Оптосимистор: параметры и схемы подключения
Оптосимисторы относится к виду оптронов с отличными электрическими параметрами. Они создают крайне надежную гальваническую развязку, выдерживающую напряжение порядка 7,5кВ, имеющуюся между подключенной управляемой нагрузкой и схемой управления.
Данные радиокомпоненты построены из арсенид-галлиевого ИК светодиода, имеющего связь с кремниевым двухканальным переключателем. В свою очередь этот переключатель может иметь в своем составе отпирающий элемент, который включается в момент перехода через ноль питающего переменного напряжения.
Оптосимисторы необычно полезны при осуществлении контроля за более мощными симисторами. Аналогичные оптосимисторы были спроектированы для реализации связи между нагрузкой, которая питается переменным напряжением 220 вольт и логикой с низким уровнем напряжения.
Оптосимистор, как правило, выпускаются в компактном DIP-корпусе, имеющий шесть контактов. Его внутренняя схема, параметры, а так же распиновка, показаны ниже.
Схема подключения активной нагрузки к оптосимистору
В этой схеме имеется два компонента, которые необходимо вычислить, но фактически подобные расчеты параметров выполняются не всегда. Но все, же приведем эти расчеты параметров для информации.
Расчет параметра резистора RD. Вычисление сопротивления данного резистора влияет от наименьшего прямого тока ИК светодиода, обеспечивающего открытие симистора. Таким образом,
RD = (+VDD -1,5) / If
Допустим, для схемы с транзисторным контролем (которое применяется довольно часто в схемах регуляторов температуры), имеющим питания 12В и напряжение на открытом транзисторе (Uкэ) 0,3 В; VDD = 11,7 B и следовательно диапазон If приблизительно равен 15мА для MOC3041.
Необходимо сделать If = 20 мА с учетом понижения эффективности свечения светодиода в течении срока службы (добавить 5 мА) получаем:
RD=(11,7В — 1,5В)/0,02А = 510 Ом.
Расчет параметра сопротивления R. Управляющий электрод оптосимистора может выдержать определенный максимальный ток. Увеличение данного параметра выводит из строя оптрон. Следовательно, нужно вычислить сопротивление, чтобы при наибольшем напряжении сети (к примеру, 220 В) ток не был больше максимально допустимого параметра.
Для примера возьмем максимально-допустимый ток в 1А, тогда сопротивление будет равно:
R=220 В * 1,44 / 1 А = 311 Ом.
Нужно иметь в виду, что слишком большое сопротивление данного резистора может оказать нарушение в стабильности включения оптосимистора.
Расчет параметра сопротивления Rg. Резистор Rg подключается, только если электрод симистора имеет повышенную чувствительность. Как правило, сопротивление Rg находится в диапазоне от 100 Ом до 5 кОм. Желательно применять 1 кОм.
В случае если в управляемой нагрузке есть индуктивная составляющая, то необходимо применять другую схему подключения с защитой силового симистора и оптосимистора.
Схема подключения индуктивной нагрузки к оптосимистору
Сигнал, поступающий от оптосимистора на управляющий электрод симистора, нужен только для его открывания. Но при большой частоте переключения коммутируемого напряжения, возникает большая вероятность спонтанного включения управляемого симистора, даже если отсутствует сигнал управления.
Факторами ложных срабатываний могут быть выбросы напряжения при включении ключа, подключенного к индуктивной нагрузке, импульсные помехи в линиях питания нагрузки. Действенный способ устранения данных неприятных моментов – применение в схеме снабберной (демпфирующей) RC – цепочки, которая подключается параллельно выходу ключевого блока.
Конденсатор в снабберной RC-цепи — металлопленочный с номиналом от 0,01 до 0,1 мкФ, сопротивление резистора составляет 20…500 Ом. Данные параметры элементов необходимо рассматривать исключительно в качестве приблизительных величин.
www.joyta.ru
Оптосимисторы в схемах на микроконтроллере
Оптосимистор, как следует из названия, включается освещением полупроводникового слоя. По сути дела это комбинация оптоизлучателя и симистора, но в одном корпусе. Преимущество — простая схема управления и изоляция цепей.
Оптосимисторы могут коммутировать нагрузку сами (Рис. 2.108, а…в) или служить гальванической развязкой для MK (Рис. 2.109, а…ж).
а) прямое управление мощным оптосимистором VU1 (фирма Sharp) от MK;
б) оптосимистор VU1 (оптотриак фирмы Teledyne Technologies) управляет нагрузкой RH в сети переменного напряжения 220 В/16 А и имеет встроенный резистор R
в) включение оптосимистора VU1 (замена S201S05V) через буферный транзистор VT1, который защищает порт MK при аварии. Мощность в нагрузке RH не более 100 Вт.
Рис. 2.109. Схемы гальванической изоляции симисторов при помощи оптосимисторов (начало):
а) трёхступенчатая схема управления на оптосимисторе VU1 и двух триаках KS7, VS2. Для сети 220 В триаки (они же симисторы) следует выбирать на напряжение не менее 600 В;
б) маломощный оптосимистор VU1 управляет мощным симистором VS1. Сопротивления резисторов R2, R3 варьируются в разных схемах. Встречающиеся варианты: VU1 — MOC3021, MOC3052; VS1 — ТС112…ТС142сдопустимым напряжением коммутации не менее 400 В;
в) аналогично Рис. 2.109, б, но с демпфирующей цепочкой R4, C1, а также с другим расположением нагрузки относительно симистора VS1 и другой полярностью сигнала с выхода MK. Возможные замены: VS1 – BT138-600, VU1 – MOC3062, MOC3063, MOC3051…MOC3053;
г) схема включения триака VS1, рассчитанного на напряжение 600 В и ток 8 А. Конденсаторы должны выдерживать переменное напряжение не менее 275 В. Для повышения устойчивости можно установить резистор 220…470 Ом между средним и нижним выводами триака;
д)аналогично Рис.2.109, г, но с активным ВЫСОКИМ уровнем на выходе MK, напряжением сети 120 В и с другими номиналами ЭРИ. Фильтр L1, C2 снижает коммутационные помехи;
Рис. 2.109. Схемы гальванической изоляции симисторов при помощи оптосимисторов
(окончание):
е) аналогично Рис. 2.109,6, но с дополнительной фильтрацией помех и снижением нарастания фронта управляющего сигнала при помощи конденсаторов С/, C2. Встречающиеся варианты замены элементов: VU1 — MOC3041, VS1 — BTA12-600, R2 = 470 Ом, R4 и C2 в некоторых схемах отсутствуют;
ж) оптосимистор VU1 управляет двумя относительно низковольтными симисторами VS1, VS2, включёнными последовательно (желательно подобрать пару с одинаковыми токами утечки). Резисторы RS, R6 распределяют примерно поровну сетевое напряжение в средней точке соединения VS1, VS2. Светодиоды HL1, HL2 индицируют аварийное состояние симисторов или же значительную ассиметрию их ВАХ. Вместо низковольтных симисторов КУ208Б можно поставить симисторы КУ208Г с вдвое большим допустимым напряжением. Как следствие, увеличится надёжность устройства и сохранится работоспособность при пробое одного из симисторов.
Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).
nauchebe.net
Если нет мощного оптосимистора CAVR.ru
Рассказать в:В этой статье предлагается описание мощного электронного ключа, с помощью которого можно коммутировать напряжение переменного тока 220 В. Узел позволяет управлять питанием нагрузки, потребляющей ток от 50 мА (мощность 11 Вт) до 50 А (мощность 11 КВт). Теоретически и практически, возможно управление нагрузкой с тоном потребления от единиц миллиампер до 250 А. За счет применения оптопары с открытым оптическим каналом достигается практически идеальная развязка управляющих устройств от напряжения сети. Принципиальная схема узла показана на рисунке.
Примененное схемотехническое решение и типы выбранных радиоэлементов для его реализации позволили управлять нагрузкой при токе через излучающий светодиод не более 300 мкА. Эта особенность допускает подключать управляющий светодиод HL1 к выходам практически любых аналоговых или цифровых микросхем баз дополнительных усилительных каскадов. Т.е, затрачивая на управление мощность менее 1 мВт, можно коммутировать питание нагрузки, потребляющей мощность более 10 КВт. Оптопара с открытым оптическим каналом представляет собой направленные линзами друг на друга светодиод НL1 красного цвета свечения и фототранзистор VT1, выполненные в одинаковых корпусах из прозрачной пластмассы диаметром 5 мм. Когда ультраяркий светодиод НL1 не светится, ток через очень чувствительный фототранзистор VT1 на превышает 100 нА, напряжение затвор-исток маломощного полевого МОП-транзистора VT2 менее 0,2 В, этот транзистор закрыт. Следовательно, будет закрыт и биполярный транзистор VT3. В это время, напряжение затвор-исток мощного высоковольтного МОП-транзистора VT4 будет равно нулю, транзистор закрыт, ток через управляющие электроды сверхмощных тринисторов VS1, VS2 не протекает, тринисторы закрыты, нагрузка обесточена. Как только на светодиод HL1 в соответствии с указанной полярностью будет подано постоянное напряжение, ток через фототранзистор VT1 резко увеличится, напряжение затвор-исток VT2 превысит его пороговое напряжение открывания (1. 2,5 В), VT21 откроется, откроются и транзисторы VT3, VT4. Включенные встречно-последовательно тринисторы VS1, VS2, будут открываться импульсами тока через их управляющие электроды, на нагрузку поступит напряжение питания 220В переменного тока. Диод VD3 предотвращает разрядку накопительного конденсатора С1 в те моменты, когда тринисторы открыты. Конденсаторы С2, С3 и резисторы R9, R10 повышают помехоустойчивость узла. Варистор R7 предотвращает пробой VT4 при всплесках напряжения сети. Сопротивление R1 следует подобрать таким образом, чтобы максимальный ток через светодиод не превышал 20 мА. О деталях узла. Резисторы можно использовать типов МЛТ, С1-4, С2-23, С2-33 соответствующей мощности. Конденсатор С1 -оксидный типа K50-35, К50-24, К53-30 или аналогичный импортный. С2 — любой керамический, например, К10-7. С3 — полиетилентерефталатный К73-17, К73-24, К73-39 на напряжение не менее 400 В или импортный GRF2S0V-X2. Стабилитрон VD1 — любой маломощный на 12…13 В, например, КС212Ж, КС508А, Д814Д1, 1N4743A, BZX/BZV55C-13, TZMC-13. Диоды VD2, VD3 можно использовать любые из серий КД503, КД510, КД521, КД522, Д223. Диоды VD4, VD6 — любые из КД226, КД247, КД257, 1N4001…1N4007, 1N5391…1N5399. Диодный мост VD5 можно заменить на КВР04…КВР10, BR34…BR310, КЦ402 А…В. Светодиод HL1 — красного цвета свечения, предпочтительнее использовать какой-либо из суперярких в прозрачном корпусе — L1503SRC/E, L1513SURC/E, L1543SURC/E, L934SRC/J, КИПД21П-К. Фототранзистор VT1 производства фирмы «Klngbrioht» можно заменить на LS1P3, L32P3C или отечественными, но с заметно худшими параметрами КТФ102А, КТФ102А1, КТФ104 А…В. На его месте можно использовать и фоторезистор или фотодиод, например, ФД320, при этом, потребуется подбор сопротивления резистора R2. Транзистор VT2 — КП501А, КТ501В, К1014КТ1 А…Г, ZVN2120, ZN2120. Биполярный р-п-р транзистор VT3 можно заменить любым из серий КТ361, КТ3107, SS9012, 2SA542, 2SA733. Мощный высоковольтный транзистор BUZ94, выполненный в металлостеклянном корпусе ТО-3, можно заменить любым из серий КП707, КП728Г1. КП728Е1. КП777 А…В, IRF840… IRF842, BUZ213. При работе с мощной нагрузкой транзистору в пластмассовом корпусе может потребоваться небольшой теплоотвод. Тиристоры можно использовать Т123-200 или еще более мощные Т123-320. При необходимости, они устанавливаются на теплоотводы. Следует отметить, что при работе с нагрузкой, потребляющей ток более 50A, на каждом тринисторе будет рассеиваться мощность более 70 Вт, что потребует для них соответствующего охлаждения. Светодиод и фототранзистор необходимо защитить от внешней засветки. Благодаря использованию в этом узле тринисторе, предназначенных для промышленного применения, конструкция обладает очень высокой надежностью и устойчивостью к перегрузкам, но затраты на комплектующие могут оказаться чувствительными. Поэтому, перед сборкой этого узла следует принять решение, что именно это вам и нужно. В других случаях, следует остановиться на более дешевых вариантах. Хотя, с помощью этого узла и возможно фазовое управление поступающей на нагрузку мощностью, все же его предпочтительнее использовать как силовой бесконтактный ключ — «вкл. / выкл».
Радиоконструктор №11 2003г стр. 24
Раздел: [Конструкции простой сложности]
Сохрани статью в:
Оставь свой комментарий или вопрос:
www.cavr.ru
Оптосимистор и его применение. | Catcatcat electronics
Эрве Кадино “Цветомузыкальные установки”
Ответ на вопрос – управление мощным тиристором или симистором, от терморегулятора.
Статья в pdf
Оптосимистор принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из Арсенид-гелиевого инфракрасного светодиода, соединенного посредством оптического канала м двунаправленным кремневым переключателем. Последний может дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения и размещенной на том же кремниевом кристалле.
Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большей мощности. Подобные оптопары были задуманы для осуществления связи между логическими элементами с малым уровнем напряжения (например, вентиль TTL) и нагрузкой, питаеой сетевым напряжением (110 или 220 вольт).
Оптосимистор может размещаться в малогабаритном DIP-корпусе с шестью выводами, его цоколевка и внутренняя структура показана на рисунках ниже.
Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большей мощности.
Для решения вопроса нам подойдут любые оптроны со схемой детектора нуля. Эти оптроны позволяют избавиться от радиопомех которые присущи при работе симисторов и тиристоров.
Ниже приведена таблица, все выбранные оптроны отличаются минимальным гарантированием током управления и максимальным рабочим напряжением.
Ift | Тип | Тип | Тип | Тип |
20 | MOC3031 | MOC3041 | MOC3061 | MOC3081 |
10 | MOC3032 | MOC3042 | MOC3062 | MOC3082 |
05 | MOC3033 | MOC3043 | MOC3063 | MOC3083 |
Vdrm | 250 В | 400 В | 600 В | 800 В |
Для поставленной задачи подойдет любой.
Более тонко в вникать в характеристики нет смысла. Рассмотрим основные параметры и схемы подключения.
или
Эти схемы ничем принципиально не различаются, только где будет подключена нагрузка, но хочу обратить внимание нагрузка должна быть активного фактора. Если в нагрузке присутствует индуктивность эти необходимо использовать схемы с защитой оптосимистора и силового симистора (но здесь их рассматривать не будем).
В этой схеме есть два элемента которые надо рассчитать, но на практике такие расчеты делаются редко, “один раз рассчитал и на всю жизнь”.
Но я считаю этими приемами надо владеть.
Расчет сопротивления RD.
Расчет этого резистора зависит от минимального прямого тока инфракрасного светодиода, гарантирующего отпирание симистора.
Следовательно RD=(+VDD -1.5)/If
Например, для схемы транзисторного управления (которое используется в схемах регуляторов температуры), с напряжением питания + 12 В и напряжением на отрытом транзисторе (Uкэ нас) равном 0,3 В +VDD = 11.7 B и If должен быть находится в диапазоне 15 и 50 мА для MOC3041. Следует принять If = 20 мА с учетом снижения эффективности светодиода в течении срока службы (запас 5 мА), целиком обеспечения работу оптопары с постепенным ослаблением силы тока.
Таким образом имеем:
RD=(11.7-1.5)/0.02= 510 Ом.
Полученное значение даже вписывается в стандартный ряд сопротивлений.
Расчет сопротивления R.
Это сопротивление если работа идет на чисто активную нагрузку можно даже не ставить, но это только для лабораторных условий. Поэтому для надежной работы объясню как его рассчитать и его назначение.
Управляющий электрод оптосимистора может выдержать определенный максимальный ток. Превышение этого тока вызовет повреждение оптрона. Нам необходимо рассчитать сопротивление, чтобы при максимальном рабочем напряжении сети (например, 220 В) ток не превышал максимально допустимый.
Для выше указанных оптопар максимальной допустимый ток 1 А.
Минимальное сопротивление резистора R:
Rmin=220 В * 1,44 / 1 А = 311 Ом.
С другой стороны слишком большое сопротивление может привести к нарушению работы схемы (будет перебои с включением силового симистора).
Поэтому принимаем сопротивление из стандартного ряда R=330 или 390 Ом.
Расчет сопротивления Rg.
Резистор Rg необходим, только в случаи высокочуствительного управляющего электрода симистора. И обычно может составлять от 100 Ом до 5 кОм. Я рекомендую ставить 1 кОм.
Это может быть интересно
- УКВ – радиоприем, часть 2
Пришло свободное время решил вторую часть проекта реализовать (правда есть мысль и третью с использование цветного OLED и функцией ch-светомузыки, но это только задумка… Для понимания функций интегрального приемника RDA5807FP читайте …
- Униполярный шаговый двигатель – часть 2
В этой части только итог и версия 2.0 универсальной, которая позволяет управлять шаговым двигателем во всех трех режимах и 3.0 специальной библиотеки только для одного полушагового режима. В этих библиотеках …
- REFERENCE CLOCK OUTPUT MODULE
REFERENCE CLOCK OUTPUT MODULE Модуль формирования опорного тактового сигнала Модуль опорного тактового сигнала обеспечивает возможность посылать сигнал синхронизации на тактовый опорный выходной контакт или контакты (CLKR) в зависимости от конфигурации выводов …
- MPLAB® Harmony – или как это просто! Часть 3.
Часть третья – копнём немного глубже. Вы наверное заметили, что во второй главе, вроде сначала все шло как по маслу, а потом, что бы заморгали светики, я вставил в код …
- LED модуль P10 (1R) V706A
Это еще одно чудо от китайского брата. Это монохромные матрицы, называются они P10 (1R) V706A, ну типа R-красные, но не верьте паяют светики и зеленые и синие, в общем любые какие …
- Проект с использованием MCC часть 09
Эта часть будет посвящена созданию практического проекта управления освещение. Тех задание: Два выхода управления ШИМ – светодиодным освещением. Две кнопки управления, каждая кнопка управляет, своим каналом, логика самая простая, нажимаем …
- MPLAB® Code Configurator
MPLAB ® Code конфигуратор (MCC) является свободно распространяемым плагином, это графическая среда программирования, которая генерирует бесшовный, легкий для понимания кода на Cи, чтобы вставить его в свой проект. Метки:MPLAB® Code …
- Проект с использованием MCC часть 12-2
Настало время для изучения шины I2C. Изучать будем на примере работы с индикатором RET012864E. Что изменили со старой схемы: В прошлой теме я затупил и не добавил подтягивающие резисторы которые необходимы …
- Проект с использованием MCC часть 04
Теперь простого горения светиков нам не достаточно, заставим их мигать. Для начала используем первобытно простой способ, но достаточно простой. Используем функции delay, напрягаться откуда они берутся не будем, самое главное , …
- Индикатор температуры
Проект для начинающих, на демо плате BB-2T3D-01. Простой индикатор температуры. Проект никак не задумывался, просто на витрину магазин Ворон нужна была демонстрационная модель на макетной плате, чего нибудь работающего. Остановились на индикаторе температуре. Нужен был какой нибудь выводной …
catcatcat.d-lan.dp.ua
Использование оптотиристоров MOC30xx — 12 Февраля 2016
Оптосимистор принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из Арсенид-гелиевого инфракрасного светодиода, соединенного посредством оптического канала м двунаправленным кремневым переключателем. Последний может дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения и размещенной на том же кремниевом кристалле.
Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большей мощности. Подобные оптопары были задуманы для осуществления связи между логическими элементами с малым уровнем напряжения (например, вентиль TTL) и нагрузкой, питаемой сетевым напряжением (110 или 220 вольт).
Оптосимистор может размещаться в малогабаритном DIP-корпусе с шестью выводами.
Внутренняя структура оптосимисторов. Существует два типа оптосимистор с детектором нуля и без детектора. Оптосимистор с детектором нуля может быть использован в качестве реле для высокого напряжения. При использовании простого оптосимистора можно реализовать диммер для управления освещением.
Ниже приведена таблица, все выбранные оптроны отличаются минимальным гарантированием током управления и максимальным рабочим напряжением.
Ift | Тип | Тип | Тип | Тип | Тип | Тип |
20 | MOC3010 | MOC3021 | MOC3031 | MOC3041 | MOC3061 | MOC3081 |
10 | MOC3011 | MOC3012 | MOC3032 | MOC3042 | MOC3062 | MOC3082 |
05 | MOC3012 | MOC3013 | MOC3033 | MOC3043 | MOC3063 | MOC3083 |
Напряжение питания | 110/120 В | 220/240 В | 110/120 В | 220/240 В | 220/240 В | 220/240 В |
Обнаружение нуля | НЕТ | НЕТ | ДА | ДА | ДА | ДА |
Vdrm | 250 В | 400 В | 250 В | 400 В | 600 В | 800 В |
В таблице приведена классификация оптосимисторов по величине прямого тока, через светодиод IFT, открывающего прибор, и максимального прямого повторяющегося напряжения, выдерживаемого симистором на выходе ( VDRM). В таблице отмечено также и свойство симистора открываться при переходе через нуль напряжения питания. Для снижения помех предпочтительнее использовать симисторы, открывающиеся при переходе через нуль напряжения питания.
Что касается элементов с обнаружением нуля напряжения питания, то их выходной каскад срабатывает при превышении напряжением питания некоторого порога, обычно это 5 В (максимум 20 В). Серии МОС301х и МОС302х чаще используются с резистивной нагрузкой или в случаях, когда напряжение питания нагрузки должно отключаться. Когда симистор находится в проводящем состоянии, максимальное падение напряжения на его выводах обычно равно 1,8В (максимум 3В) при токе до 100мА. Ток удержания (IH), поддерживающий проводимость выходного каскада оптосимистора, равен 100мкА, каким бы он ни был (отрицательным или положительным) за полупериод питающего напряжения.
Ток утечки выходного каскада в закрытом состоянии (ID) варьируется в зависимости от модели оптосимистора. Для оптосимисторов с обнаружением нуля ток утечки может достигать 0,5мА, если светодиод находится под напряжением (протекает ток IF).
У инфракрасного светодиода обратный ток утечки равен 0,05 мкА (максимум 100 мкА), и максимальное падение прямого напряжения 1,5В для всех моделей оптосимисторов. Максимально допустимое обратное напряжение светодиода 3 вольта для моделей МОС301х, МОС302х и МОС303х и 6 вольт для моделей МОС304х. МОСЗО6х и МОСЗО8х.
Предельно допустимые характеристики
Максимально допустимый ток через светодиод в непрерывном режиме — не более 60ма.
Максимальный импульсный ток в проводящем состоянии переключателя выходного каскада — не более 1 А.
Полная рассеиваемая мощность оптосимистора не должна превышать 250 мВт (максимум 120 мВт для светодиода и 150 мВт для выходного каскада при Т — 25˚С).
Типовая схема подключения:
Даташит MOC301x и MOC304x
Сопротивление Rd
Расчет сопротивления этого резистора зависит от минимального прямого тока инфракрасного светодиода, гарантирующего отпирание симистора. Следовательно, Rd = (+V — 1,5) / IF.
Например, для схемы транзисторного управления оптосимистором c напряжением питания +5 В и напряжением на открытом транзисторе (Uкэ нас), равном 0.3 В, +V будет 4,7 В, и IF должен находиться в диапазоне между 15 и 50 ма для МОС3041. Следует принять IF — 20 мА с учетом снижения эффективности светодиода в течение срока службы (запас 5 мА), целиком обеспечивая работу оптопары с постепенным ослаблением силы тока. Таким образом, имеем:
Rв = (4,7 — 1,5) / 0,02 = 160 Ом.
Следует подобрать стандартное значение сопротивления, то есть 150 Ом для МОС3041 и сопротивление 100 Ом для МОС3020.
Для того чтобы переключение симистора происходило быстро, должно быть выполнено следующее условие: dV / dt = 311 / Ra х Ca.
Для МОС3020 максимальное значение dV / dt — 10 В/мкс.
Таким образом: Сa = 311 / (470 х 107) = 66 нФ.
Выбираем: Сa = 68 нФ.
Расчет сопротивления R.
Это сопротивление если работа идет на чисто активную нагрузку можно даже не ставить, но это только для лабораторных условий. Поэтому для надежной работы объясню как его рассчитать и его назначение.
Управляющий электрод оптосимистора может выдержать определенный максимальный ток. Превышение этого тока вызовет повреждение оптрона. Нам необходимо рассчитать сопротивление, чтобы при максимальном рабочем напряжении сети (например, 220 В) ток не превышал максимально допустимый.
Для выше указанных оптопар максимальной допустимый ток 1 А.
Минимальное сопротивление резистора R:
Rmin=220 В * 1,44 / 1 А = 311 Ом.
С другой стороны слишком большое сопротивление может привести к нарушению работы схемы (будет перебои с включением силового симистора).
Поэтому принимаем сопротивление из стандартного ряда R=330 или 390 Ом.
Расчет сопротивления Rg.
Резистор Rg необходим, только в случаи высокочуствительного управляющего электрода симистора. И обычно может составлять от 100 Ом до 5 кОм. Я рекомендую ставить 1 кОм.
Защита
Настоятельно рекомендуется защищать симистор и оптосимистор при работе на индуктивную нагрузку или при часто воздействующих на сеть помехах.
Для симистора искрогасящая RC-цепочка просто необходима. Для оптосимистора с обнаружением нуля, такой как МОС3041, — желательна. Сопротивление резистора R следует увеличить с 27 Ом до 330 Ом (за исключением случая, когда управляемый симистор малочувствительный).
Если используется модель без обнаружения нуля, то snubber-цепочка Ra — Сa обязательна.
studio-diy.3dn.ru
Управление мощной нагрузкой переменного тока
Тиристор |
В самом деле, реле это же сплошной гемор. Во первых они дорогие, во вторых, чтобы запитать обмотку реле нужен усиливающий транзистор, так как слабая ножка микроконтроллера не способна на такой подвиг. Ну, а в третьих, любое реле это весьма громоздкая конструкция, особенно если это силовое реле, расчитанное на большой ток.
Если речь идет о переменном токе, то лучше использовать симисторы или тиристоры. Что это такое? А сейчас расскажу.
Симистор BT139 |
Схема включения из даташита на MOC3041 |
Если на пальцах, то тиристор похож на диод, даже обозначение сходное. Пропускает ток в одну сторону и не пускает в другую. Но есть у него одна особенность, отличающая его от диода кардинально — управляющий вход.
Если на управляющий вход не подать ток открытия, то тиристор не пропустит ток даже в прямом направлении. Но стоит подать хоть краткий импульс, как он тотчас открывается и остается открытым до тех пор, пока есть прямое напряжение. Если напряжение снять или поменять полярность, то тиристор закроется. Полярность управляющего напряжения предпочтительно должна совпадать с полярностью напряжения на аноде.
Если соединить встречно параллельно два тиристора, то получится симистор — отличная штука для коммутации нагрузки на переменном токе.
На положительной полуволне синусоиды пропускает один, на отрицательной другой. Причем пропускают только при наличии управляющего сигнала. Если сигнал управления снять, то на следующем же периоде оба тиристора заткнутся и цепь оборвется. Крастота да и только. Вот ее и надо использовать для управления бытовой нагрузкой.
Но тут есть одна тонкость — коммутируем мы силовую высоковольтную цепь, 220 вольт. А контроллер у нас низковольтный, работает на пять вольт. Поэтому во избежание эксцессов нужно произвести потенциальную развязку. То есть сделать так, чтобы между высоковольтной и низковольтной частью не было прямого электрического соединения. Например, сделать оптическое разделение. Для этого существует специальная сборка — симисторный оптодрайвер MOC3041. Замечательная вещь!
Смотри на схему подключения — всего несколько дополнительных деталек и у тебя силовая и управляющая часть разделены между собой. Главное, чтобы напряжение на которое расчитан конденсатор было раза в полтора два выше напряжения в розетке. Можно не боятся помех по питанию при включении и выключении симистора. В самом оптодрайвере сигнал подается светодиодом, а значит можно смело зажигать его от ножки микроконтроллера без всяких дополнительных ухищрений.
Вообще, можно и без развязки и тоже будет работать, но за хороший тон считается всегда делать потенциальную развязку между силовой и управляющей частью. Это и надежность и безопасность всей системы. Промышленные решения так просто набиты оптопарами или всякими изолирующими усилителями.
Ну, а в качестве симистора рекомендую BT139 — с хорошим радиатором данная фиговина легко протащит через себя ток в 16А
easyelectronics.ru
Симистор (симметричный тиристор) — Меандр — занимательная электроника
Большинство полупроводниковых приборов созданы на переходах или слоях (n-p, p-n). Полупроводниковый диод имеет один переход (p-n) и два слоя. У транзистора два перехода и три слоя (n-p-n, p-n-p). А если добавить ещё один слой, то получается четырёхслойный полупроводниковый прибор — тиристор. Два тиристора включенные встречно-параллельно и есть симистор (от симметричный тиристор).
В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current). Вот так симистор изображается в электронных схемах:
У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate — «затвор»). Два остальных — это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).
А это эквивалентная схема симистора выполненного на двух тиристорах. >>>
Следует однако отметить, что симистор управляется несколько по другому нежели эквивалентная тиристорная схема.
Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению чаще бывает наоборот.
Как работает симистор?
Если у тиристора есть конкретные анод и катод то электроды симистора так охарактеризовать нельзя поскольку каждый электрод является и анодом и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.
Очень простой схемой, характеризующей принцип работы и область применения симистора может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.
Симисторный регулятор мощности |
После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.
Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника.
Симистор управляется как отрицательным так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре так называемых сектора или режима работы. Но этот материал достаточно сложен для одной статьи.
Если рассматривать симистор как электронный выключатель или реле то его достоинства неоспоримы:
- Невысокая стоимость.
- По сравнению с электромеханическими приборами большой срок службы.
- Отсутствие контактов и, как следствие, нет искрения и дребезга.
К недостаткам можно отнести:
- Симистор весьма чувствителен к перегреву и монтируется на радиаторе.
- Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.
- Реагирует на внешние электромеханические помехи, что вызывает ложное срабатывание.
Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.
Основные параметры симистора.
Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.
- Максимальное обратное напряжение – 400 V. Это означает,что он прекрасно может управлять нагрузкой в сети 220 V и ещё с запасом.
- В импульсном режиме напряжение точно такое же.
- Максимальный ток в открытом состоянии – 5 А.
- Максимальный ток в импульсном режиме – 10 А.
- Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.
- Наименьший импульсный ток – 160 мА.
- Открывающее напряжение при токе 300 мА – 2,5 V.
- Открывающее напряжение при токе 160 мА – 5 V.
- Время включения – 10 мкс.
- Время выключения – 150 мкс.
Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).
Оптосимистор
Современная и перспективная разновидность симистора это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.
Оптосимистор MOC3033 | Устройство оптосимисторов |
Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC не используются, и не подключаются к элементам схемы. NC — это сокращение от Not Connect, которое переводится с английского как «не подключайте».
Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.
Возможно, вам это будет интересно:
meandr.org