Делаем солнечную батарею своими руками: как сделать самодельную солнечную панель

Содержание

как сделать самодельную солнечную панель

Солнечные батареи — источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками — затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Содержание статьи:

  • Коротко об устройстве и работе
  • Материалы для создания солнечной пластины
    • Кремниевые пластины или фотоэлементы
    • Каркас и прозрачный элемент
  • Проект системы и выбор места
  • Монтаж солнечной батареи по шагам
    • Шаг #1 — пайка контактов кремниевых пластин
    • Шаг #2 — изготовление каркаса для солнечной батареи
    • Шаг #3 — монтаж кремниевых пластин-фотоэлементов
    • Шаг #4 — тестирование батареи перед герметизацией
    • Шаг #5 — герметизация уложенных в корпус фотоэлементов
  • Выводы и полезное видео по теме

Коротко об устройстве и работе

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты «отпускают» свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

Галерея изображений

Фото из

Сборка солнечной батареи из кремниевых пластинок

Формирование плюсовой токоведущей дорожки

Создание минусовых токоведущих линий с задней стороны

Подключение проводника и блокирующего диода

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора — пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические «дорожки», на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте .

Верхний слой пластин-фотоэлементов покрыт слоем, который не допускает отражение солнечного света от пластин, повышая их КПД

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 — 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов — 10 лет.

Солнечную батарею собирают из модулей, которые в свою очередь составляют из фотоэлектрических преобразователей. Батареи с жесткими кремниевыми фотоэлементами представляют собой некий сэндвич с последовательно расположенными слоями, закрепленными в алюминиевом профиле

Монокристаллические фотоэлементы могут похвастаться более высоким КПД — 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Пленочные фотопреобразователи получают путем нанесения тонкого слоя аморфного кремния на полимерную гибкую поверхность

Гибкие батареи с аморфным кремнием — самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 — 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

При покупке фотоэлементов поинтересуйтесь у продавца способом доставки, большинство продавцов используют метод воскования, чтобы предотвратить разрушение хрупких элементов

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Галерея изображений

Фото из

Поликристаллическая фотоэлектрическая пластина

Лицевая и тыльная стороны кремниевой пластины

Монокристаллическая фотоэлектрическая пластина

Обратная сторона монокристаллической пластины

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий — лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта — оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже — обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло — самый оптимальный вариант для изготовления гелиобатареи

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант — батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие — батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Для европейской части стран СНГ рекомендуемый угол стационарного наклона 50 — 60 º. Если в конструкции предусмотрено устройство для изменения угла наклона, то в зимний период лучше располагать батареи под 70 º к горизонту, в летнее время под углом 30 º

Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.

Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества .

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка . Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Размещая батареи на наклонной крыше дома, не забывайте об угле наклона панели, идеальный вариант, когда у батареи есть устройство для сезонного изменения угла наклона

Монтаж солнечной батареи по шагам

Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.

При монтаже необходимо соблюдать технику безопасности, особенно осуществляя на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.

Шаг #1 — пайка контактов кремниевых пластин

Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка — очень непростая и кропотливая работа, занимающая много времени.

Пайка осуществляется следующим образом:

  1. Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
  2. Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
  3. Проводник аккуратно выкладывается на пластину. На один элемент — два проводника.
  4. На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
  5. Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.

В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.

Пайка контактов для бракованных фотоэлементов группы В производится так же и в том же направлении, что и для целых пластин

Шаг #2 — изготовление каркаса для солнечной батареи

Каркас — это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка — 70-90 мм.

На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.

После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.

Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.

Галерея изображений

Фото из

Изготовление корпуса для солнечной батареи

Вентиляционные отверстия в бортиках корпуса

Подложка для крепления кремниевых пластин

Окрашивание деталей корпуса для гидроизоляции

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части — монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3 — монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин — самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: «+» дорожки расположены на лицевой стороне пластины, «-» — на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно «+» и «-«. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Галерея изображений

Фото из

Шаг 1: Для того чтобы удалить защитный восковой слой с поверхности фотоэлектрических пластинок, их опускают в горячую, но не кипящую воду

Шаг 2: После отмокания в горячей воде для устранения воскового покрытия кремниевые пластины высушиваются на полотенце

Шаг 3: Для облегчения процесса пайки и крепления пластин контуры их вычерчиваются на подложке

Шаг 4: Элементы соединяются последовательно. В пайке используется маломощный паяльник и прутковый припой с канифолью в сердцевине

Шаг 5: Пайка производится до тех пор, пока все элементы единичной гелиосистемы не будут соединены по 6 контактам

Шаг 6: После соединения тыльной стороны фотоэлектрических пластинок их переворачивают и формируют внешние токоведущие линии

Шаг 7: Токоведущая шина, к которой подключаются линии батареи, выполнена из медной оплетки отслужившего кабеля. шина посажена на каплю клея

Шаг 8: После сборки каждую из двух частей будущей солнечной батареи необходимо протестировать на работоспособность при естественном освещении

Подготовка кремниевых пластин к пайке

Сушка избавленных от воска элементов батареи

Вычерчивание абриса пластинок на подложке

Процесс пайки фотоэлектрических элементов батареи

Соединение кремниевых пластин в солнечную батарею

Соединение кремниевых пластин с лицевой стороны

Устройство медных токоведущих шин прибора

Проверка работоспособности части батареи

Шаг #4 — тестирование батареи перед герметизацией

Тестирование солнечной панели необходимо проводить до её герметизации, чтобы иметь возможность устранить неисправности, которые часто возникают во время пайки. Лучше всего производить тестирование после спайки каждого ряда элементов — так значительно проще обнаружить, где контакты соединены плохо.

Для тестирования вам понадобиться обычный бытовой амперметр. Измерения необходимо проводить в солнечный день в 13-14 часов, солнце не должно быть скрыто облаками.

Выносим батарею на улицу и устанавливаем в соответствии с ранее рассчитанным углом наклона. Амперметр подключаем к контактам батареи и проводим измерение тока короткого замыкания.

Смысл тестирования заключается в том, что рабочая сила электрического тока должна быть на 0,5-1,0 А ниже, чем ток короткого замыкания. Показания прибора должны быть выше 4,5 А, что говорит о работоспособности гелиобатареи.

Если тестер выдаёт меньшие показания, то где-то наверняка нарушена последовательность соединения фотоэлементов.

Обычно самодельная , сконструированная из фотоэлементов группы В выдаёт показания 5-10 А, что на 10-20% ниже, чем у солнечных панелей промышленного производства.

Галерея изображений

Фото из

Шаг 9: После проверки работоспособности частей батареи, запаянных на подложке, их располагают в корпусе

Шаг 10: Подложки с пластинами внутри корпуса фиксируются на четыре шурупа. Провод, соединяющий части батареи, выводится через вентиляционные отверстия

Шаг 11: К каждой из половин сооружаемой батареи последовательно подключается диод Шоттки. Его минус подключается к плюсу системы

Шаг 12: Для вывода проводов из корпуса высверливается отверстие. Провода скреплены узлом, чтобы не болтались, и зафиксированы герметиком

Шаг 13: После нанесения герметика необходимо сделать технологический перерыв, отпущенный на полимеризацию состава

Шаг 14: К выведенному из солнечной батареи проводу подсоединяется двухконтактный разъем. Принадлежащая ему розетка крепится на аккумуляторе прибора, который будет заряжать батарея

Шаг 15: После сборки обеих частей прибора и вывода силовой линии наружу батарею закрывают заранее подготовленным экраном

Шаг 16: Перед герметизацией стыков гелиоприбора еще раз проводится проверка работоспособности, чтобы вовремя устранить отошедшие контакты, если они будут обнаружены

Установка обеих частей батареи в подготовленный корпус

Крепление основы солнечной батареи внутри корпуса

Установка блокирующего диода Шоттки

Вывод из корпуса наружу проводов прибора

Ожидание затвердевания герметика

Крепление двухконтактного разъема к проводу

Установка светопропускающего экрана на прибор

Контроль работоспособности перед герметизацией

Шаг #5 — герметизация уложенных в корпус фотоэлементов

Герметизацию можно производить, только убедившись, что батарея работает. Для герметизации лучше всего использовать эпоксидный компаунд, но учитывая, что расход материала будет большой, а стоимость его составляет примерно 40-45 долларов. Если дороговато, то вместо него можно применять всё тот же силиконовый герметик.

Используя силиконовой герметик, отдавайте предпочтения тому, на упаковке которого указано, что он подходит для использования при минусовых температурах

Существует два способа герметизации:

  • полная заливка, когда панели заливаются герметиком;
  • нанесение герметика на пространство между фотоэлементами и на крайние элементы.

В первом случае герметизация будет более надёжной. После заливки герметик должен схватиться. Затем сверху устанавливается оргстекло и плотно прижимается к пластинам, покрытым силиконом.

Для обеспечения амортизации и дополнительной защиты между задней поверхностью фотоэлементов и каркасом из ДСП многие мастера советуют устанавливать прокладку из жёсткого поролона шириной 1,5-2,5 см.

Делать это необязательно, но желательно, учитывая, что кремниевые пластины достаточно хрупкие и легко повреждаются.

После установки оргстекла на конструкцию ставят груз, под действием которого происходит выдавливание пузырьков воздуха. Солнечная батарея готова и после повторного тестирования её можно устанавливать в заранее выбранное место и подключать к гелиосистеме вашего дома.

Выводы и полезное видео по теме

Обзор фотоэлементов, заказанных в китайском интернет-магазине:

Видео-инструкция по изготовлению солнечной батареи:

Сделать солнечную батарею своими руками — не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи — правильно выбрать и установить фотоэлементы.

Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.

У вас есть практические навыки создания солнечных батарей? Поделитесь, пожалуйста, своим опытом с посетителями нашего сайта — пишите комментарии в расположенном ниже блоке. Там же можно задать вопросы по теме статьи.

пошаговые инструкции по сборке в домашних условиях из разных материалов с фото и видео

Наверное, нет такого человека, который не хотел бы стать более независимым. Возможность полностью распоряжаться собственным временем, путешествовать, не зная границ и расстояний, не задумываться о жилищных и финансовых проблемах — вот что даёт ощущение настоящей свободы. Сегодня мы расскажем о том, как, используя солнечное излучение, снять с себя бремя энергетической зависимости. Как вы догадались, речь пойдёт о солнечных батареях. А если быть точнее, то о том, можно ли своими руками построить настоящую солнечную электростанцию.

Содержание

  • История создания и перспективы использования
  • Солнечная батарея: как это работает
  • Классификация и особенности современных фотоэлементов
  • Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти
  • На какую мощность солнечных батарей можно рассчитывать
  • Расчёт размера батареи
  • Постройка самодельной солнечной батареи
  • Установка и подключение солнечной батареи к потребителям
  • Видео: изготовление солнечной панели своими руками

История создания и перспективы использования

Идею превращения энергии Солнца в электричество человечество вынашивало давно. Первыми появились гелиотермальные установки, в которых перегретый сконцентрированными солнечными лучами пар вращал турбины генератора. Прямое преобразование стало возможным лишь в середине XIX века, после того, как француз Александр Эдмон Баккарель открыл фотоэлектрический эффект. Попытки создать на основании этого явления действующую солнечную ячейку увенчались успехом лишь полвека спустя, в лаборатории выдающегося русского учёного Александра Столетова. Полностью описать механизм фотоэлектрического эффекта удалось ещё позже — человечество обязано этим Альберту Энштейну. К слову, именно за эту работу он получил Нобелевскую премию.

Баккарель, Столетов и Энштейн — вот те учёные, которые заложили фундамент современной солнечной энергетики

О создании первого солнечного фотоэлемента на основе кристаллического кремния возвестили мир сотрудники компании Bell Laboratories в далёком апреле 1954 года. Эта дата, по сути, и является отправной точкой технологии, которая в скором времени сможет стать полноценной заменой углеводородному топливу.

Поскольку ток одной фотоэлектрической ячейки составляет миллиамперы, то для получения электроэнергии достаточной мощности их приходится соединять в модульные конструкции. Защищённые от внешнего воздействия массивы солнечных фотоэлементов и являются солнечной батареей (из-за плоской формы устройство нередко называют солнечной панелью).

Преобразование солнечного излучения в электричество имеет огромные перспективы, ведь на каждый квадратный метр земной поверхности приходится в среднем 4.2 кВт/час энергии в день, а это экономия практически одного барреля нефти в год. Изначально используемая лишь для космической отрасли технология уже в 80-х годах прошлого века стала настолько обыденной, что фотоэлементы стали использовать в бытовых целях — в качестве источника питания калькуляторов, фотоаппаратов, светильников и т. д. Параллельно создавались и «серьёзные» гелиоэлектрические установки. Закреплённые на крышах домов, они позволяли полностью отказаться от проводного электричества. Сегодня можно наблюдать рождение электростанций, представляющих собой многокилометровые поля из кремниевых панелей. Вырабатываемая ими мощность позволяет питать целые города, поэтому можно с уверенностью говорить о том, что будущее — за солнечной энергетикой.

Современные солнечные электростанции представляют собой многокилометровые поля фотоэлементов, способные снабжать электричеством десятки тысяч домов

Солнечная батарея: как это работает

После того как Энштейн описал фотоэлектрический эффект, миру открылась вся простота такого, казалось бы, сложного физического явления. В его основе лежит вещество, отдельные атомы которого находятся в неустойчивом состоянии. При «бомбардировке» фотонами света из их орбит выбиваются электроны — вот они-то и являются источниками тока.

Практически полвека фотоэффект не имел практического применения по одной простой причине — отсутствовала технология получения материалов с неустойчивой атомной структурой. Перспективы дальнейших исследований появились лишь с открытием полупроводников. Атомы этих материалов имеют либо избыток электронов (n-проводимость), или же испытывают в них нехватку (p-проводимость). При использовании двухслойной структуры со слоем n-типа (катод) и p-типа (анод), «обстрел» фотонами света выбивает электроны из атомов n-слоя. Покидая свои места, они устремляются на свободные орбиты атомов p-слоя и далее через подключённую нагрузку возвращаются на исходные позиции. Наверное, каждый из вас знает, что движение электронов в замкнутом контуре представляет собой электрический ток. Вот только заставить электроны перемещаться удаётся не благодаря магнитному полю, как в электрических генераторах, а за счёт потока частиц солнечного излучения.

Солнечная панель работает благодаря фотоэлектрическому эффекту, который был открыт ещё в начале XIX века

Поскольку мощность одного фотоэлектрического модуля недостаточна для питания электронных устройств, то для получения требуемого напряжения используется последовательное подключение множества ячеек. Что же касается силы тока, то её наращивают параллельным соединением определённого количества таких сборок.

Генерация электричества в полупроводниках напрямую зависит от количества солнечной энергии, поэтому фотоэлементы не только устанавливают под открытым небом, но и стараются сориентировать их поверхность перпендикулярно падающим лучам. А чтобы защитить ячейки от механических повреждений и атмосферного воздействия, их монтируют на жёстком основании и сверху защищают стеклом.

Классификация и особенности современных фотоэлементов

Первую солнечную ячейку изготовили на основе селена (Se), однако низкий КПД (менее 1%), быстрое старение и высокая химическая активность селеновых фотоэлементов вынуждали искать другие, более дешёвые и эффективные материалы. И они нашлись в лице кристаллического кремния (Si). Поскольку этот элемент периодической таблицы является диэлектриком, его проводимость обеспечили за счёт включений из различных редкоземельных металлов. В зависимости от технологии изготовления существует несколько типов кремниевых фотоэлементов:

  • монокристаллические;
  • поликристаллические;
  • из аморфного Si.

Первые изготавливаются методом срезания тончайших слоёв от слитков кремния самой высокой степени очистки. Внешне фотоэлементы монокристаллического типа выглядят как однотонные тёмно-синие стеклянные пластины с выраженной электродной сеткой. Их КПД достигает 19%, а срок службы составляет до 50 лет. И хоть производительность изготовленных на основе монокристаллов панелей постепенно падает, есть данные, что изготовленные более 40 лет назад батареи и сегодня сохраняют работоспособность, выдавая до 80% своей первоначальной мощности.

Монокристаллические солнечные ячейки имеют однородный тёмный цвет и срезанные углы — эти признаки не позволяют спутать их с другими фотоэлементами

В производстве поликристаллических фотоэлементов используют не такой чистый, но зато более дешёвый кремний. Упрощение технологии сказывается на внешнем виде пластин — они имеют не однородный оттенок, а более светлый узор, который образуют границы множества кристаллов. КПД таких солнечных ячеек немного ниже, чем у монокристаллических — не более 15%, а срок службы составляет до 25 лет. Надо сказать, что снижение основных эксплуатационных показателей абсолютно не сказалось на популярности поликристаллических фотоэлементов. Они выигрывают за счёт более низкой цены и не такой сильной зависимости от внешней загрязнённости, низкой облачности и ориентации на Солнце.

Поликристаллические фотоэлементы имеют более светлый синий оттенок и неоднородный рисунок — следствие того, что их структура состоит из множества кристаллов

Для солнечных батарей из аморфного Si используется не кристаллическая структура, а тончайший слой кремния, который напыляют на стекло или полимер. Хоть подобный метод производства и является самым дешёвым, такие панели имеют самый короткий срок жизни, причиной чему является выгорание и деградация аморфного слоя на солнце. Не радует этот тип фотоэлементов и производительностью — их КПД составляет не более 9% и во время эксплуатации существенно снижается. Использование солнечных батарей из аморфного кремния оправдано в пустынях — высокая солнечная активность нивелирует падение производительности, а бескрайние просторы позволяют размещать гелиоэлекростанции любой площади.

Возможность напылять кремниевую структуру на любую поверхность позволяет создавать гибкие солнечные панели

Дальнейшее развитие технологии производства фотоэлектрических элементов вызвано необходимостью в снижении цены и улучшении эксплуатационных характеристик. Максимальной производительностью и долговечностью сегодня обладают плёночные фотоэлементы:

  • на основе теллурида кадмия;
  • из тонких полимеров;
  • с использованием индия и селенида меди.

О возможности применения в самодельных устройствах тонкоплёночных фотоэлементов говорить пока ещё рано. Сегодня их выпуском занимается только несколько наиболее «продвинутых» в технологическом плане компаний, поэтому чаще всего гибкие фотоэлементы можно увидеть в составе готовых солнечных панелей.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью — найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные — из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы — как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Продавцы нередко предлагают фотоэлементы так называемого класса «B», которые представляют собой повреждённые солнечные батареи моно- или поликристаллического типа. Небольшие сколы, трещины или отсутствие уголков практически не сказывается на производительности ячеек, зато позволяет приобрести их по гораздо меньшей стоимости. Именно по этой причине их выгоднее всего использовать в самодельных гелиоэнергетических устройствах.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

На какую мощность солнечных батарей можно рассчитывать

Задумываясь о строительстве собственной солнечной электростанции, каждый мечтает о том, чтобы полностью отказаться от проводного электричества. Для того чтобы проанализировать реальность этой затеи, сделаем небольшие расчёты.

Узнать суточное потребление электроэнергии несложно. Для этого достаточно заглянуть в присланный энергосбывающей организацией счёт и разделить количество указанных там киловатт на число дней в месяце. К примеру, если вам предлагают оплатить 330 кВт×час, то это значит, что суточное потребление составляет 330/30=11 кВт×час.

График зависимости мощности солнечной батареи в зависимости от освещённости

В расчётах следует обязательно учитывать тот факт, что солнечная панель будет вырабатывать электричество только в светлое время суток, причём до 70% генерации осуществляется в период с 9 до 16 часов. Кроме того, эффективность работы устройства напрямую зависит от угла падения солнечных лучей и состояния атмосферы.

Небольшая облачность или дымка снизят эффективность токоотдачи гелиоустановки в 2–3 раза, тогда как затянутое сплошными облаками небо спровоцирует падение производительности в 15–20 раз. В идеальных условиях для генерации 11 кВт×час энергии было бы достаточно солнечной батареи мощностью 11/7 = 1.6 кВт. Учитывая влияние природных факторов, этот параметр следует увеличить примерно на 40–50%.

Кроме того, есть ещё один фактор, заставляющий увеличить площадь используемых фотоэлементов. Во-первых, не следует забывать о том, что ночью батарея работать не будет, а значит, понадобятся мощные аккумуляторы. Во-вторых, для питания бытовых приборов нужен ток напряжением 220 В, поэтому понадобится мощный преобразователь напряжения (инвертор). Специалисты утверждают, что потери на накопление и трансформацию электроэнергии забирают до 20–30% от её общего количества. Поэтому реальная мощность солнечной батареи должна быть увеличена на 60–80% от расчётной величины. Принимая значение неэффективности в 70%, получаем номинальную мощность нашей гелиопанели, равную 1.6 + (1.6×0.7) =2.7 кВт.

Использование сборок из высокотоковых литиевых аккумуляторов является одним из наиболее изящных, но отнюдь не самым дешёвым способом хранения солнечной электроэнергии

Для хранения электроэнергии понадобятся низковольтные аккумуляторы, рассчитанные на напряжение 12, 24 или 48 В. Их ёмкость должна быть рассчитана на суточное потребление энергии плюс потери на трансформацию и преобразование. В нашем случае понадобится массив батарей, рассчитанных на хранение 11 + (11×0.3) = 14.3 кВт×час энергии. Если использовать обычные 12-вольтовые автомобильные аккумуляторы, то понадобится сборка на 14300 Вт×ч / 12 В = 1200 А×ч, то есть шесть аккумуляторов, рассчитанных на 200 ампер-часов каждый.

Как видите, даже для того, чтобы обеспечить электричеством бытовые потребности средней семьи, понадобится серьёзная гелиоэлектрическая установка. Что касается использования самодельных солнечных батарей для отопления, то на данном этапе такая затея не выйдет даже на границы самоокупаемости, не говоря уж о том, чтобы можно было что-то сэкономить.

Расчёт размера батареи

Размер батареи зависит от требуемой мощности и габаритов источников тока. При выборе последних вы обязательно обратите внимание на предлагаемое разнообразие фотоэлементов. Для использования в самодельных устройствах удобнее всего выбирать солнечные ячейки среднего размера. Например, рассчитанные на выходное напряжение 0.5 В и силу тока до 3 А поликристаллические панели размером 3×6 дюймов.

При изготовлении солнечной батареи они будут последовательно соединяться в блоки по 30 шт, что позволит получить требуемое для зарядки автомобильной батареи напряжение 13–14 В (учитывая потери). Максимальная мощность одного такого блока составляет 15 В × 3 А = 45 Вт. Исходя из этого значения, будет нетрудно подсчитать, сколько элементов понадобится для постройки солнечной панели заданной мощности и определить её размеры. Например, для постройки 180-ваттного солнечного электрического коллектора понадобится 120 фотоэлементов общей площадью 2160 кв. дюймов (1.4 кв.м).

Постройка самодельной солнечной батареи

Прежде чем приступать к изготовлению солнечной панели, следует решить задачи по её размещению, рассчитать габариты и подготовить необходимые материалы и инструмент.

Правильный выбор места установки — это важно

Поскольку солнечная панель будет изготавливаться своими руками, соотношение её сторон может быть любым. Это очень удобно, поскольку самодельное устройство можно более удачно вписать в экстерьер кровли или дизайн загородного участка. По этой же причине выбирать место для монтажа батареи следует ещё до начала проектировочных мероприятий, не забывая учитывать несколько факторов:

  • открытость места для солнечных лучей в течение светового дня;
  • отсутствие затеняющих построек и высоких деревьев;
  • минимальное расстояние до помещения, в котором установлены аккумулирующие мощности и преобразователи.

Конечно, установленная на крыше батарея выглядит более органично, однако размещение устройства на земле имеет больше преимуществ. В этом случае исключается возможность повреждения кровельных материалов при установке поддерживающего каркаса, снижается трудоёмкость монтажа устройства и появляется возможность своевременного изменения «угла атаки солнечных лучей». И что самое главное — при нижнем размещении будет намного проще поддерживать чистоту поверхности солнечной панели. А это является залогом того, что установка будет работать в полную силу.

Монтаж солнечной панели на крыше вызвана скорее нехваткой места, чем необходимостью или удобством эксплуатации

Что понадобится в процессе работы

Приступая к изготовлению самодельной солнечной панели, следует запастись:

  • фотоэлементами;
  • многожильным медным проводом или специальными шинами для соединения солнечных ячеек;
  • припоем;
  • диодами Шоттки, рассчитанными на токоотдачу одного фотоэлемента;
  • качественным антибликовым стеклом или плексигласом;
  • рейками и фанерой для изготовления каркаса;
  • силиконовым герметиком;
  • метизами;
  • краской и защитным составом для обработки деревянных поверхностей.

В работе понадобится самый простой инструмент, который всегда есть под рукой у домовитого хозяина — паяльник, стеклорез, пила, отвёртка, малярная кисть и др.

Инструкция по изготовлению

Для изготовления первой солнечной батареи лучше всего использовать фотоэлементы с уже припаянными выводами — в этом случае уменьшается риск повреждения ячеек при сборке. Тем не менее, если вы имеете навыки обращения с паяльником, то сможете немного сэкономить, купив солнечные элементы с нераспаянными контактами. Для постройки панели, которую мы рассматривали в приведённых выше примерах, понадобится 120 пластин. Используя соотношение сторон примерно 1:1, потребуется укладка 15 рядов фотоэлементов по 8 штук в каждом. При этом мы сможем каждые два «столбика» соединить последовательно, а четыре таких блока подключить параллельно. Таким образом можно избежать путаницы в проводах и получить ровный, красивый монтаж.

Схема электрических соединений домашней солнечной электростанции

Корпус

Сборку солнечной панели всегда следует начинать с изготовления корпуса. Для этого нам понадобятся алюминиевые уголки или деревянные рейки высотой не более 25 мм — в этом случае они не будут бросать тень на крайние ряды фотоэлементов. Исходя из размеров наших кремниевых ячеек размером 3х6 дюймов (7.62х15.24 см), размер рамы должен составлять не менее 125х 125 см. Если вы решите использовать другое соотношение сторон (например, 1:2), то каркас можно дополнительно усилить поперечиной из рейки такого же сечения.

Обратную сторону корпуса следует зашить панелью из фанеры или OSB, а в нижнем торце рамы просверлить вентиляционные отверстия. Соединение внутренней полости панели с атмосферой понадобится для выравнивания влажности — в противном случае не избежать запотевания стёкол.

Для изготовления корпуса солнечной панели подойдут самые простые материалы — деревянные рейки и фанера

По внешнему размеру каркаса вырезают панель из плексигласа или высококачественного стекла высокой степени прозрачности. В крайнем случае можно использовать оконное стекло толщиной до 4 мм. Для его крепления подготавливают уголковые кронштейны, в которых выполняют сверления для крепления к раме. При использовании оргстекла можно проделать отверстия непосредственно в прозрачной панели — это упростит сборку.

Чтобы защитить деревянный корпус солнечной батареи от влаги и грибка, его пропитывают антибактериальным составом и окрашивают масляной краской.

Для удобства сборки электрической части, из ДВП или другого диэлектрического материала вырезают подложку по внутреннему размеру рамы. В дальнейшем на ней будет выполняться монтаж фотоэлементов.

Пайка пластин

Перед тем как начать пайку, следует «прикинуть» укладку фотоэлементов. В нашем случае понадобится 4 массива ячеек по 30 пластин в каждом, причём располагаться в корпусе они будут пятнадцатью рядами. С такой длинной цепочкой будет неудобно работать, к тому же возрастает риск повреждения хрупких стеклянных пластин. Рационально будет соединять по 5 деталей, а окончательную сборку выполнять после того, как фотоэлементы будут смонтированы на подложке.

Для удобства, фотоэлементы можно смонтировать на непроводящей подложкке из текстолита, оргстекла или ДВП

После соединения каждой цепочки, следует проверить её работоспособность. Для этого каждую сборку помещают под настольную лампу. Записывая значения силы тока и напряжения, можно не только контролировать работоспособность модулей, но и сравнивать их параметры.

Для пайки используем маломощный паяльник (максимум 40 Вт) и хороший, легкоплавкий припой. Его в небольшом количестве наносим на выводные части пластин, после чего, соблюдая полярность подключения, соединяем детали друг с другом.

При пайке фотоэлементов следует проявлять максимальную аккуратность, поскольку эти детали отличаются повышенной хрупкостью

Собрав отдельные цепочки, разворачиваем их тыльной частью к подложке и при помощи силиконового герметика приклеиваем к поверхности. Каждый 15-вольтовый блок фотоэлементов снабжаем диодом Шоттки. Этот прибор позволяет току протекать только в одном направлении, поэтому не позволит аккумуляторам разряжаться при низком напряжении солнечной панели.

Окончательное соединение отдельных цепочек фотоэлементов выполняют согласно представленной выше электрической схеме. В этих целях можно использовать специальную шину или многожильный медный провод.

Навесные элементы солнечной батареи следует закрепить термоклеем или саморезами

Сборка панели

Подложки с расположенными на них фотоэлементами укладывают в корпус и крепят саморезами. Если рама усиливалась поперечиной, то в ней выполняют несколько сверлений под монтажные провода. Кабель, который выводят наружу, надёжно фиксируют на раме и припаивают к выводам сборки. Чтобы не путаться с полярностью, лучше всего использовать двухцветные провода, подключая красный вывод к «плюсу» батареи, а синий — к её «минусу». По верхнему контуру рамы наносят сплошной слой силиконового герметика, поверх которого укладывают стекло. После окончательной фиксации сборку солнечной батареи считают законченной.

После того, как на герметик будет установлено защитное стекло, панель можно транспортировать к месту установки

Установка и подключение солнечной батареи к потребителям

В силу ряда причин самодельная солнечная панель является достаточно хрупким устройством, поэтому требует обустройства надёжного поддерживающего каркаса. Идеальным вариантом будет конструкция, которая позволит ориентировать источник бесплатной электроэнергии в обеих плоскостях, однако сложность такой системы чаще всего является весомым доводом в пользу простой наклонной системы. Она представляет собой подвижную раму, которую можно выставить под любым углом к светилу. Один из вариантов каркаса, сбитого из деревянного бруса, представлен ниже. Вы же можете использовать для его изготовления металлические уголки, трубы, шины и т. д. – всё, что есть под руками.

Чертёж каркаса солнечной батареи

Чтобы подключить солнечную батарею к аккумуляторам, понадобится контроллер заряда. Этот прибор будет следить за степенью заряда и разряда батарей, контролировать токоотдачу и выполнять переключение на сетевое питание при значительной просадке напряжения. Прибор необходимой мощности и требуемого функционала можно купить в тех же торговых точках, где продаются фотоэлементы. Что касается питания бытовых потребителей, то для этого потребуется трансформировать низковольтное напряжение в 220 В. С этим успешно справляется другое устройство — инвертор. Надо сказать, что отечественная промышленность выпускает надёжные приборы с хорошими ТТХ, поэтому преобразователь можно купить на месте — бонусом в этом случае будет «настоящая» гарантия.

Одной солнечной батареи для полноценного электроснабжения дома будет недостаточно — понадобятся еще и аккумуляторы, контроллер заряда и инвертор

В продаже можно найти инверторы одной и той же мощности, отличающиеся по цене в разы. Подобный разброс объясняется «чистотой» выходного напряжения, что является необходимым условием питания отдельных электрических устройств. Преобразователи с так называемой чистой синусоидой имеют усложнённую конструкцию, и как следствие, более высокую стоимость.

Видео: изготовление солнечной панели своими руками

Постройка домашней солнечной электростанции является нетривиальной задачей и требует как финансовых и временных затрат, так и минимальных знаний основ электротехники. Приступая к сборке солнечной панели, следует соблюдать максимальное внимание и аккуратность — только в этом случае можно рассчитывать на удачное решение вопроса. Напоследок хотелось бы напомнить о том, что загрязнение стекла является одним из факторов падения производительности. Не забывайте своевременно чистить поверхность солнечной панели, иначе она не сможет работать на полную мощность.

How-to: новая книга «Солнечная энергия своими руками» дает вам в руки солнечную энергию [бесплатная глава]

[Примечание редактора: это гостевой пост Мики Толл, который делает фантастические инструкции по сборке электровелосипеда/аккумулятора на YouTube, 2 книги и только что выпустил свою последнюю книгу « DIY Solar Power ». Он дает читателям Electrek главу 6 своей книги DIY Solar БЕСПЛАТНО и сбивает 50 % с мягкой обложки и 90 % с версии для Kindle]. строить все, от электромобилей до гаджетов на солнечной энергии. Несмотря на то, что существует множество замечательных продуктов, я твердо верю в принцип «зачем покупать то, что можно сделать».

Одним из самых больших препятствий для изучения этих навыков всегда был поиск хорошей информации. Интернет полон разрозненных журналов проектов и руководств разного качества, но часто информация, которую я мог найти, была либо слишком широкой, чтобы быть полезной, либо слишком специфичной для проекта, чтобы ее можно было применить к тому, что я пытался создать. Все это делало обучение трудным процессом.

Это привело меня к тому, что я сам стал чем-то вроде педагога. Сосредоточившись на своих различных специальностях, я поместил свой многолетний опыт работы с электрическими велосипедами на заказ и литиевыми батареями DIY в бесплатные веб-сайты и видеоролики, а также написал несколько книг-бестселлеров Amazon № 1 по этим предметам. Моя цель состояла в том, чтобы использовать многолетний опыт и знания, через которые я прошел, и обработать эту информацию в формате, который будет максимально полезен для других, пытающихся следовать тому же пути «сделай сам».

Это привело меня к публикации моей последней книги, которую я с гордостью объявляю здесь, на Electrek, книге о том, как использовать энергию солнца различными способами как для малых, так и для больших проектов. Моя новая книга DIY Solar Power, является кульминацией многолетней работы и опыта работы с электроникой, батареями и, конечно же, солнечной энергией.

Я написал книгу с учетом потребностей разных аудиторий, в том числе тех, кто только начинает входить в мир солнечной энергетики, и тех, кто уже имеет некоторый предыдущий опыт, но желает более глубокого понимания предмета, чтобы применить его к своей текущей деятельности. проекты.

Есть так много интересных и полезных способов использовать солнечную энергию в своих гаджетах, и я рассмотрел все возможные способы в своей книге. Книга начинается с обзора солнечной энергии и фотогальванических элементов, того, как они работают и как их можно соединить в более крупные системы с другими необходимыми компонентами. Затем книга переходит к аккумуляторным батареям и различным вариантам, доступным как на коммерческой основе, так и для домашних мастеров. Далее в нем более подробно рассматривается процесс проектирования и установки различных типов самодельных солнечных проектов, от небольших настольных проектов, таких как зарядные устройства для устройств, до автономной и сетевой солнечной энергии для дома и даже солнечной энергии для автомобилей.

как RV и EVs.

Если вы хотите почувствовать, насколько просто начать создавать свои собственные солнечные проекты своими руками, ознакомьтесь с этой бесплатной главой из моей книги, доступной исключительно на Electrek. И если вы хотите приобрести собственную копию книги, она доступна на Amazon со скидкой 50 % на книгу в мягкой обложке и со скидкой 90 % на версию для Kindle в течение следующих нескольких дней.

Я надеюсь, что вам понравится бесплатная глава моей книги, и что она окажется познавательной и полезной, поскольку поможет вам разобраться в сложностях создания различных проектов, работающих на солнечной энергии.

Ниже вы найдете примеры некоторых диаграмм в книге, которые начинаются с простых систем и постепенно переходят к более крупным и сложным солнечным установкам.

 

Выше приведен пример простой автономной солнечной установки постоянного тока.

Ниже приведен пример более крупной и детализированной гибридной автономной солнечной системы переменного и постоянного тока.

FTC: Мы используем автоматические партнерские ссылки, приносящие доход. Подробнее.


Подпишитесь на Electrek на YouTube, чтобы получать эксклюзивные видео и подписывайтесь на подкасты.

Будьте в курсе последних новостей, подписавшись на Electrek в Новостях Google. Вы читаете Electrek — экспертов, которые день за днем ​​сообщают новости о Tesla, электромобилях и экологически чистой энергии. Обязательно заходите на нашу домашнюю страницу, чтобы быть в курсе всех последних новостей, и подписывайтесь на Electrek в Twitter, Facebook и LinkedIn, чтобы оставаться в курсе событий. Не знаете, с чего начать? Посетите наш канал YouTube, чтобы быть в курсе последних обзоров.

Солнечное USB-зарядное устройство своими руками: 7 шагов (с фотографиями)

Недавно я сделал самодельное солнечное USB-зарядное устройство, которое, на мой взгляд, НАМНОГО лучше, чем большинство других конструкций.

Портативный. Это выглядит хорошо. И он может заряжать ваш телефон и USB-устройства быстрее, чем простая струйка, производимая большинством других самодельных солнечных зарядных устройств.

Правильно — это самодельное зарядное устройство на солнечных батареях, которое вы будете использовать на самом деле .

Лучшая часть?

Доступен и прост в приготовлении.

Вот как это сделать.

Материалы и инструменты

Материалы

  • 2 солнечные панели 3 Вт 9 В
  • многожильный провод 22 калибра
  • понижающий преобразователь постоянного тока 5 В
  • клей E6000 для рукоделия )
  • Постоянный продукт для многоразового продукта
  • Трубки с теплоусадой (опционально)
  • 4 1/4 ″ Eyelets (необязательно)

Инструменты

  • Стрипперы
  • Soldering Ironering Ironering
  • Scissors
  • Sploreering Ironering Ironering
  • Scissors
  • Sploring Ironering Ironering
  • Sciss Nas
  • Молоток (дополнительно) вырежьте полоску ткани, к которой я прикрепила панели. Он защищает их и позволяет складывать для удобства хранения.

    Поместите панели, проушины (если используете) и понижающий преобразователь постоянного тока в многоразовый пакет для продуктов в желаемом порядке.

    Совет: Я рекомендую оставлять между солнечными панелями расстояние не менее 1 дюйма, чтобы их можно было легко сложить. Я также придала себе длину больше, чем нужно, чтобы можно было сложить ткань поверх конвертера, как вы увидите в шаге 6.

    Отрежьте ножницами ткань до нужных размеров. (У меня получилось около 14 дюймов в длину и 8,25 дюймов в ширину.)

    Шаг 2. Соедините солнечные панели параллельно

    Отрежьте отрезок провода, чтобы соединить положительные клеммы панелей. Ослабьте проволоку, чтобы она не натягивалась при складывании панелей.

    Примечание: Поскольку мои панели имеют две пары клемм сзади, перед подключением я использовал мультиметр для проверки их напряжений. Оказалось, что клеммы, выдающие 9 вольт, — это две «верхние» клеммы, а не клеммы со знаками «+» и «-». Странный.

    Зачистите и припаяйте провод от плюсовой клеммы к плюсовой клемме. (Я решил ориентировать свои панели в противоположных направлениях, чтобы уменьшить нагрузку на проволоку, когда панели складываются.)

    Совет: Держите места пайки как можно ближе к солнечным панелям. Это поможет в дальнейшем при приклеивании их к ткани.

    Отрежьте отрезок провода для соединения отрицательных клемм панелей. Еще раз дайте себе слабину.

    Зачистите и припаяйте провод от отрицательной клеммы к отрицательной клемме.

    Шаг 3. Припаяйте выводы к панелям

    Отрежьте отрезок провода для положительного вывода панелей. Он соединит положительный вывод одной из панелей с положительным выводом понижающего преобразователя. Убедитесь, что он может достигать того места, где вы хотите разместить преобразователь. Не забывайте немного слабины!

    Зачистите и припаяйте положительный провод к одной из положительных клемм панели.

    Отрежьте отрезок провода для отрицательного вывода панелей.

    Зачистите и припаяйте отрицательный провод к одной из отрицательных клемм панели.

    Теперь давайте проверим выходное напряжение и силу тока панелей с помощью мультиметра, чтобы убедиться, что мы все правильно подключили! Подсоедините положительный щуп мультиметра к положительному проводу, а его отрицательный щуп к отрицательному проводу.

    Какие результаты следует ожидать?

    Ну, вот характеристики панелей, которые я использовал:

    • 3 Вт
    • 9 В
    • 333 мА

    Параллельное подключение солнечных панелей добавляет ток (ампер) вместе, сохраняя при этом напряжение (вольты) одинаковым.

    Таким образом, для вольт вы должны увидеть число около 9 В постоянного тока.

    Почти 10 В постоянного тока. Идеальный!

    Для ампер вы должны увидеть число около 666 мА (333 мА * 2). Но в реальных условиях ожидайте, что солнечные панели будут выдавать немного меньше заявленного тока.

    Совет: Вам, вероятно, придется переключить красный щуп на другой порт мультиметра, чтобы измерить эту величину тока.

    557 мА. Проверять!

    Шаг 4. Припаяйте понижающий преобразователь к выводам

    Найдите положительный и отрицательный выводы на понижающем преобразователе.

    Припаяйте положительный вывод к положительному выводу преобразователя, а отрицательный вывод — к его отрицательному выводу.

    Теперь у вас должно быть работающее солнечное зарядное устройство!

    Время проверить, работает ли он.

    Сначала убедитесь, что понижающий преобразователь правильно подключен и работает, посветив на панели. Его светодиод должен загореться.

    Светодиод горит. Похоже, это работает. ✅

    Затем проверьте зарядное устройство, поместив его на улицу под прямые солнечные лучи и подключив к нему телефон или USB-устройство. Ваше устройство должно начать заряжаться.

    Индикатор зарядки моего Kindle загорается, когда я подключаю его — зарядное устройство работает!

    Я проверил выход зарядного устройства с помощью USB-метра, чтобы убедиться, что зарядное устройство действительно выдает приличный ток при напряжении 5 В.

    Выдает 460 мА (около 0,5 А) при 5 В. Это около 2,5 Вт, или половина мощности стандартного зарядного устройства для телефона на 5 Вт. (Во время реального использования он регулярно повышался до 3 Вт.)

    Согласно нашему калькулятору солнечной зарядки, для полной зарядки моего iPhone XR потребуется около 5,7 пиковых солнечных часов.

    Определенно не самое быстрое солнечное зарядное устройство, но в крайнем случае зарядит мой аккумулятор.

    Дополнительно: Оберните конвертор термоусадкой с помощью термоусадочной трубки и фена. Я сделал это для эстетики и немного для защиты печатной платы. Он закрывает светодиод преобразователя, но для меня это не имело большого значения.

    Шаг 5: Приклейте зарядное устройство к ткани

    Возьмите клей и полоску ткани, которую вы обрезали на шаге 1. Приклейте панели и конвертер к ткани в желаемом порядке.

    Совет: Клей, который я использовал, немного просачивался через ткань, так что вы можете сначала положить кусок газеты.

    Подождите, пока клей схватится. Как только это будет сделано, подправьте все места, которые вы пропустили, если это необходимо.

    Шаг 6. Установите проушины (дополнительно)

    Поскольку я буду использовать зарядное устройство во время пеших и велосипедных прогулок, я хотел установить проушины, чтобы пристегнуть его к рюкзаку и велосипеду. Если вам не нужно ни к чему прикреплять зарядное устройство, вы можете пропустить этот шаг.

    Сначала установим две проушины «снизу» — стороне, противоположной понижающему преобразователю.

    Вырежьте круг из ткани, используя петельку в качестве направляющей. Проденьте нижнюю часть ушка через отверстие.

    Подсказка: Так как я использовал такие маленькие глазки, я просто вырезал ножницами небольшой крестик. Вы также можете сделать отверстие, проткнув его гвоздем.

    Поместите инструмент для основания проушины под нижнюю часть проушины. Поместите верхнюю часть люверса поверх ткани.

    Поместите пробойник на верхнюю часть ушка. Ударьте перфоратором, чтобы установить проушину.

    Повторите эти шаги для установки второй нижней проушины.

    Теперь пришло время для верхних проушин — тех, что на той же стороне, что и понижающий преобразователь.

    Чтобы защитить преобразователь, я решил сложить поверх него лишнюю ткань и прорезать отверстие для USB-порта. (Если вы не хотите этого делать, просто установите верхние люверсы так же, как и нижние.)

    Затем я проделала верхние люверсы через оба слоя ткани, склеила клапаны вместе и приклеила порт USB к ткань.

    Примечание: Не закрывайте солнечную панель!

    Подождите, пока клей схватится, и готово!

    Шаг 7. Проверьте самодельное солнечное зарядное устройство

    Теперь, когда вы сделали свое собственное зарядное устройство на солнечной энергии, пришло время зарядить что-нибудь с его помощью!

    Поместите его на улицу под прямые солнечные лучи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *