Принцип работы тензорезистора – КРАТКО О ТЕНЗОРЕЗИСТОРАХ

Содержание

КРАТКО О ТЕНЗОРЕЗИСТОРАХ

ОБЩИЕ СВЕДЕНИЯ О ТЕНЗОРЕЗИСТОРАХ

Тензодатчики и тензорезисторы. Давайте посмотрим, что связывает тензодатчик и тензорезистор. 

Тензорезистор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов. Тензорезистор является основной составной частью тензодатчиков.

Принцип действия

При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии — уменьшается.

Принцип действия проиллюстрирован на анимированном изображении. Для наглядности на изображении величина деформации тензорезистора утрированно увеличена, как и изменение сопротивления. В реальности относительные изменения сопротивления весьма малы (менее ~10−3) и для их измерений требуются чувствительные вольтметры или преобразователи (АЦП, весоизмерительные преобразователи (терминалы)), прецизионные усилители. Таким образом, деформации преобразуются в изменение электрического сопротивления проводников или полупроводников и далее — в электрический сигнал, обычно сигнал напряжения.

Мы не будем останавливаться подробно на электромеханических параметрах тензорезисторов. Отметим только, что чувствительность характеризуется коэффициентом чувствительности и зависит от применяемых материалов. А температурный коэффициент является вредным побочным эффектом, влияющий на показания.

Тензорезисторы широко используются в качестве чувствительного элемента, датчиков для измерения сил, давления. Собственно тензометрические датчики или сокращенно тензодатчики получили свое название от тензорезисторов.

Электрическая схема подключения тензорезистора

Обычно тензорезисторы включают в одно или два плеча сбалансированного моста Уитстона, питаемого от источника постоянного тока (диагональ моста A—D). С помощью переменного резистора производится балансировка моста, так, чтобы в отсутствие приложенной силы напряжение диагонали сделать равным нулю. С диагонали моста B—C снимается сигнал, далее подаваемый на измерительный прибор, дифференциальный усилитель или АЦП.

Измерительный мост с вольтметром в диагонали. Тензорезистор обозначен Rx

При выполнении соотношения R1/R2=R2/R3 напряжение диагонали моста равно нулю. При деформации изменяется сопротивление Rx (например, увеличивается при растяжении), это вызывает снижение потенциала точки соединения резисторов Rx и R3(точки B) и изменение напряжения диагонали B—C

моста — полезный сигнал.

Изменение сопротивления Rможет происходить не только от деформации, но и от влияния других факторов, главный из них — изменение температуры, что вносит погрешность в результат измерения деформации. Для снижения влияния температуры применяют сплавы с низким ТКС, термостатируют объект, вносят поправки на изменение температуры и/или применяют дифференциальные схемы включения тензорезисторов в мост.

Например, в схеме на рисунке вместо постоянного резистора Rвключают такой же тензорезистор, как и Rx, но при деформации детали этот резистор изменяет своё сопротивление с обратным знаком. Это достигается наклейкой тензорезисторов на поверхности по-разному деформируемых зон детали, например, с разных сторон изгибаемой балки или с одной стороны, но со взаимно перпендикулярной ориентацией. При изменении температуры, если температура обоих резисторов равна, знак и величина изменения сопротивления, вызванного изменением температуры, равны, и температурный уход при этом компенсируется.

Также промышленностью выпускаются специализированные микросхемы для работы совместно с тензорезисторами, в которых помимо усилителей сигнала часто предусмотрены источники питания моста, схемы термокомпенсации, АЦП, цифровые интерфейсы для связи с внешними цифровыми системами обработки сигналов и другие полезные сервисные функции.

Конструкция

Обычно современные тензорезисторы представляют собой чувствительный элемент в виде зигзагообразного проводника, нанесенного на гибкую подложку. Тензорезистор приклеивается подложкой на поверхность исследуемого на деформации объекта. Проводники тензорезисторов обычно изготавливаются из тонкой металлической проволоки, фольги, или напыляются в вакууме для получения плёнки полупроводника или металла. В качестве подложки обычно используют ткань, бумагу, полимерную плёнку, слюду и др. Для присоединения чувствительного элемента в электрическую цепь тензорезистор имеет выводные проволочные концы или контактные площадки.


Плёночный тензорезистор. На подложку через фигурную маску в вакууме напылена или сформирована методами фотолитографии плёнка металла. Для подключения электродов выполнены контактные площадки (снизу). Метки облегчают ориентацию при монтаже.

Плёночные металлические тензорезисторы имеют площадь около 2‑10 мм2.

Конфигурация 

Тензодатчики, как правило, приклеиваемые, состоят из:

  • элемента чувствительного к деформации;
  • тонкой плёнки, которая является изолятором и несущей основой для чувствительного элемента;
  • контактных площадок для присоединения выводных проводов.

Элемент, чувствительный к деформации, представляет собой решётку, которая вытравлена способом фотолитографии или отштампована из очень тонкого листа металлической фольги толщиной 2,5 мкм. Конфигурация выбирается таким образом, чтобы обеспечить сопротивление равное 100 Ом при достаточно малой длине и ширине. Выпускаются датчики, длина которых меняется в диапазоне от 2 до 150 мкм. Выпускаются датчики  специального назначения (мембранные датчики давления, напряжения, датчики деформации сдвига).

Несущая основа

Применяются материалы такие, как:

  • акриловые;
  • полиамидные;
  • фенольные;
  • эпоксидно-стеклянные;
  • бумага;
  • эпоксидные;
  • эпоксидно-полиамидные;
  • эпоксидно-фенольные;
  • фенольно-стеклянные.

В большинстве случаев применяются полиамидная плёнка, отличающаяся прочностью, гибкостью и совместимостью с большинством связующих. Применяется плёнка с эпоксидной смолы. Её особенности:

  • линейно-упругое поведение материала;
  • отсутствие гистерезиса.

Полимеры, армированные стекловолокном, применяются в датчиках для работ в циклических деформациях. В датчиках, работающих при повышенных температурах, используются основы из эпоксидных и фенольных смол, армированных стекловолокном.

Клеи, с помощью которых приклеивают тензодатчики

Клей, с помощью которого приклеивают тензодатчик на образец, должен обладать прочностью, линейной упругостью и стабильностью в течение длительного периода времени.

Комбинация датчика: его несущая основа и клеи требуют самого серьезного внимания. Необходимо применять апробируемые клеи и соблюдать процедуры нанесения и сушки.

В качестве клея наиболее широко используется метил-2-цианоакриад, эпоксидная смола, полимид и некоторые виды керамики.

Цианоакриад не требует ни нагрева, ни отвердителей для инициирования полимеризации. Для ускорения полимеризации на одну из поверхностей может быть нанесён катализатор. Благодаря очень быстрой полимеризации этот клей является идеальным компонентом для тензодатчиков общего назначения. Минутного нажатия большим пальцем и двух минутной паузы оказывается достаточно. Он может использоваться в диапазоне температур от -32 до +65°С. Он обеспечивает правильное измерение деформации не выше 6%. Прочность клея снижается со временем из-за поглощения влаги, поэтому его необходимо защищать при длительной эксплуатации.

Эпоксидный состоит из смолы и отвердителя, который вступает в реакцию со смолой, обеспечивая полимеризацию. В некоторых случаях для вязкости смолы в нее добавляют растворитель. Разбавленные смолы (эпоксидно-фенольные) более предпочтительны, так как образуют очень тонкие высокопрочные, однородные плёнки со слабо выраженной ползучестью и гистерезисом. Для обеспечения тонкого однородного слоя к датчику должно быть приложено давление от 70 до 210 кПа. чтобы гарантировать полную полимеризацию эпоксидные клеи подвергают повышенной температуре в течение нескольких часов. По-видимому, наилучшими являются эпоксидно-фенольные клеи с рабочим диапазоном температур от -269 до +260°С. Допустимое относительное удельное изменение находится в пределах 3-10%.

Полиамидные представляют собой однокомпонентный полимер, который может применяться в диапазоне температур от -260 до +399°С. Полиамид утверждается при давлении 275кПа при температуре 260°С.

Итак, для отверждения нужны сравнительно высокие давления и температуры (например, 8 — 10 кгс/мм2, 170° С). Поверхность упругого элемента перед приклеиванием тщательно очищается механическими и химическими средствами, а затем к ней приклеивают тензорезисторы на слои соответствующих клеящих и изолирующих веществ. Процесс отверждения ведут по специальной температурно-временной программе. После окончания процессов «послеотверждения», если таковые имеют место, приклеенные тензорезисторы защищаются от действия окружающей среды.

После отвердения клеев тензодатчики должны быть покрыты герметиком (парафин, каучук, полимеритан).

Конструкция закрепления также имеет большое значение для работы датчика (рис. 1). В классической конструкции (а) применяется «утопленный» тензорезистор (например, в основе из фенольного клея), который наклеивается на упругий элемент с помощью клея (например, фенольного). В конструкции (б) голый тензорезистор (например, полупроводниковый) приклеивают через подложку (например, из специальной бумаги), пропитанную клеем. В обоих случаях возникает относительно толстая прослойка толщиной d2, (» 20 — 50 мкм), которая образуется по существу вязкой средой и служит причиной явлений ослабления напряжений. Поскольку прослойка выполняет одновременно функцию изоляции, она не может делаться сколь угодно тонкой. Поэтому в более новой конструкции задачи изоляции и крепления разделены. Здесь сначала наносится изоляционный слой, (расплавленная эмаль или керамика), который обладает существенно лучшими механическими свойствами, чем клей. Теперь собственно клеевой слой может выполняться очень тонким (< 1 мкм) и должен только заполнить неровности поверхностей. В этой конструкции практически полностью пренебрежимо ослабление напряжений, вызванное клеем.

Рисунок 1 — Конструкции тензорезисторных чувствительных элементов датчиков

а и б — обычные конструкции с толстыми клеевыми слоями dz;
в — современная конструкция с тонким клеевым слоем dz.
1 — упругий элемент; 2 — тензорезистор; 3 — основа тензорезистора; 4 — клеевой слой; 5 -подложка, пропитанная клеем; 6 — изолирующий слой с хорошими механическими свойствами

Явления ослабления напряжения рассматривались до сих пор всегда в связи с процессами в клее и конструкцией крепления тензорезисторов. Это понятно, так как в период становления техники измерений, основанной на тензорезисторах, на исследование и уменьшение ползучести клеев было направлено основное внимание. Однако в настоящее время можно уменьшить эти эффекты, по крайней мере до порядка значений ослабления напряжений, вызванных другими причинами (например, самим упругим элементом). Поэтому ослабление клея следует рассматривать только вместе с другими явлениями, если ими вообще нельзя пренебречь. Различные причины погрешностей тензорезисторных датчиков сопоставлены ниже:

Ослабления в упругом элементе

Вязкое ослабление из-за клеевых слоев благодаря современным способам приклеивания становится часто пренебрежимо малым.

Температурный уход нуля возникает из-за тепловых волн, распространяющихся по упругому элементу, при выравнивании теплового состояния, если тензорезисторы имеют большие температурные коэффициенты сопротивления (полупроводниковые тензорезисторы).

Термоэлектрические эффекты возникают из-за процессов перераспределения потерь мощности в мосте; также заметны только у полупроводниковых тензорезисторов.

Ослабление клея — единственный эффект, который по своей природе противоположен действию силы. Поэтому он может в принципе компенсировать эффекты ослабления, совпадающие по своему характеру с силой, однако из-за различных постоянных времени этих эффектов лишь не полностью и с большой зависимостью от температуры.

Защита от воздействия окружающей среды. Чувствительные элементы после их приклеивания должны защищаться от воздействий окружающей среды, чтобы препятствовать прежде всего действию влажности. Для этого после отверждения, по возможности еще в теплом состоянии, они покрываются защитными лаками. Чтобы воспрепятствовать образованию сквозных пор, такую операцию повторяют, как правило, несколько раз.

Полученные таким образом тонкие слои не могут полностью и на длительное время исключить диффузию паров воды. Это достигается только благодаря герметически плотным металлическим корпусам, которые часто заполняются еще достаточно большим запасом гигроскопичного вещества или сухим инертным газом. Однако влага, внедрившаяся в чувствительные элементы, несмотря на все эти меры, вызывает два эффекта:

1. Уменьшение сопротивления изоляции между тензорезистором и упругим элементом. В идеальном случае это сопротивление бесконечно велико. При конечном сопротивлении изоляции Ris получаются условия, отраженные на рис. 2. Благоприятнейший случай изображен на рис. 2,а, где Ris, равномерно распределено на четыре части моста; разбаланса моста нет. Для неблагоприятнейшего случая расчет дает погрешность нуля:

где eNcp — средняя номинальная деформация и R0 — основное сопротивление тензорезисторов. Эти соотношения для тензорезисторов с большим коэффициентом тензочувствительности (для полупроводниковых) не имеют такого значения.

Рисунок 2 — Влияние уменьшения сопротивления изоляции

Ris — дискретная эквивалентная схема. a — благоприятный случай: уменьшение Ris распределено равномерно; б — неблагоприятный случай: уменьшение Ris действует на один тензорезистор.

Разбухание клеевого слоя вызывает кажущуюся деформацию, а этим самым — дополнительную погрешность нуля. Можно с уверенностью считать, что этот эффект значительно сильнее, чем эффект от сопротивления изоляции. Но уменьшение Ris может служить в качестве меры внедрившейся влаги и поэтому — общей ожидаемой погрешности нуля. Можно принять, что разбухание также достаточно мало, если сопротивление изоляции более 109 Ом.

unives.ru

Введение 2 Определение и принцип работы

ТЕНЗОРЕЗИСТОРЫ

СОДЕРЖАНИЕ

тензорезистивных преобразователей. 2

Основные параметры и характеристики тензорезисторов. 3

Расчёт тензорезисторов. 5

Конструкция тензорезисторов. 9

Схемы включения тензорезисторов. 12

Заключение 16

Контрольные вопросы. 16

Литература 17

Введение

Обеспечение высокого и стабильного качества промышленной продукции является в настоящее время одной из основных проблем, на решение которой направлены усилия коллективов ученых, конструкторов и технологов.

В рамках этой проблемы важное место занимают прочностные испытания образцов техники. Для измерения напряжений или величин деформаций в деталях машин и элементах конструкций используют резистивные, струнные и индуктивные первичные преобразователи в сочетании с измерительными схемами включения и преобразования информации.

Из названных выше первичных преобразователей в практике наиболее часто находят применение тензорезисторы.

Простота конструкции, малые масса и габариты позволяют использовать тензорезисторы для измерения сил, давлений, вращающих моментов, ускорений и других величин, преобразуемых в упругую деформацию в труднодоступных местах различных машин и механизмов без изменения конструкций.

Определение и принцип работы тензорезистивных преобразователей.

Тензорезисторами называют преобразователи, осуществляющие преобразование механических деформаций в изменение электрического сопротивления, т.е. преобразователи, основанные на тензоэффекте.

Как следует из определения, измерения деформаций с помощью тензорезисторов основано на тензоэффекте. Тензоэффектом называется свойство проводниковых и полупроводниковых материалов изменять электропроводность (электрическое сопротивление) при изменении объёма или напряжённого состояния.

У полупроводников материалов тензоэффект связан со значительным изменением удельного сопротивления; знак тензоэффекта зависит от типа проводимости полупроводникового материала, а величина – от кристаллографического направления. Наиболее сильно тензорезистивный эффект выражен в полупроводниковых кристаллах германия и кремния. Для создания полупроводниковых тензорезистивных элементов применяются преимущественно кремний, поскольку он, по сравнению с германием, имеет более высокую тензочувствительнотсть, большую механическую прочность и выдерживает более высокие температуры. Тензометрические свойства кремния анизотропны и зависят от кристаллографических направлений. Наибольшей тензочувствительностью обладают тензорезисторы, у которых направление деформации совпадает с кристаллографическим направлением.

studfiles.net

Тензометрические датчики (Тензодатчики). Виды и работа. Устройство

На многих предприятиях существует необходимость для измерения различных параметров, изменения состояния деталей, различных конструкций. Для решения этих задач используются тензометрические датчики. Они преобразовывают величину деформации в электрический сигнал. Это получается за счет уменьшения или увеличения сопротивления датчика во время деформации, нарушения геометрии формы датчика от сжатия или растяжения. В результате определяется значение деформации.

Резистивный преобразователь, является главной составной частью высокоточных устройств и приборов. Изготавливают датчик из чувствительного тензорезистора, представляющего собой тонкую алюминиевую проволоку или фольгу. Резистор в результате деформации изменяет свое сопротивление, подает сигнал на индикатор.

Виды

В разных отраслях промышленности используется множество видов тензометрических датчиков.

  • Приборы, измеряющие силу и нагрузку.
  • Контроль давления.
  • Измерители ускорения.
  • Измерители перемещения.
  • Датчики контроля момента для станков, моторов автомобилей.

Модели датчиков разнообразны, но чаще всего используется датчик определения веса, который изготавливается в различных вариантах: шайбовый, бочковой, S-образный. Исходя из назначения подбирается необходимое исполнение.

Тензометрические датчики имеют классификацию, как по форме, так и по особенностям конструкции, которая зависит от вида чувствительного элемента.

Применяются следующие виды датчиков:

  • Из фольги.
  • Пленочные.
  • Из проволоки.
Датчик из фольги

Применяется в виде наклеивания на поверхность. Конструкция датчика состоит из фольговой ленты 12 мкм. Частично пленка плотная, остальная часть решетчатая. Эта конструкция отличительна тем, что к ней можно припаять вспомогательные контакты. Такие датчики легко используются при низких температурах.

Пленочные датчики

изготовлены по аналогии с фольговыми, кроме материала. Такие виды производятся из тензочувствительных пленок, имеющих специальное напыление, повышающее чувствительность датчика. Эти измерители удобно применять для контроля динамической нагрузки. Пленки изготавливаются из германия, висмута, титана.

Проволочный вариант

датчика может измерить точную нагрузку от сотых частей грамма до тонн. Они называются одноточечные, так как измерение происходит не на площади, а в одной точке, в отличие от датчиков из фольги и пленки. Проволочными датчиками можно контролировать растяжение и сжатие.

Принцип действия тензодатчиков

Тензометрические датчики представляет собой конструкцию из тензорезистора, имеющего контакт на панели. Она соприкасается с телом для измерения. Принципиальная схема действия датчика заключается в действии на чувствительный элемент исследуемой детали. Для подключения датчика к питанию используются электроотводы, соединенные с чувствительной пластиной.

В контактах существует постоянное напряжение. На тензодатчик кладется деталь через подложку. Вес детали разрывает цепь путем деформации. Деформация видоизменяется в сигнал тока.

Мост измерения тензодатчика дает возможность измерить минимальные нагрузки, расширяя этим применяемость прибора. Схема подключения мостом датчика основывается на законе Ома. Если сопротивления равны, то проходящий ток будет одинаковым. Действие снаружи обрело название «внешний фактор», изменение сигнала – «внутренний фактор». Тогда можно сказать, что принцип работы датчика заключается в определении внешнего фактора с помощью внутреннего.

В быту тензометрические датчики работают в весах. Тензорезисторы подключены с поверхностью работы весов. Подключение к питанию весов осуществляется через батареи.

Этот контрольный прибор имеет высокую точность. Погрешность чувствительных элементов составляет менее 0,02%, это высокий показатель. Существуют приборы с чувствительностью гораздо выше этого. Их работа основана на контроле действия силы. Значение силы давления прямопропорционально преобразованному сигналу тензодатчика.

Принцип действия датчиков силы

Датчики силы, другими словами динамометры входят в состав приборов, измеряющих вес. Их отсутствие делает невозможным работу системы по автоматизированию техпроцессов на производстве. Они используются в сельском хозяйстве, строительстве, металлургии.

Работа основывается на изменении деформации в сигнал. В действии происходит много разных явлений, которые обусловили несколько типов тензодатчиков:

  • Тактильные.
  • Резистивные.
  • Пьезорезонансные.
  • Пьезоэлектрические.
  • Магнитные.
  • Емкостные.
Тактильные датчики

Этот тип датчиков самый новый, появился после возникновения робототехники. Тактильные датчики делятся на: датчики усилия, касания, проскальзывания. Первые два определяют силу и отличаются сигналом. От других они отличаются небольшой толщиной из-за применения специальных материалов, обладающих прочностью, эластичностью, гибкостью.

Конструкция состоит из 2-х пластин(1 и 2). Между ними находится прокладка (3) с ячейками из изоляционного материала. Один провод соединен с верхней, второй с нижней пластиной. При воздействии силы на верхнюю пластину она прогибается и замыкается с нижней. Падение напряжения на резисторе является сигналом выхода.

Резистивный тензодатчик

Это широко применяемый вид датчиков, так как интервал усилий работы составляет от 5 Н до 5 МН, используются для разных нагрузок. Преимуществом его стала линейность сигнала выхода. Рабочий элемент – тензорезистор, состоящий из проволоки на гибкой подложке.


1 — Подложка
2 — Чувствительный элемент
3 — Контакты

Датчик приклеивают к измеряемому предмету. Под действием деформации изменяется сопротивление резистора, а соответственно подающего сигнала.

Пьезорезонансный тензодатчик

В этом типе датчиков применяются два эффекта: обратный и прямой. Элемент чувствительности датчика – резонатор. Пьезоэффект обратный обуславливается напряжением, которое вызывает заряды, это называется прямым пьезоэффектом.

Колебания резонатора вызывают резонансные колебания. Пьезорезонансные датчики подключаются по разным схемам. На рисунке изображена схема с генератором частоты и фильтра резонанса. Сила действует на резонатор, изменяет настройки частоты фильтра, от которых зависит напряжение выхода.

Пьезоэлектрические тензометрические датчики

Работа заключается на основе прямого пьезоэффекта. Им обладают такие материалы: кристаллы титаната бария, турмалина, кварца. Они химически устойчивы, имеют высокую прочность, их свойства мало зависят от окружающей температуры.

Суть эффекта состоит в действии силы на материал. Возникают заряды разной полярности, величина которых зависит от силы. Датчик состоит из корпуса, двух пьезопластин, выводов. При воздействии силы пластины сжимаются, возникает напряжение, поступающее на усилитель сигнала.

Такие тензометрические датчики используются для контроля динамических сил.

Магнитные тензометрические датчики

Магнитострикция является основным явлением для работы датчиков этого типа. Такой эффект меняет геометрию размеров в магнитном поле. Изменение геометрии изменяет магнитные свойства, что называется магнитоупругого эффекта. При снятии усилия свойства тела возвращаются.

Это определяется изменением расположения атомов в решетке кристаллов в магнитном поле или под действием силы. В нашем варианте катушка индуктивности расположена на ферромагнитном сердечнике. От силы сердечник деформируется, получая состояние напряженности.

Изменение сердечника дает изменение его проницаемости, а, следовательно, изменяется магнитное сопротивление и индуктивность катушки.

Широко применяемыми стали датчики с двумя катушками. Первичная – запитана генератором, во вторичной образуется ЭДС. Во время деформации магнитная проницаемость меняется. В результате меняется ЭДС 2-й обмотки.

Емкостные датчики

Это параметрический тип датчиков, представляющий собой конденсатор. Чем больше площадь пластин, тем больше емкость. А чем больше промежуток между пластинами, тем меньше емкость.

Это свойство применяют для конструкции емкостных датчиков. Чтобы было удобно пользоваться измерениями, емкость преобразуют в ток. Для этого пользуются разными схемами подключения.

Обычно применяют вариант со сжатием диэлектрика между пластинами.

Преимущества тензометрических датчиков
  • Повышенная точность измерения.
  • Сочетаются с измерениями напряжений, не имеют искажений данных измерения. Это удобство незаменимо при применении датчиков на транспорте или в критических ситуациях и условиях.
  • Малые размеры дают возможность применять их в любых измерениях.

К недостаткам тензометрических датчиков, можно отнести снижение чувствительности при резких изменениях температуры. Для получения точных результатов рекомендуется делать контроль измерения при комнатной температуре.

Подключение тензодатчиков

Подключить тензометрические датчики можно легко самому, используя схему. Перед приобретением тензодатчиков определите длину кабеля подключения. Если короткий кабель наращивать в длину, то точность измерения индикатором будет значительно меньше. Оптимизацию этого параметра можно произвести контроллером SE 01, который действует вместо усилителя.

Если в конструкции весов применяются разные индикаторы, то их соединяют по параллельной схеме с помощью специальных коробок. Проводники датчиков обязательно заземляются, независимо от вида питания. Установка заземления производится в общей одной точке. Для этих целей применяется коробка для разветвления.

Далее проверяется правильность подключения по схеме датчиков, надежность контактов и заземления. Монтаж прибора осуществляется экранированным кабелем. Он заглушает помехи, вспомогательные модули при его использовании не нужны. По подобию подсоединяется преобразователь в дозатор.

Похожие темы:

electrosam.ru

Тензорезистор — Википедия. Что такое Тензорезистор

Тензорези́стор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации[1]. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов[2]. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.

Принцип действия

При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии — уменьшает.

Принцип действия проиллюстрирован на анимированном изображении. Для наглядности на изображении величина деформации тензорезистора утрированно увеличена, как и изменение сопротивления. В реальности относительные изменения сопротивления весьма малы (менее ~10−3) и для их измерений требуются чувствительные вольтметры или прецизионные усилители или прецизионные усилители + АЦП. Таким образом, деформации преобразуются в изменение электрического сопротивления проводников или полупроводников и далее — в электрический сигнал, обычно сигнал напряжения.

Полупроводниковый тензорезистор обладает гораздо большей чувствительностью из-за изменения свойств полупроводникового материала при деформации.[3]

Электромеханические параметры

Чувствительность

Чувствительность тензорезистора характеризуется безразмерным параметром — коэффициентом тензочувствительности Kf,{\displaystyle K_{f},} который определяется как:

Kf=ΔR/R0ϵ,{\displaystyle K_{f}={\frac {\Delta R/R_{0}}{\epsilon }},}

где:

  • ΔR{\displaystyle \Delta R} — абсолютное изменение сопротивления, вызванное деформацией, Ом;
  • R0{\displaystyle R_{0}} — начальное сопротивление недеформированного тензорезистора, Ом;
  • ϵ{\displaystyle \epsilon } — относительная деформация.

Относительная деформация определяется как:

ϵ=ΔL/L0,{\displaystyle \epsilon =\Delta L/L_{0},}

где

  • ΔL{\displaystyle \Delta L} — абсолютное изменение длины, м;
  • L0{\displaystyle L_{0}} — длина недеформированного тензорезистора, м.

Для плёночных металлических тензорезисторов параметр Kf{\displaystyle K_{f}} слабо зависит от деформации и немного превышает 2[4].

При включении тензорезистора в мост Уитстона, в котором остальные 3 резистора постоянны (не имеют возможности регулирования сопротивления), выходное напряжение диагонали этого моста выражается формулой:

v=Vb⋅Kf⋅ϵ4,{\displaystyle v={\frac {V_{b}\cdot K_{f}\cdot \epsilon }{4}},}

где:

  • Vb{\displaystyle V_{b}} — напряжение питания моста, В.

Типичные значения коэффициента тензочувствительности для разных материалов приведены в таблице.

МатериалКоэффициент тензочувствительности
Металлическая фольга2-5
Тонкая металлическая плёнка (например, константановая)2
Монокристаллический кремнийОт −125 до +200
Поликристаллический кремний±30
Тонкоплёночные резистивные материалы100

Температурный коэффициент

При изменении температуры изменяется сопротивление тензорезистора, не связанное с деформацией. Это является вредным побочным эффектом. Через коэффициент тензочувствительности относительное изменение сопротивления выражается формулой:

ΔRR=Kf⋅ε+α⋅θ,{\displaystyle {\frac {\Delta R}{R}}=K_{f}\cdot \varepsilon +\alpha \cdot \theta ,}

где:

Электрическая схема подключения тензорезистора

Обычно тензорезисторы включают в одно или два плеча сбалансированного моста Уитстона, питаемого от источника постоянного тока (диагональ моста A—D). С помощью переменного резистора R2{\displaystyle R_{2}} производится балансировка моста, так, чтобы в отсутствие приложенной силы напряжение диагонали сделать равным нулю. С диагонали моста B—C снимается сигнал, далее подаваемый на измерительный прибор, дифференциальный усилитель или АЦП.

При выполнении соотношения R1R2=RxR3{\displaystyle {\frac {R_{1}}{R_{2}}}={\frac {R_{x}}{R_{3}}}} напряжение диагонали моста равно нулю. При деформации изменяется сопротивление Rx{\displaystyle R_{x}} (например, увеличивается при растяжении), это вызывает снижение потенциала точки соединения резисторов Rx{\displaystyle R_{x}} и R3{\displaystyle R_{3}} (точки B) и изменение напряжения диагонали B—C моста — полезный сигнал.

Изменение сопротивления Rx{\displaystyle R_{x}} может происходить не только от деформации, но и от влияния других факторов, главный из них — изменение температуры, что вносит погрешность в результат измерения деформации. Для снижения влияния температуры применяют сплавы с низким ТКС, термостатируют объект, вносят поправки на изменение температуры и/или применяют дифференциальные схемы включения тензорезисторов в мост.

Например, в схеме на рисунке вместо постоянного резистора R3{\displaystyle R_{3}} включают такой же тензорезистор, как и Rx{\displaystyle R_{x}}, но при деформации детали этот резистор изменяет своё сопротивление с обратным знаком. Это достигается наклейкой тензорезисторов на поверхности по-разному деформируемых зон детали, например, с разных сторон изгибаемой балки или с одной стороны, но со взаимно перпендикулярной ориентацией. При изменении температуры, если температура обоих резисторов равна, знак и величина изменения сопротивления, вызванного изменением температуры, равны, и температурный уход при этом компенсируется.

Также промышленностью выпускаются специализированные микросхемы для работы совместно с тензорезисторами, в которых помимо усилителей сигнала часто предусмотрены источники питания моста, схемы термокомпенсации, АЦП, цифровые интерфейсы для связи с внешними цифровыми системами обработки сигналов и другие полезные сервисные функции.

Конструкция

Плёночный тензорезистор. На подложку через фигурную маску в вакууме напылена или сформирована методами фотолитографии плёнка металла. Для подключения электродов выполнены контактные площадки (снизу). Метки облегчают ориентацию при монтаже.

Обычно современные тензорезисторы представляют собой чувствительный элемент в виде зигзагообразного проводника, нанесенного на гибкую подложку. Тензорезистор приклеивается подложкой на поверхность исследуемого на деформации объекта. Проводники тензорезисторов обычно изготавливаются из тонкой металлической проволоки, фольги, или напыляются в вакууме для получения плёнки полупроводника или металла. В качестве подложки обычно используют ткань, бумагу, полимерную плёнку, слюду и др. Для присоединения чувствительного элемента в электрическую цепь тензорезистор имеет выводные проволочные концы или контактные площадки.

Плёночные металлические тензорезисторы имеют площадь около 2‑10 мм2.

Применение

Тензорезисторы используются в качестве первичных преобразователей в тензометрах и тензостанциях при измерениях механических величин (деформации, силы, крутящего момента, перемещения, также, для измерения давления в манометрах и пр.)

См. также

Примечания

Ссылки

wiki.sc

Принцип работы тензорезисторов и тензодатчиков

Принцип работы

Тензорезисторы

Тензорезисторы – это резисторы, сопротивление которых зависит от их деформации.

Широко используются решётчатые чувствительные элементы из тонкой металлической резистивной фольги.

Пьезорезисторы

Пьезорезисторы – это полупроводниковые датчики, сопротивление которых зависит от деформации.

Тензодатчики

Тензорезисторы являются основой тензодатчиков (Strain Gauge), служащих для косвенного измерения силы (веса, давления, момента, ускорения, перемещения) по деформации калиброванного элемента (пружины, стержня), вызванного действием этой силы.

Весоизмерительные ячейки

Весоизмерительные ячейки (Load Cell) – это тензодатчики, конструкция которых позволяет использовать их для измерения веса в различных промышленных приложениях (платформенные весы, резервуарные весы, конвейерные весы и т.п.).

Специальные монтажные компоненты компенсируют нежелательные (горизонтальные) нагрузки на весоизмерительную ячейку:

  • Самоцентрирующаяся качающаяся опора
  • Ограничитель качания
  • Стопор подъёма
  • Эластичная опора
  • Изгибная опора и др.

Мост Уитстона (Weatstone Bridge)

Мост Уитстона используется для регистрации изменения сопротивления.
В тензодатчиках с помощью моста Уинстона измеряют деформацию.

На упругий стержень наклеиваются четыре тензорезистора: 1,2,3 и 4 (см. рисунок) с одинаковыми характеристиками. Тензорезисторы включаются в плечи моста так, как показано на рисунке справа. На диагональ a-b моста подаётся постоянное напряжение E, диагональ c-d является измерительной. В ненагруженном состоянии мост сбалансирован и выходное напряжение моста U равно нулю.

Под воздействием силы F стержень деформируется, тензорезисторы 1 и 4 сжимаются, а тензорезисторы 2 и 3 растягиваются. Выходное напряжение моста U пропорционально силе F.


Как выбрать

Датчики силы, весоизмерительные ячейки

  • Приложение силы
    • Сжатие
    • Растяжение
    • Сжатие и растяжение
  • Конструкция
    • Балочного типа:
      • изгибный стержень
      • срезной стержень
    • Изгибная кольцевая пружина
    • S — образная (тензодатчики сжатия-растяжения)
    • Прямоугольная (Single Point)
    • Датчики сжатия мембранного типа
    • Датчики сжатия типа колонна
  • Специальное применение
    • Платформенные весы
    • Путевые весы
    • Резервуарные весы
    • Подвесные весы
    • Конвейерные весы
    • Ленточные весы
    • Рольганговые весы
    • Бункерные весы
  • Диапазон измерений (Н, кгс)
  • Точность измерений
  • Нелинейность
  • Гистерезис
  • Максимальная безопасная перегрузка
  • Защита от перегрузки
  • Ресурс (число циклов измерений)
  • Выходной сигнал.

Акселерометры (датчики ускорения)

  • Диапазон измерений (м/с2)
  • Нелинейность
  • Гистерезис
  • Безопасная перегрузка
  • Частотный диапазон
  • Выходной сигнал.

Датчики перемещения

  • Диапазон измерений (мм)
  • Нелинейность
  • Гистерезис
  • Усилие при измерении (Н)
  • Индикаторная шкала
  • Выходной сигнал.

Датчики крутящего момента

  • Диапазон измерений (Нм)
  • Нелинейность
  • Гистерезис
  • Безопасная перегрузка
  • Ограничитель перегрузки
  • Максимальная частота вращения
  • Выходной сигнал.

Общее для всех тензодатчиков

  • Выходной сигнал
  • Степень защиты корпуса
  • Материал
  • Класс взрывозащиты
  • Напряжение питания.


Анализаторы газа и жидкости

Системы идентификации

www.maxplant.ru

Тензорезистор Википедия

Тензорези́стор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации[1]. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов[2]. Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.

Принцип действия

При растяжении проводящих элементов тензорезистора увеличивается их длина и уменьшается поперечное сечение, что увеличивает сопротивление тензорезистора, при сжатии — уменьшает.

Принцип действия проиллюстрирован на анимированном изображении. Для наглядности на изображении величина деформации тензорезистора утрированно увеличена, как и изменение сопротивления. В реальности относительные изменения сопротивления весьма малы (менее ~10−3) и для их измерений требуются чувствительные вольтметры или прецизионные усилители или прецизионные усилители + АЦП. Таким образом, деформации преобразуются в изменение электрического сопротивления проводников или полупроводников и далее — в электрический сигнал, обычно сигнал напряжения.

Полупроводниковый тензорезистор обладает гораздо большей чувствительностью из-за изменения свойств полупроводникового материала при деформации.[3]

Электромеханические параметры

Чувствительность

Чувствительность тензорезистора характеризуется безразмерным параметром — коэффициентом тензочувствительности Kf,{\displaystyle K_{f},} который определяется как:

Kf=ΔR/R0ϵ,{\displaystyle K_{f}={\frac {\Delta R/R_{0}}{\epsilon }},}

где:

  • ΔR{\displaystyle \Delta R} — абсолютное изменение сопротивления, вызванное деформацией, Ом;
  • R0{\displaystyle R_{0}} — начальное сопротивление недеформированного тензорезистора, Ом;
  • ϵ{\displaystyle \epsilon } — относительная деформация.

Относительная деформация определяется как:

ϵ=ΔL/L0,{\displaystyle \epsilon =\Delta L/L_{0},}

где

  • ΔL{\displaystyle \Delta L} — абсолютное изменение длины, м;
  • L0{\displaystyle L_{0}} — длина недеформированного тензорезистора, м.

Для плёночных металлических тензорезисторов параметр Kf{\displaystyle K_{f}} слабо зависит от деформации и немного превышает 2[4].

При включении тензорезистора в мост Уитстона, в котором остальные 3 резистора постоянны (не имеют возможности регулирования сопротивления), выходное напряжение диагонали этого моста выражается формулой:

v=Vb⋅Kf⋅ϵ4,{\displaystyle v={\frac {V_{b}\cdot K_{f}\cdot \epsilon }{4}},}

где:

  • Vb{\displaystyle V_{b}} — напряжение питания моста, В.

Типичные значения коэффициента тензочувствительности для разных материалов приведены в таблице.

МатериалКоэффициент тензочувствительности
Металлическая фольга2-5
Тонкая металлическая плёнка (например, константановая)2
Монокристаллический кремнийОт −125 до +200
Поликристаллический кремний±30
Тонкоплёночные резистивные материалы100

Температурный коэффициент

При изменении температуры изменяется сопротивление тензорезистора, не связанное с деформацией. Это является вредным побочным эффектом. Через коэффициент тензочувствительности относительное изменение сопротивления выражается формулой:

ΔRR=Kf⋅ε+α⋅θ,{\displaystyle {\frac {\Delta R}{R}}=K_{f}\cdot \varepsilon +\alpha \cdot \theta ,}

где:

Электрическая схема подключения тензорезистора

Обычно тензорезисторы включают в одно или два плеча сбалансированного моста Уитстона, питаемого от источника постоянного тока (диагональ моста A—D). С помощью переменного резистора R2{\displaystyle R_{2}} производится балансировка моста, так, чтобы в отсутствие приложенной силы напряжение диагонали сделать равным нулю. С диагонали моста B—C снимается сигнал, далее подаваемый на измерительный прибор, дифференциальный усилитель или АЦП.

При выполнении соотношения R1R2=RxR3{\displaystyle {\frac {R_{1}}{R_{2}}}={\frac {R_{x}}{R_{3}}}} напряжение диагонали моста равно нулю. При деформации изменяется сопротивление Rx{\displaystyle R_{x}} (например, увеличивается при растяжении), это вызывает снижение потенциала точки соединения резисторов Rx{\displaystyle R_{x}} и R3{\displaystyle R_{3}} (точки B) и изменение напряжения диагонали B—C моста — полезный сигнал.

Изменение сопротивления Rx{\displaystyle R_{x}} может происходить не только от деформации, но и от влияния других факторов, главный из них — изменение температуры, что вносит погрешность в результат измерения деформации. Для снижения влияния температуры применяют сплавы с низким ТКС, термостатируют объект, вносят поправки на изменение температуры и/или применяют дифференциальные схемы включения тензорезисторов в мост.

Например, в схеме на рисунке вместо постоянного резистора R3{\displaystyle R_{3}} включают такой же тензорезистор, как и Rx{\displaystyle R_{x}}, но при деформации детали этот резистор изменяет своё сопротивление с обратным знаком. Это достигается наклейкой тензорезисторов на поверхности по-разному деформируемых зон детали, например, с разных сторон изгибаемой балки или с одной стороны, но со взаимно перпендикулярной ориентацией. При изменении температуры, если температура обоих резисторов равна, знак и величина изменения сопротивления, вызванного изменением температуры, равны, и температурный уход при этом компенсируется.

Также промышленностью выпускаются специализированные микросхемы для работы совместно с тензорезисторами, в которых помимо усилителей сигнала часто предусмотрены источники питания моста, схемы термокомпенсации, АЦП, цифровые интерфейсы для связи с внешними цифровыми системами обработки сигналов и другие полезные сервисные функции.

Конструкция

Плёночный тензорезистор. На подложку через фигурную маску в вакууме напылена или сформирована методами фотолитографии плёнка металла. Для подключения электродов выполнены контактные площадки (снизу). Метки облегчают ориентацию при монтаже.

Обычно современные тензорезисторы представляют собой чувствительный элемент в виде зигзагообразного проводника, нанесённого на гибкую подложку. Тензорезистор приклеивается подложкой на поверхность исследуемого на деформации объекта. Проводники тензорезисторов обычно изготавливаются из тонкой металлической проволоки, фольги, или напыляются в вакууме для получения плёнки полупроводника или металла. В качестве подложки обычно используют ткань, бумагу, полимерную плёнку, слюду и др. Для присоединения чувствительного элемента в электрическую цепь тензорезистор имеет выводные проволочные концы или контактные площадки.

Плёночные металлические тензорезисторы имеют площадь около 2‑10 мм2.

Применение

Тензорезисторы используются в качестве первичных преобразователей в тензометрах и тензостанциях при измерениях механических величин (деформации, силы, крутящего момента, перемещения, также, для измерения давления в манометрах и пр.)

См. также

Примечания

Ссылки

wikiredia.ru

Тензорезистор — это… Что такое Тензорезистор?

Деформация тензорезистора из фольги. Значение сопротивления показано условно. Отображение тензорезистора на электрических принципиальных схемах

Тензорези́стор (от лат. tensus — напряжённый и лат. resisto — сопротивляюсь) — резистор, сопротивление которого изменяется в зависимости от его деформации[1]. Тензорезисторы используются в тензометрии. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов.[2], Тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.

Принцип действия

Принцип действия хорошо проиллюстрирован на картинке за одним небольшим замечанием — в реальности изменения сопротивления весьма малы и требуют прецизионных усилителей или АЦП. Он заключается в изменении электрического сопротивления проводников и полупроводников при их механической деформации.

Конструктивно современные тензорезисторы представляют собой чувствительный элемент в виде петлеобразной решетки, который крепится с подложкой с помощью клея. Чувствительные элементы обычно изготавливаются из тонкой проволоки, фольги, а также могут быть образованы напылением в вакууме полупроводниковой пленки. В качестве подложки обычно используют ткань, бумагу, пленку и др. Для присоединения чувствительного элемента в электрическую цепь в тензорезисторе имеются выводные концы или контактные площадки. На исследуемый объект тензорезисторы крепятся с помощью связующего (клея)со стороны подложки.

Тензорезисторы используются в качестве первичных преобразователей при измерениях механических величин (силы, крутящего момента, перемещения, давления и пр.).

Примечания

См. также

Ссылки

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *