Применение полупроводниковых диодов – Полупроводниковый диод: применение, принцип работы, типы

5. Полупроводниковые диоды и их применение

5. Полупроводниковые диоды и их применение.

5.1. Полупроводниковый p-n-переход и выпрямительные диоды

Полупроводниковые диоды относятся к обширному классу полупроводниковых приборов, применяющихся при построении электронных информационных систем, а также в устройствах управления, измерения и радиотехники.

Слово “диод” образовано от греческих слов “ди”-два и сокращенного “(электр)од”. Упрощенная структура и условное графическое обозначение диода, приведены на рис. 5.1.

Рис. 5.1.

Основой всех типов диодов, изготавливаемых промышленностью, является p-n-переход, поэтому рассмотрим физические принципы его работы.

Полупроводниковый переход и его свойства. Полупроводниковым переходом называют тонкий слой между

nиpполупроводниками.N область перехода, легированная донорной примесью, имеет электронную прово­димость.P область, легированная акцепторной примесью, имеет дырочную проводимость. Концентрация электронов в одной части и концентрация дырок в другой существенно различаются. Кроме того, в обеих частях имеется небольшая концентрация неосновных носителей.

Для p-n-переходов основным свойством является несимметричная электропроводность, при которой в одном направлении кристалл пропускает ток, а в другом — не пропускает. Устройство p-n-перехода показано на рис. 5.1, а.

Электроны в n области диффундируют вpобласть и там рекомбинируют с дырками до тех пор, пока не установится динамическое равновесие. Аналогично, дырки изpобласти перемещаются вn область. В результате встречного движения противоположных ионов возни­кает так называемый диффузионный ток. Оно достигается вследствие образования у металлургического контакта некомпенсированного отрицательного заряда акцепторных атомов (дырки, компенсировавшие этот заряд, рекомбинировали). Точно такой же, но положительный заряд возникает в слое

nиз-за ушедших электронов. Область объемных зарядов, имеющую весьма малую концентрацию носителей заряда, называют обедненным слоем. Распределение плотности объемного заряда в переходе при­ведено на рис. 5.2.

Внутри кристалла на границе раздела возникает собственное элект­рическое поле Есобств, направление которого показано на рис. 5.1. Напряженность этого поля максимальна на границе раздела, где происходит скачкообразное из­менение знака объемного заряда (металлургический контакт). На некотором удалении от границы раздела объемный заряд отсутствует и полупроводник является нейтральным. Поле на границе p-n-перехода определяется тепловым потенциалом:

(6.1)

где k=1,38*10-24Дж/К – постоянная Больцмана;q=1,6*10-19Кл – заряд электрона;Т– термодинамическая температура. При комнатной температуре=25,5 мВ.

Высоту потенциального барьера можно изменять приложением внешнего напряжения к р-п-переходу. Если внешнее напряжение создает вp-n-переходе поле, которое совпадает с внутренним, то высота потенциального барьера увеличивается. При обратной полярности приложенного напряжения высота потенциального барьера уменьшается. Если приложенное напряжение равно контактной разности

потенциалов, то потенциальный барьер исчезает полностью.

Вольтамперная характеристика р-n-перехода представляет собой

Рис.5.2

зависимость тока через переход при изменении на нем приложенного напряжения. Если оно снижает потенциальный барьер, то его называют прямым, а если повышает — обратным. Приложение прямого напряжения к p-n-переходу показано на рис. 5.1,б.

При прямом смещении p-n-перехода появляется (диффузионный) ток, вызванный диффузией основных носителей, преодолевающих потенциальный барьер. Пройдяp-n-переход, эти носители попадают в область полупроводника, для которого они являются неосновными носителями. При этом концентрация неосновных носителей может существенно возрасти по сравнению с равновесной концентрацией. Такое явление носит название инжекции носителей.

Обратный ток через p-n-переход вызывается неосновными носителями одной из областей, которые, дрейфуя в электрическом поле области объемного заряда, попадают в область, где они уже являются основными носителями. Так как концентрация основных носителей существенно превышает концентрацию неосновных, то появление незначительного дополнительного количества основных носителей практически не изменит равновесного состояния полупроводника.

Таким образом, обратный ток зависит только от количества неосновных носителей, появляющихся на границах области объемного заряда. Внешнее приложенное напряжение определяет скорость перемещения этих носителей из одной области в другую, но не число носителей, проходящих через переход в единицу времени. Итак, обратный ток через переход является током проводимости и не зависит от высоты потенциального барьера, т. е. он остается постоянным при изменении обратного напряжения на переходе. Этот ток называется током насыщения и обозначается обр­=Is

При протекании прямого тока через переход из электронной области в дырочную область будет производится инжекция электронов, а из дырочной области будет осуществляться инжекция дырок. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально:

(5.1) (6.2)

где U— напряжение наp-n-переходе.

Кроме диффузионного тока прямой ток содержит ток проводимости, протекающий в противоположном направлении, поэтому полный ток при прямом смещении p-n-перехода будет равен разности диффузионного тока (5.1) и тока проводимости:

(5.2) (6.3)

Уравнение (5.2) называется уравнением Молла —Эберса, а соответствующая ему вольтамперная характеристика p-n-перехода приведена на рис. 5.3, а. Поскольку при300 К тепловой потенциалT=25мВ, то уже приU=0,1 В можно считать, что

(6.4)

Предельное значение напряжения на p-n-переходе при прямом смещении не превышает контактной раз­ности потенциалов (0,15-0,2 В для Ge и 0,45-0,65 для

Si). Допустимые (предельные) температуры: для Ge – 80-90 °С, для Si – до 120 °С. Об­ратное напряжение ограни­чивается пробоем p-n-перехода. Пробой p-n-перехода возникает за счет лавинного размножения не основных но­сителей и называется лавин­ным пробоем. При лавинном пробое p-n-перехода ток че­рез переход сильно возрастает при неизменном напряжении на нем, как по­казано на рис. 5.3, а.

Рис. 5.3, а.

Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямитель­ные диоды, как следует из самого названия, предназначены для выпрямления пе­ременного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов: явле­ние пробоя, барьерную емкость, наличие участков с отрицательным сопротивле­нием и др.

Выпрямительные диоды большой мощности называют «силовыми”. Материа­лом для таких диодов обычно служит кремний или арсенид галлия. Германий практически не применяется из-за сильной температурной зависимости обратного тока. Кремниевые сплавные диоды используются для выпрямления переменного тока с частотой до 5кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металли­ческой подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенид галлиевые диоды способны работать в диапазоне частот до не­скольких МГц.

Основные параметры диодов Uобр, Iпр, Iпр имп, Uотр (см. рис. 5.3,б).Для разных типов выпрямительных диодов обратное напряжениеUобр maxлежит в пределах от десятков до нескольких тысяч вольт, средний прямой ток

Iпр. ср– в пределах от единиц миллиампер до нескольких десятков ампер, а обратный токIобр – от десятков наноампер до сотен миллиампер. Время обратного восстановления диодаtвосявляется основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно опре­деляется при переключении диода с заданного прямого тока Iпрна заданное об­ратное напряжениеUобр.

Диоды, предназначенные для работы в импульсном режиме, дополнительно характеризуется максимально допустимым прямым током Iпр имп при заданной длительности импульса (обычно несколько десятков микросекунд). Как правило, этот ток на порядок превосходит средний прямой ток.

Когда обратное напряжение превышает некоторое значение Uобр max, определяемое для каждого типа диода, возникает пробой

p-n-перехода: сначала туннельный и лавинный, а потом тепловой. Первые два типа пробоя являются обратимыми, т. е. после снятия напряжения свойства pn-перехода восстанавливаются, а третий тип (необратимый) приводит к порче диода и поэтому недопустим.

Рис. 5.3, б. Вольт-амперная характеристика диода на характеристике нет порога напряжения отпирания , U*, лишний ток Iпр

5.2. Применение выпрямительных диодов.

5.2.1. Силовые выпрямители.

Вентильные преобразователи переменного тока в постоянный называют выпрямителями. Они играют большую роль в технике, так как производство и распределение электрической энергии экономичней организовать на переменном токе, а многие виды устройств (компьютеры, контроллеры, осциллографы, мониторы, аудио-видео техника и т.д.) требуют для своей работы постоянный ток. Именно по этому их часто называют источниками питания.

Выпрямители применяют не только в силовых установках, но и в измеритель­ных и управляющих цепях информационных, вычислительных и управленческих систем.

Напряжение сети переменного тока рассчитано на наиболее экономичную пере­дачу энергии на значительные расстояния и многим потребителям, а последним необходимы весьма разнообразные напряжения питания. Поэтому составной частью выпрямителей являются трансформаторы (понижающие или повышающие), которые с высоким КПД преобразуют напряжение сети в напряжение на входе диодной схемы, которая и преобразует переменное напряжение в требуемое постоянное.

Простейшая схема преобразователя переменного напряжения (рис. 5.4, б) в постоянное (рис. 5.4, в) изображена на рис. 5.4, а. Само преобразование состоит в отсечке пути тока через нагрузку в отрицательный (положи­тельный) полу период вторичного напряжения трансформатора u2с помощью эле­ментов с односторонней проводимостью — выпрямительных диодов.

Рис. 5.4.

Диод изображен с ошибкой, нет индексов и обозначений на схеме нахождения напряжений

Средний ток через диод равен току нагрузки: Iд. ср.=Iн. Средний допустимый ток должен быть больше тока нагрузкиIср. доп.>Iн.Допустимое напряжение на диоде должно быть при наличии конденсатора фильтра больше в два раза, чем напряжение нагрузки

Uд доп>2Uн. Уменьшения пульсации достигают применением или трехфазного выпрямителя, или включением после диодной схемы элементов, ток (напряжение) в которых не может исчезнуть мгновенно. Эти элементы входят в фильтр, сглаживающий пуль­сации. Фильтр изменяет режим работы вентилей, входящих в диодную схему. Характер этих изменений зависит от того, каким является первый элемент фильтра, индуктивным или емкостным.

Наиболее употребительные схемы однофазных выпрямителей для источников питания электронных схем изображены на рис. 5.5. В схеме на рис. 5.5,а. в тот момент, когда полярность напряжений на трансформаторе такая, как показано без скобок, при напряжении u21, большем напряжения на конденсаторе (рис. 5.5, б), диод Д1 откроется, а диод Д2 будет закрыт, посколькуu22< 0 и к нему приклады­вается обратное напряжение, равноеu22+Uн. Конденсатор начнет заряжаться (рис. 5.5,в), и напряжение на нем и на нагрузке увеличится. Оно будет несколько меньшеu21из-за падения напряжения в цепи заряда конденсатора на активном сопротивлении первичной и вторичной обмоток трансформатора, сопротивлении соединительных проводов и диоде. Таким образом, ток, заряжающий конденсатор, идет только во время части полупериода, т, е. яв­ляется импульсным (рис. 5.5,а).

Диод Д1 закроется после того, как напряжение u21станет меньшеUн. В это время закрытыми диодами нагрузка отделяется от трансформатора, и конденсатор начинает разряжаться, но благодаря большой емко­сти достигается малое уменьшение напряжения на конденсаторе и на на­грузке (рис.5.5, в).

При смене полярности напряжения на трансфор­маторе на указанную в скобках диод Д1 будет все время закрыт напряжением u21+Uн, а второй диод откроется , подсоединив вторичную обмотку трансформатора к нагрузке, когдаu22>Uни процесс заряда конденсатора повторится.

Напряжение на нагрузке все-таки остается пульсирующем, хотя и в меньшей степени. Оно содержит постоянную составляющую и четные гармоники напряжения сети. Качество выпрямленного напряжения принято оценивать с помощью коэффициента пульсации, который представляет собой отношение действующего значения всех переменных составляющих напряжения (тока) к постоянной составляющей,

(5.3)(7.1)

обычно добиваются малого kп, поэтому чаще всего достаточно в выражении (5.3) учесть только первое слагаемое под корнем, т. е.kп=Uн2/Uн0.

При наличии конденса­тора напряжение Uн0близко к амплитуде напряжения вторичной обмотки U2m=U2в режиме холостого хода.

Обратное напряжение диодов Uобрприближается к двойной амплитуде вторичного напряжения.

Рис. 5.5.

Основные параметры двухполупериодного выпрямителя:

Uобр. доп.2UН , Iср. доп.>IН­/2, Iимп. макс.Iн *Q.

В однофазном мостовом выпрямителе (рис. 5.6) наблюдаются аналогичные процессы. Ток сначала проходит через первый и второй диоды, а потом через третий и четвертый. Причем к паре диодов, находящихся в закрытом состоянии, приклады­вается напряжение, в два раза меньшее, чем в предыдущем случае, т. е.

Uобр=(7.2)

Преимуществом мостовой схемы по сравнению с предыдущей является более простой трансформатор и меньшее обратное напряжение диодов, что иногда компенсирует увеличение числа диодов.

Рис. 5.6. Ошибка при начертании диодов

Для упрощения сборки и уменьшения габа­ритов выпрямителей в настоящее время промышленностью выпускаются блоки из четырех диодов, соединенных по мостовой схеме. Указан­ные обстоятельства являются причиной более широкого применения мостовой схемы на практике. Основные характеристики мостового двухполупериодного выпрямителя:

Uобр. доп.1.1*UН, Icр.диод.>IН/2, Iимп. макс.IН*Q, .

studfiles.net

1.Полупроводниковые диоды, принцип действия, характеристики:

ПОЛУПРОВОДНИКОВЫЙ ДИОД — полупроводниковый прибор с двумя электродами, обладающий односторонней проводимостью. К полупроводниковым диодам относят обширную группу приборов с p-n-переходом, контактом металл — полупроводник и др. Наиболее распространены электропреобразовательные полупроводниковые диоды. Служат для преобразования и генерирования электрических колебаний. Один из основных современных электронных приборов.  Принцип действия полупроводникового диода:  В основе принципа действия полупроводникового диода — свойства электронно-дырочного перехода, в частности, сильная асимметрия вольт-амперной характеристики относительно нуля. Таким образом различают прямое и обратное включение. В прямом включении диод обладает малым электросопротивлением и хорошо проводит электрический ток. В обратном — при напряжении меньше напряжения пробоя сопротивление очень велико и ток перекрыт. Характеристики:

2.Полупроводниковые диоды, прямое и обратное включение, вах:

Прямое и обратное включение:

При прямом включении p-n-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Повышенная диффузия носителей зарядов через переход привод к повышению концентрации дырок в области n-типа и электронов в области p-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым.

При включении p-n-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в p-n-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению IS , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

ВАХ:

На графике изображены ВАХ для прямого и обратного включения диода. Ещё говорят, прямая и обратная ветвь вольт-амперной характеристики. Прямая ветвь (Iпр и Uпр) отображает характеристики диода при прямом включении (то есть когда на анод подаётся «плюс»). Обратная ветвь (Iобр и Uобр) отображает характеристики диода при обратном включении (то есть когда на анод подаётся «минус»).

Синяя толстая линия – это характеристика германиевого диода (Ge), а чёрная тонкая линия – характеристика кремниевого (Si) диода. На рисунке не указаны единицы измерения для осей тока и напряжения, так как они зависят от конкретной марки диода.

Для начала определим, как и для любой плоской системы координат, четыре координатных угла (квадранта). Напомню, что первым считается квадрант, который находится справа вверху (то есть там, где у нас буквы Ge и Si). Далее квадранты отсчитываются против часовой стрелки.

Итак, II-й и IV-й квадранты у нас пустые. Это потому, что мы можем включить диод только двумя способами – в прямом или в обратном направлении. Невозможна ситуация, когда, например, через диод протекает обратный ток и одновременно он включен в прямом направлении, или, иными словами, невозможно на один вывод одновременно подать и «плюс» и «минус». Точнее, это возможно, но тогда это будет короткое замыкание. Остаётся рассмотреть только два случая – прямое включение диодаиобратное включение диода.

График прямого включения нарисован в первом квадранте. Отсюда видно, что чем больше напряжение, тем больше ток. Причём до какого-то момента напряжение растёт быстрее, чем ток. Но затем наступает перелом, и напряжение почти не меняется, а ток начинает расти. Для большинства диодов этот перелом наступает в диапазоне 0,5…1 В. Именно это напряжение, как говорят, «падает» на диоде. Эти 0,5…1 В и есть падение напряжения на диоде. Медленный рост тока до напряжения 0,5…1В означает, что на этом участке ток через диод практически не идёт даже в прямом направлении.

График обратного включения нарисован в третьем квадранте. Отсюда видно, что на значительном участке ток почти не изменяется, а затем увеличивается лавинообразно. Если увеличить, напряжение, например, до нескольких сотен вольт, то это высокое напряжение «пробьёт» диод, и ток через диод будет течь. Вот только «пробой» — это процесс необратимый (для диодов). То есть такой «пробой» приведет к выгоранию диода и он либо вообще перестанет пропускать ток в любом направлении, либо наоборот – будет пропускать ток во всех направлениях.

В характеристиках конкретных диодов всегда указывается максимальное обратное напряжение – то есть напряжение, которое может выдержать диод без «пробоя» при включении в обратном направлении. Это нужно обязательно учитывать при разработке устройств, где применяются диоды.

Сравнивая характеристики кремниевого и германиевого диодов, можно сделать вывод, что в p-n-переходах кремниевого диода прямой и обратный токи меньше, чем в германиевом диоде (при одинаковых значениях напряжения на выводах). Это связано с тем, что у кремния больше ширина запрещённой зоны и для перехода электронов из валентной зоны в зону проводимости им необходимо сообщить большую дополнительную энергию.

studfiles.net

Применение полупроводниковых диодов

Лабораторная работа N3

Цель работы:

Исследование некоторых практических применений полупроводниковых диодов для преобразования электрических сигналов

1. Введение

Полупроводниковые диоды, обладающие односторонней проводимостью благодаря вольт – амперной характеристике p –n перехода или перехода Шотки, находят весьма широкое и разнообразное применение в радиотехнических устройствах. Нелинейность прямой ветви вольт – амперной (ВАХ) характеристики используется для преобразования спектра входного сигнала, например для детектирования модулированных сигналов ил выделения суммарной или разностной частоты при подаче на вход двух сигналов разной частоты. Односторонняя проводимость диодов используется для выпрямления переменного тока, т.е. преобразования его в пульсирующий ток одного направления, из которого затем с помощью фильтров получают постоянный по величине и направлению ток.

Явление пробоя и обратная ветвь ВАХ после пробоя p — n перехода используется в диодах специальной конструкции (стабилитронах) для стабилизации напряжения и тока в нагрузке при случайных изменениях этих величин. Наличие барьерной емкости p – n перехода и ее зависимость от величины обратного напряжения используется для электрического управления емкостью различных электрических цепей, например, колебательных контуров, с использованием диодов специальной конструкции – варикапов.

2. Теоретическая часть

    1. Диодный выпрямитель

      Переменный ток промышленной частоты 50 Гц, энергией которого питается абсолютное большинство бытовых и промышленных приборов и машин абсолютно не пригоден для питания радиоэлектронных устройств, для работы которых необходимы источники питания постоянного (по величине и направлению) тока или напряжения. Получение такого тока или напряжения из переменного осуществляется в несколько этапов, одним из которых является выпрямление. В результате этой операции из синусоидального переменного тока получают постоянный по направлению, но изменяющийся по величине – пульсирующий ток (напряжение).

Эту операцию практически повсеместно сейчас выполняют с помощью полупроводниковых диодов, используя их одностороннюю проводимость. Для удобства и наглядности несколько идеализируем вольт – амперную характеристику (ВАХ) диода, считая обратный ток пренебрежительно малым, а прямую ветвь заменим прямой (рис.1).

На рис.1,а реальная ВАХ показана штриховой линией, и добавлена еще одна координатная ось времени, позволяющая изобразить закон изменения входного напряжения диода от времени. На рис.1,б показан закон изменения тока, протекающего через диод, от времени.

Из графиков нетрудно понять, что диод открыт и пропускает ток только пир положительной полуволне входного напряжения, а при отрицательной полуволне на диод действует запирающее обратное напряжение и ток в цепи не проходит, с учетом принятой нами идеализации ВАХ. По этой же причине (линейность прямой ветви ) ток в цепи будет представлять собой последовательность синусоидальных импульсов, длительность которых и интервал между импульсами равны половине периода.

Если в качестве нагрузки включить резистивный элемент (рис.2), то падение напряжения на нем будет повторять по форме ток. С помощью последующих операций фильтрации и стабилизации из такого пульсирующего напряжения или тока получают постоянный не только по направлению, но и по величине ток. Выпрямитель на рис.2 называется однополупериодным, поскольку ток в цепи течет только одну полуволну периода. Есть схемы, использующие два или четыре диода, которые позволяют получить синусоидальные импульсы тока или напряжения в каждом полупериоде с одинаковой полярностью. Такие схемы называются двухполупериодными.

Операция фильтрации пульсирующего напряжения основана на использовании элементов, сопротивление которых зависит от частоты. Дело в том, что последовательность синусоидальных импульсов можно представить рядом Фурье, в который будет входить постоянная составляющая и бесконечный набор гармонических составляющих с частотами, кратными частоте входного напряжения. Амплитуды этих гармонических составляющих уменьшаются с ростом частоты. Поскольку индуктивный элемент обладает сопротивлением прямо пропорциональным частоте, а емкостный элемент — обратно пропорциональным, то выбрав индуктивный элемент с достаточно большой индуктивностью и включив его последовательно с нагрузкой, а конденсатор достаточно большой емкости включив параллельно нагрузке, можно практически полностью избавиться от гармонических составляющих тока или напряжения в нагрузке, сохранив при этом постоянную составляющую.

studfiles.net

Диоды и их применение

Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя убыль электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок. В этом случае сопротивление р-n перехода мало, вследствие чего через диод идет ток, называемый прямым током. Чем больше площадь р-n перехода и напряжение источника питания, тем больше этот прямой ток.

Если полюсы элемента поменять местами, как это показано на рис. 1, в, диод окажется в закрытом состоянии. В этом случае электрические заряды в диоде поведут себя иначе. Теперь, удаляясь от р-n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, в она заштрихована) и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр, а обратный Iобр.

А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр и закрывания при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления обратный ток Iобр. Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в ток постоянный.

Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпр) или пропускным, а напряжение обрат ной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром.

Внутреннее сопротивление открытого диода величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр = 100 мА (0,1 А) и при этом на нем падает напряжение 1 В, то (по закону Ома) прямое сопротивление диода будет: R = U/I = 1/0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.

Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода. Такую характеристику ты видишь на рис. 2. Здесь по вертикальной оси вверх отложены значения прямого тока Iпр, а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпр, влево обратного напряжения Uобр.

На такой вольт-амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь, соответствующую обратному току. Из нее видно, что ток Iпр диода в сотни раз больше тока Iобр

musbench.com

2. Полупроводниковый диод, его свойства и область применения.

П

Iпр

олупроводниковые диоды относятся к электронным приборам, использующим одностороннюю проводимость электронно-дырочного перехода.

Uпр

Uобр

Iобр

Iпр

Iобр

р-n-переход

обладает неодинаковыми

сопротивлениями в прямом

и обратном направлениях;

можно преобразовать

Iперем в Iпост.

ДИ О Д Ы

точечные плоскостные (слоистые)

электронно-дырочный переход создаётся в основаны на использовании р-n-перехода.

месте контакта пластинки Ge (Si) с заострён- Изготовляются методом сплавления Ge с In

ной металлической проволочкой, имеющей (акцептором). При нагревании In плавится

акцепторные\донорные примеси. и диффундирует вGe на границе с In у

Исп-ся: Ge – дырочная односторонняя

— в маломощных выпрямительных схемах; проводимость.

— для детектирования и преобразования Исп-ся:

частоты; — выпрямление, преобразование, стабили-

— в измерительной аппаратуре зация, генерация и т.п.

2 Опасных случая:

1) Uобр.max>[U]

Включаем несколько диодов последовательно для равномерного распределения напряжения между ними. Из-за разброса параметров диодов можетRобр. различны U распределяется между диодами ~ их R может также быть Uобр.max>[U] на одном из них подключаются активные сопротивления Rш~1-10 кОм.

2) I>[I]

П

D1 D2

Rш Rш

Rд D1

RдD2

рименяется параллельное включение диодов. Чтобы устранить разбросR диодов на работу схемы, последовательно с ними подключаются добавочные сопротивления Rд~0,2-0,8 кОм.

1) 2)

3. Принцип действия транзистора (полупроводникового триода).

Полупроводниковый триод (транзистор) представляет собой электронный прибор, основанный на свойствах двух, расположенных весьма близко друг к другу, электронно-дырочных р-n переходов.

Основной элемент транзистора – кристалл германия или кремния, в котором с помощью соответствующих примесей создаются три слоя с различными типами проводимости.

П1П2

в обоих транзисторах – 2 p-n-перехода с динамическим равновесием

Э

К

n P n

Б

Ge Si

Принцип действия транзисторов обоих типов один и тот же. Различие состоит лишь в выборе полярности присоединяемых источников питания.

Э – эмиттер; Б – база; К – коллектор.

Транзисторы включаются в схему таким образом, чтобы к pn-переходу П1 эмиттер-база внешнее напряжение было приложено в прямом направлении, а к pn-переходу П2 коллектор-база – в обратном направлении. При включении внешних напряжений для обоих полупроводниковых триодов потенциальный барьер между эмиттером и базой понижается, а между базой и коллектором – увеличивается. В результате этого основные носители заряда эмиттерного слоя переходят в область базы, а затем в область коллектора, создавая ток через коллекторный pn-переход.

Одновременно с этим имеет место и переход основных носителей заряда базы через эмиттерный переход. Однако в область базы при изготовлении триода вводят << примесей, чем в эмиттер, поэтому ток через эмиттерный переход создаётся главным образом переходом основных носителей заряда эмиттера через базу. Если время прохождения основных носителей заряда эмиттера через базу много меньше времени их независимого существования, то основная часть этих носителей дойдёт до коллекторного перехода. При этом лишь небольшая часть указанных носителей рекомбинирует в базе с её основными носителями. Значит, величина тока, протекающего через коллекторный переход, определяется и зависит от величины тока, протекающего через эмиттерный переход.

Связь между током коллекторной и током эмиттерной цепей:

α=dik/diэ при Uk=const. – коэффициент передачи тока.

В простейшем случае: α=Ik/Iэ.

Для плоскостных транзисторов: α=0,92-0,99.

Ток базы: Iб=IэIk.

studfiles.net

Применение диодов

Диоды являются одними из самых распространенных электронных компонентов. Они присутствуют практически во всех электронных приборах, которые мы ежедневно используем – от мобильного телефона до его зарядного устройства. В этой статье рассмотрим основные типы электронных схем, в которых диоды нашли свое применение.

1. Нелинейная обработка аналоговых сигналов

В связи с тем, что диоды относятся к элементам нелинейного типа, они применяются в детекторах, логарифматорах, экстрематорах, преобразователях частоты и в других устройствах, в которых предполагается нелинейная обработка аналоговых сигналов. В таких случаях диоды используют или как основные рабочие приборы – для обеспечения прохождения главного сигнала, или же в качестве косвенных элементов, например в цепях обратной связи. Указанные выше устройства значительно отличаются между собой и используются для разных целей, но применяемые диоды в каждом из них занимают очень важное место.

2. Выпрямители

Устройства, которые используются для получения постоянного тока из переменного называются выпрямителями. В большинстве случаев они включают в себя три главных элемента – это силовой трансформатор, непосредственно выпрямитель (вентиль) и фильтр для сглаживания. Диоды применяют в качестве вентилей, так как по своим свойствам они отлично подходят для этих целей.

3. Стабилизаторы

Устройства, которые служат для реализации стабильности напряжения на выходе источников питания, называются стабилизаторами. Они бывают разных видов, но каждый из них предполагает применение диодов. Эти элементы могут использоваться либо в цепях, отвечающих за опорные напряжения, либо в цепях, которые служат для коммутации накопительной индуктивности.

4. Ограничители

Ограничители – это специальные устройства, используемые для того, чтобы ограничивать возможный диапазон колебания различных сигналов. В цепях такого типа широко применяются диоды, которые имеют прекрасные ограничительные свойства. В сложных устройствах могут использоваться и другие элементы, но большинство ограничителей базируются на самых обычных диодных узлах стандартного типа.

5. Устройства коммутации

Диоды нашли применение и в устройствах коммутации, которые используются для того, чтобы переключать токи или напряжения. Диодные мосты дают возможность размыкать или замыкать цепь, которая служит для передачи сигнала. В работе применяется некоторое управляющее напряжение, под воздействием которого и происходит замыкание или размыкание. Иногда управляющим может быть сам входной сигнал, такое бывает в самых простых устройствах.

6.Логические цепи

В логических цепях диоды применяются для того, чтобы обеспечить прохождение тока в нужном направлении (элементы «И», «ИЛИ»). Подобные цепи используются в схемах аналогового и аналогово-цифрового типа. Здесь перечислены только основные устройства, в которых применяются диоды, но существует и много других, менее распространенных.

Светодиоды

Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.

1. Одиночные светодиоды

Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.

2. 7’Segment

Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.

3. Матрица светодиодов

Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.

4. LED телевизоры

LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.

Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.

hightolow.ru

35.Применение полупроводниковых диодов для выпрямления переменного тока

Выпрямление переменного тока является одним из основных процессов в радиоэлектронике. В выпрямительном устройстве энергия переменного тока преобразуется в энергию постоянного тока.

Полупроводниковые диоды хорошо проводят ток в прямом направлении и плохо проводят в обратном, и, следовательно, основным назначением большинства диодов является выпрямление переменного тока.

В выпрямителях для питания радиоэлектронной аппаратуры генератором переменной ЭДС обычно служит силовой трансформатор, включенный в электрическую сеть. Вместо трансформатора иногда применяется автотрансформатор. В некоторых случаях выпрямитель питается от сети трансформатора. Роль нагрузочного резистора, т. е. потребителя энергии постоянного тока, в практических схемах играют те цепи или приборы, которые питаются выпрямителем. При выпрямлении токов высокой частоты, например в детекторных каскадах радиоприемников, генератором переменной ЭДС служит трансформатор высокой частоты или резонансный колебательный контур, а специально включенный нагрузочный резистор имеет большое сопротивление.

Применение конденсатора удваивает обратное напряжение по сравнению с его величиной при отсутствии конденсатора. Весьма опасным является короткое замыкание нагрузки, которое, в частности, получается при пробое конденсатора сглаживающего фильтра. Тогда все напряжение источника будет приложено к диоду и ток станет недопустимым. Происходит тепловой пробой диода.

Достоинством полупроводниковых диодов по сравнению с вакуумными является не только отсутствие накала катода, но и малое падение напряжения на диоде при прямом токе. Независимо от величины тока, т. е. от мощности, на которую рассчитан полупроводниковый диод, прямое напряжение на нем составляет десятые доли вольта или немногим больше 1 В. Поэтому КПД выпрямителей с полупроводниковыми диодами выше, чем с вакуумными диодами. При выпрямлении более высоких напряжений КПД повышается, так как в этом случае потеря напряжения около 1В на самом диоде не имеет существенного значения.

Таким образом, полупроводниковые диоды по сравнению с вакуумными более экономичны и выделяют при работе меньше тепла, создающего вредное нагревание других деталей, расположенных вблизи. Также полупроводниковые диоды имеют очень большой срок службы. Но их недостатком является сравнительно невысокое предельное обратное напряжение не более сотен вольт, а у высоковольтных кенотронов оно может быть до десятков киловольт.

Полупроводниковые диоды могут применяться в любых выпрямительных схемах. Если сглаживающий фильтр выпрямителя начинается с конденсатора большой емкости, то при включении переменного напряжения на заряд конденсатора происходит импульс тока, часто превышающий допустимое значение прямого тока данного диода. Поэтому для уменьшения такого тока иногда последовательно с диодом включают ограничительный резистор с сопротивлением порядка единиц или десятков Ом.

В полупроводниковых диодах, работающих в выпрямительном режиме, при перемене полярности напряжения могут наблюдаться значительные импульсы обратного тока. Эти импульсы возникают по двум причинам. Во-первых, под влиянием обратного напряжения получается импульс тока, заряжающего барьерную емкость р-п-перехода. Чем больше эта емкость, тем больше такой импульс. Во-вторых, при обратном напряжении происходит рассасывание неосновных носителей, накопившихся в п– и р-областях. Практически вследствие неодинаковости концентраций примесей в этих областях главную роль играет больший заряд, накопившийся в одной из областей.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *