесь же хотел добавить, что при симметричной нагрузке в случае обрыва нуля перекоса фаз не возникнет. Вот поэтому многие трехфазные двигатели запитывают четырехжильными кабелями без нуля (А, В, С и PE).

 

Защита от обрыва нуля

Какие же меры можно предпринять для предотвращения подобных случаев?

Если это многоквартирный дом, то настойчиво требовать от обслуживающей организации постоянного контроля и регулярных проверок состояния электропроводки от ВРУ до этажных щитов, в том числе с проведением всех необходимых измерений с привлечением электротехнической лаборатории (ЭТЛ). Нас, кстати, регулярно привлекают управляющие компании (УК) для проведения подобных работ, потому что эти измерения необходимо производить с определенной периодичностью, которая указана в ПУЭ и ПТЭЭП. К слову, вот фотографии с последней проверки одного многоквартирного дома. И как там еще что-то работало?!

Об этом ВРУ я скорее всего напишу отдельную статью с указанием конкретных замечаний, так что подписывайтесь на новости сайта, чтобы не пропустить самое интересное.

Вот еще несколько фотографий с объектов. Порой в электрический щит даже заглянуть страшно, не говоря уже о выполнении в нем каких-либо работ.

Если с Вами все таки произошла ситуация с обрывом нуля, то Вас спасут только лишь устройства (реле), про которые я говорил в самом начале статьи. К тому же, «Библия электрика» (ПУЭ, п.7.1.21) рекомендует не пренебрегать данными советами.

Также ПУЭ, п.1.7.145 запрещает установку коммутационных аппаратов (автоматы, предохранители и т.п.) в нейтральном проводе PEN, чтобы как раз таки уберечь потребителей от перекоса фаз при несимметричном режиме.

Внимание! Один из постоянных читателей сайта смоделировал ситуацию обрыва нуля в трехфазной сети, когда нагрузки в каждой фазе одинаковые, а затем добавил в одну из фаз дополнительную нагрузку. Уже основываясь на теорию, изложенную в данной статье, посмотрите, что же произойдет в этих двух разных случаях. Константину от меня лично большое спасибо за предоставленный материал.

В заключении хотел бы акцентировать Ваше внимание на том, что все вышесказанное в данной статье относится к обрыву нулевого проводника в трехфазной сети. Если же при однофазном вводе в квартиру у Вас отгорит вводной ноль, то ничего при этом у Вас не сгорит, а возникает ситуация другого плана, о которой я подробно рассказывал в статье про появление в розетках «двух фаз».

P.S. А кто-нибудь из Вас становился «жертвой» обрыва нуля?! При каких обстоятельствах это произошло, какие последствия были — поделитесь в комментариях своей историей, чтобы подкрепить информацию данной статьи реальными примерами из жизни.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Дифавтомат с защитой от обрыва нуля

Какие бывают аналоги?

Функции защиты от короткого замыкания и токовых перегрузок выполняют электрические автоматы (АВ), давно вытеснившие из обихода пробковые предохранители. Срабатывание по токовым утечкам обеспечивают изделия, сравнительно недавно ставшие обязательным элементом электрических сетей, получившие название устройства защитного отключения (УЗО). В последнее время особую популярность приобретают дифференциальные автоматы, обладающие защитными функциями, как от коротких замыканий, так и от токов утечек. Человек, особенно не искушенный в вопросах электротехники, порою не может решить, что выбрать в качестве защиты электрооборудования электрической сети, дифференциальный автомат или сочетание автоматического выключателя и УЗО.

Дифавтомат с защитой от обрыва нуля

На вопрос, в пользу какого оборудования сделать выбор, однозначного ответа нет, потому что и дифавтомату, и устройству защитного отключения свойственны, как преимущества, так и недостатки. В конечном счете, все зависит от конкретных обстоятельств. В одной из своих статей мы рассматривали вопрос, что выбрать: дифференциальный автомат или УЗО.

Когда рационально выбирать дифференциальный автомат?

Существует ряд факторов, свидетельствующих в пользу установки УЗО, но бесспорным остается одно из важнейших преимуществ выбора дифавтомата – это экономия места для установки оборудования в распределительном щите. Высокая степень энергонасыщенности жилья современного человека требует соответствующего уровня защиты оборудования от токов коротких замыканий, перегрузок по мощности, а также надежной электробезопасности. Особое внимание следует обустройству и выбору защиты от токовых утечек, предназначенной для стиральной машины, электрокотла, водонагревателя, бани, ванной комнаты и насоса.

При проектировании схемы электрической сети необходимо учесть, что УЗО, подключенное в цепь каждого из вышеперечисленных потребителей, необходимо обеспечить защитой от короткого замыкания и перегрузок по току, то есть на каждый УЗО потребуется установка автоматического выключателя. В итоге может получиться так, что для этого не будет хватать места на din-рейке щитка. Выбор дифавтовтомата, сочетающего в себе функции АВ и УЗО позволяет более рационально использовать электрический щит.

Критерии выбора

Отдав предпочтение дифавтомату, необходимо внимательно отнестись к процессу его выбора. Первоначально необходимо ознакомиться с рабочими характеристиками изделия.

Номинальное напряжение и фазность. Правильно выбрать дифференциальный автомат в соответствии с необходимыми параметрами не сложно. Аппараты, предназначенные для работы в однофазной сети (220 В), снабжены тремя клеммами подключения, дифавтоматы для трехфазных сетей (380 В) снабжены четырьмя полюсами. Номинальное рабочее напряжение указывается в паспорте и маркируется на корпусе изделия.

Дифавтомат с защитой от обрыва нуля

Токовый номинал и характеристика. Для того чтобы обеспечить качественную работу дифференциального автомата, важно правильно выбрать токовый номинал и характеристику. Информация об этих параметрах обозначается буквой латинского алфавита и цифрой, например, С25, что означает, аппарат характеристики С, при номинальном рабочем токе 25 А. Самыми ходовыми дифавтоматами для квартир и частных домов являются изделия характеристики С. При выборе дифференциального автомата по мощности рекомендуется придерживаться значений указанных в таблице:

Дифавтомат с защитой от обрыва нуля

Ток утечки. Обозначается значком «дельта» с числом, соответствующим величине номинального тока утечки в миллиамперах. Правильно выбрать дифавтомат по току утечки помогут данные второй таблицы:

Дифавтомат с защитой от обрыва нуля

Важно! На водонагреватель, стиральную машинку, ванную комнату либо баню нужно выбирать аппарат, который срабатывает при 10 мА. На групповую линию достаточно выбрать характеристику в 30 мА, если вы решили разделить электропроводку на группы. На ввод в частный дом, для защиты от возникновения пожара рекомендуется ставить дифавтомат на 300 мА, а в квартирах достаточно использовать аппарат, рассчитанный на 100 мА.

Класс УЗО. Встроенные в дифференциальный автомат УЗО, подразделяются на два класса:

  • А – срабатывающие в результате воздействия утечек постоянного тока. Для подключения в сеть потребителей бытовой электроники следует выбрать УЗО данного класса
  • АС – отключают дифавтомат при появлении в сети и на электрооборудовании утечек переменного тока.

Защита от обрыва нулевого проводника. Часть дифавтоматов укомплектована блоками отключающими потребителей при обрыве нулевого провода. Обустраивая защиту оборудования от утечек тока, целесообразно выбрать именно такое изделие. Еще одна важная характеристика — время отключения (обозначается, как Tn). Оно не должно быть более 0,3 с.

Для человека неуверенного в том, что он сам сможет выбрать дифавтомат, рекомендуется делать приобретение в торговых предприятиях с высокой репутацией, в которых следует обратиться за помощью квалифицированному консультанту. С ним можно обсудить вопросы приемлемой цены и в пользу какой фирме-производителю дифференциальных автоматов следует отдать свой выбор.

Напоследок рекомендуем просмотреть полезное видео по теме:

Вот мы и рассмотрели, как выбрать дифавтомат по мощности и току утечки. Надеемся, предоставленная информация помогла вам разобраться в выборе подходящего дифференциального автомата для дома, дачи либо квартиры!

Рекомендуем также прочитать:

Правильный выбор диф. автомата для квартиры, дома

Защита от короткого замыкания и перегрузки по току в электропроводке осуществляется автоматическими выключателями (АВ), а защиту от поражения электрическим током человека и утечку тока в электропроводке выполняют устройства защитного отключения (УЗО).

Отличие Дифавтомата от автомата и УЗО

Дифференциальный автомат несёт в себе две функции защиты AB и УЗО в одном устройстве. Отдельные устройства защиты АВ и УЗО, и дифференциальный автомат имеют свои преимущества и недостатки для разных вариантов применения.

В каких случаях выбирают дифференциальный автомат

В каждой квартире находится достаточное количество электроприборов. И все они должны иметь свою индивидуальную защиту. Если на электропечь, духовку, стиральную машину, посудомоечную машину, холодильник, бойлер, зал, спальни, детскую и т. д. поставить раздельные автомат АВ и УЗО, то какой по размеру будет электрический щиток. Вот в чём основное преимущество дифференциального автомата.

Также если УЗО требуется выбирать по току на 1-2 порядка выше чем номинальный ток автомата АВ, то дифференциальный автомат выбирается только на оптимальный ток защиты от короткого замыкания и перегрузки. И так мы остановились на выборе дифференциального автомата для квартиры или дома. Теперь необходимо определиться с характеристиками устройства в каждом конкретном случае.

Выбор оптимального тока. Величина тока дифференциального автомата выбирается в зависимости от нагрузки электроприбора, мощности освещения или сечения электропроводки. Существуют дифференциальные автоматы с токовыми параметрами C6, С10 (для освещения), С16, С25, С40, С50, С63, С80, С100.

Как узнать характеристики дифавтомата

Ток утечки — этот основной параметр защиты который выражается в миллиамперах (мА) и обозначается символом. Если диф. автомат ставится сразу за счетчиком, тогда ток утечки выбирают 300 мА для дома, или 100мА для квартиры. Для отдельных групп ток утечки выбирают 30 мА, а отдельных сетей 10 мА.

Выбор дифавтомата по току

По напряжению. Существуют дифференциальные устройства на 380 В и 220 В. Для трехфазной сети 380 В устройство имеет по четыре контакта вверху и внизу, один из которых рабочий ноль.

Выбор дифференциального автомата по току утечки

По типу. Делятся устройства по типу с током утечки АС и А. Автоматы типа АС используются для переменного тока утечки, а устройства типа А срабатывают от постоянного тока утечки. Таким образом, диф. автоматы типа А применяют для защиты электронных приборов, таких как телевизоры, компьютеры и даже посудомоечные или стиральные машины, где УЗО типа АС неэффективно реагирует на постоянный ток утечки.

Защита от обрыва нуля. Для правильной работы дифавтомата необходима сеть 220 В (фаза и ноль). Если по какой-то причине пропадёт фаза, то устройство не сработает, так как отсутствует ток утечки. А если оборвется ноль и появится ток утечки (сырые стены со старой электропроводкой, пробой изоляции проводов в электроприборе и т. д.), то защита УЗО также не сработает т. к. нет полного питания электрической схемы защиты.

Схема установки дифавтомата с защитным заземлением PE

Возникает опасность поражения электрическим током человека. Для исключения подобной ситуации дифавтомат должен иметь защиту от обрыва нуля. Если такой функции в защите УЗО нет, тогда нужно отдельно приобрести и установить реле напряжения с защитой от обрыва нуля.

Какого производителя дифавтоматов выбрать

Экономить на защите электросетей и защите от поражения током человека не стоит. Качественное устройство защиты прослужит долгие годы. Это гораздо выгоднее, чем устанавливать дешёвые не надежные варианты защиты и менять их каждый год. Популярные бренды — это ABB (Шведы со Швейцарией), Legrand (Франция), Schneider Electric (Франция), Siemens (Германия). Эти производители доказали надежность и качество своих изделий уже много лет.

Важно устанавливать защитное устройство в электрических сетях с защитным проводником PE. При появлении тока утечки через проводник PE, защита тут же сработает. А если использовать рабочий ноль N вместо PE, то ток утечки пройдет через человека на землю, что не очень приятно. Эффективность защиты в этом случае будет значительно ниже, чем в первом варианте.

Прежде чем разбираться с популярностью дифференциальных автоматов, необходимо понять что собой представляет данный электрический прибор. То есть рассмотрим вопрос: диф автомат АВВ – что это такое? Начнем с того, что все электрические сети обязательно комплектуются защитными приборами, которые отключают сеть питания потребителей при появлении перегрузок и высоких токов короткого замыкания. Обычно эту обязанность на себя берут автоматические выключатели.

Но есть еще один негативный фактор – это токи утечки, которые могут навредить человеку. Защиту от них на себя берет устройство защитного отключения (УЗО). То есть, эти два прибора сегодня обязательные атрибуты распределительного щита. Так для чего тогда необходимы дифавтоматы ABB, какие обязанности возлагаются на них? Все очень просто. Этот электрический защитный прибор выполняет сразу две функции: и автоматического выключателя, и УЗО. По сути, это два в одном.

Дифавтомат с защитой от обрыва нуля

Что мы получаем, как потребители, на практике.

  • Во-первых, экономится пространство в распределительном щитке. Вместо двух приборов устанавливается один.
  • Во-вторых, упрощается монтажный процесс. А это важно для тех, кто собирает распределительный щит своими руками.
  • В-третьих, появляется возможность немного сэкономить. Правда, некоторые модели дифавтоматов ABB стоят больше, чем два прибора, заменяемые им, в купе.

Итак, предпочтение дифференциального автомата налицо. То есть, лучше установить его, как единицу, чем два прибора, которые к тому же между собой придется соединять проводами. Но многих интересует другой вопрос, как правильно выбрать дифференциальный автомат, на что необходимо обратить внимание, какой марки прибор лучше? И вообще, стоит ли тратить деньги на брендовые модели или лучше обойтись приборами среднего качества? Давайте разберемся во всех этих вопросах.

Дифавтомат с защитой от обрыва нуляМаркировка автоматического выключателя

Как выбрать дифавтомат

Есть несколько критериев, по которым необходимо делать выбор.

  • Фазность прибора. Производители сегодня предлагают дифавтоматы ABB, которые можно установить в однофазную или трехфазную сеть. Соответственно они отличаются друг от друга количеством полюсов в их конструкции. Однофазный прибор имеет два полюса: один для фазы, второй для нуля. Трехфазный четыре полюса: три для фаз, один для нуля. Соответственно трехфазный имеет большие габариты. К примеру, где-то занимать он будет 6-7 модулей, а однофазный займет 2-3 модуля. Но в любом случае дифференциальный автомат Legrand или любой другой марки займет места гораздо меньше, чем автоматический выключатель и УЗО, установленные рядом.
  • Напряжения. Здесь все просто. На каждом приборе обязательно указывается напряжение, от которого он может питаться. В принципе, ошибиться здесь сложно или практически невозможно. То есть, трехфазная сеть – это 380 вольт, однофазная – 220 вольт.
  • Токовый номинал. По сути, дифференциальный автомат – это то же самое, что и обычный автоматический выключатель. Устройство у них схожее, единственное в дифавтомат добавляются узлы УЗО. Поэтому у дифавтомата Legrand (или другой модели, к примеру, IEK) такие же характеристики по токовой нагрузке, которые обозначаются буквой латинского алфавита и числом, показывающим максимально допустимый ток, который данный прибор может выдержать. Обычно для бытовых сетей используются автоматы серии «С», реже серии «В». А вот номинал токовой нагрузки может выбираться в зависимости от нагружаемости контуров. К примеру, для шлейфов освещения чаще всего применяются дифавтоматы С6 или С10, для розеточных групп C16, для вводных квартирных линий С50 или С63, для общедомовых С80 или С100.
  • Номинальный ток утечки. По сути, это характеристика УЗО, который встроен в дифавтомат. Обозначается номинал греческой буквой «дельта», а также числом, которое и отображает номинальную величину тока утечки. если дифавтомат установлен на одну розетку, тогда придется выбирать прибор на 10 мА, если на группу розеток, то 30 мА, если это вводной диф автомат на всю квартиру или дом, тогда в пределах 100-300 мА.
  • Тип УЗО. Существуют два вида или типа устройств защитного отключения. Первые могут реагировать только на переменный ток, вторые на постоянный. Первые обозначаются символами «АС», вторые буквой «А». Если к розетке будут подключаться компьютер, телевизор и другие бытовые приборы, в конструкции которых есть электронные преобразователи, то в эту сеть лучше всего устанавливать дифавтомат серии «А».
  • Защита от обрыва нуля. Как и все электрические приборы и устройства, дифференциальные автоматы ABB работают только при наличии напряжения в сети. Но тут есть один тонкий момент. Если оборвалась фаза, то волноваться нет причин, сеть полностью обесточилась. Но если оборвался ноль, тогда дифавтомат перестает работать, то есть, защищать от тока утечки. Но в самой сети напряжение присутствует, а, значит, сам ток утечки может быть опасен. Поэтому выбирая дифференциальный автомат, обращайте внимание на опцию – есть ли в этом приборе защита от обрыва нуля. В принципе, это обычное реле напряжения, контакты которого при обрыве сработают на размыкание.

Внимание! Если защитное реле напряжения в составе дифференциального автомата нет, тогда рекомендуется его установить, как отдельный элемент, рядом с дифавтоматом в распределительном щите.

Производители дифавтоматов

Это еще один критерий выбора, и, как говорят специалисты, один из важных. Все дело в том, что современный рынок просто наводнен различными дифавтоматами, которые подчас таковыми и не назовешь. В них отсутствуют расцепители, которые заменены ручными элементами. То есть, безопасность снижена до минимума, а, значит, вероятность пострадать повышается.

Необходимо отметить, что дифференциальный автомат ничем не дублируется. И если он работает некорректно, то риск получить удар током повышается. Поэтому качество и только качество. Какой бренд можно порекомендовать?

«Legrand» – дифференциальные автоматы этой марки серии АВВ считаются одними из лучших. Производитель предлагает одно- и трехфазные устройства. При этом учитывается в каждой серии номинальный ток утечки: 10 или 30мА. Вообще, «Легранд» – компания серьезная, так что о качестве даже не стоит и упоминать. Если уж хотите получить высококачественную защиту, то выбирайте дифавтоматы «Legrand» АВВ – не ошибетесь.

Дифавтомат с защитой от обрыва нуляLegrand

Дифференциальные автоматы IEK серии AD. Отличное защитное устройство, в котором применены все современные технологии. К примеру, контакты IEK AD изготавливаются или из анодированной стали, или из меди с серебряным покрытием. Производитель выпускает данный прибор двух серий: дифференциальный автомат AD12 и AD14.

Чтобы понять маркировку, разберем одну из моделей – дифференциальный автомат AD12 2р 16а 30ма иэк. Это двухполюсной автомат, пропускающий через себя номинальный ток в 16 ампер и ток утечки 30мА. Двухполюсные приборы ad12 2p устанавливаются в однофазных сетях.

Рекомендуют специалисты также диф автоматы Шнайдер. Превосходная марка, отличный мировой бренд.

Внимание! Дифавтоматы ABB серии DS941 сняты с производства. Так что не советуем их покупать. Хотя на прилавках магазинов они еще присутствуют.

Дополнительные рекомендации

  • Обратите внимание на кнопку «Тест», с помощью которой можно протестировать такое защитное устройство на предмет корректной работы.
  • Не всегда есть необходимость устанавливать дифференциальный автомат в электрическую сеть дома или квартиры. И если уж установка производится. То монтаж лучше проводить на розеточные группы. Освещение, а также контур, питающий электрическую варочную плиту, этим устройством не оснащаются.
  • Правилами ПУЭ установлено, что дифавтоматы необходимо обязательно устанавливать в сетях, где присутствует заземляющий контур «PE».

Обратите особое внимание не только на выбор дифференциального автомата, но и на грамотно проведенный его монтаж. Именно от этого чаще всего зависит, как будет работать вся электрическая сеть, насколько она будет безопасной. Поэтому сборкой распределительного щита должен заниматься профессиональный электрик. Хотя самостоятельно провести этот процесс несложно.

morflot.su

Отправить ответ

avatar
  Подписаться  
Уведомление о