Генератор электричества своими руками: Самодельные генераторы на физических принципах

Содержание

Устройство и принцип работы автомобильного генератора: проверка неисправностей своими руками

Генератор автомобиля — это устройство, которое служит для выработки электричества путем преобразования механической энергии, передаваемой от мотора в электрическую. Полученная таким путем электроэнергия поступает в энергосистему автомобиля и используется для запитки управляющей электроники и других бортовых систем, зарядки аккумулятора.

Основные узлы генератора и принцип работы

Во всех современных автомобилях используются устройства переменного тока. В старых моделях, например, ГАЗ-51, можно встретить генераторы постоянного электричества. Но в современных машинах от них полностью отказались, так как они отличаются низким КПД и требуют частого обслуживания.

Принцип работы и устройство автомобильного генератора напрямую связаны. Агрегат состоит из таких узлов, размещенных в едином корпусе:

- Привод. Это обычная ременная передача, через нее крутящий момент от мотора передается на шкив устройства вращающий ротор.

- Ротор. Представляет собой вал, на котором закреплены обмотки, размещенные между двух сердечников. Является обычным электромагнитом, при его вращении в статоре возникает переменный электроток. В конструкцию ротора входят и вентилятор, который вращается вместе с ним и служит для охлаждения узла.

- Статор. Выполняется в форме кольца, состоит из сердечника и обмотки. В зависимости от конструкции могут использоваться разные типы соединения обмоток, например, «звезда» либо «треугольник».

- Диодный мост. Служит для преобразования переменного тока в постоянный, который затем поступает в бортовую электросеть. Все электроприборы в машине запитываются именно постоянным электричеством, поэтому это обязательная деталь.

- Регулятор напряжения. Нужен, чтобы удерживать создаваемое агрегатом напряжение в заданных пределах, независимо от скорости вращения ротора.

Принцип работы изделия достаточно прост. После включения зажигания на обмотку ротора поступает ток от аккумулятора. Одновременно крутящий момент, поступающий по ременной передаче от двигателя, запускает вращение ротора, что приводит к генерации переменного электричества в обмотках статора. После достижения определенной частоты вращения, генератор начинает запитывать обмотку самостоятельно.

Затем энергия проходит через диодный мост, в котором происходит «выпрямление», то есть преобразование ее в постоянный электроток, именно он и поступает в энергосистему автомобиля.

Признаки неисправности автомобильного генератора

Неисправности автомобильного генератора можно разделить на две большие категории:

1. Механические.

2. Электрические.

К основным признакам неполадок (независимо от причины их возникновения) относят:

- Сложности с пуском двигателя. Неисправность генератора в первую очередь ведет к недостаточной зарядке аккумулятора. В результате возникают проблемы с зажиганием, вплоть до полной невозможности запустить движок.

- Тусклый свет либо мерцание фар. Это проявление неполадок в работе бортовой электропроводки либо неисправности генератора.

- Включение сигнальной пиктограммы на приборной панели. В современных автомобилях электронная система управления может самостоятельно оценить параметры работы генератора и других узлов. При возникновении неполадок на приборной панели отображается соответствующая пиктограмма.

- Свист приводного ремня. Обычно возникает после достаточного прогрева двигателя. Звук появляется в результате ослабления натяжения ремня, свидетельствует о его износе и скором обрыве.

Нередко можно услышать специфические паразитные звуки из-под капота. Он может напоминать звон, шуршание либо электрический гул. Эти звуки могут возникать в результате выхода из строя подшипников либо короткого замыкания в генераторе.

Как проверить автомобильный генератор своими руками

Хотя устройство этого узла не слишком сложное, как проверить работу генератора своими руками знают далеко не все. Для решения этой задачи достаточно будет обычного вольтметра со шкалой от 0 до 15 В.

Перед проверкой нужно запустить двигатель на средних оборотах и дать проработать 15-20 минут. После этого можно приступать к проверке при помощи измерительного прибора. Между «массой» и выводами «30» напряжение в норме составляет от 13,5 до 14,6 В. Чтобы проверить диодный мост, точки подключения нужно использовать те же, но переключить его в режим замера переменного тока. Он не должен превышать 0,5 В.

Отклонение значений от этих показателей при проверке свидетельствует о том, что генератор поврежден и нуждается в замене либо ремонте. Выяснить, какая именно деталь вышла из строя, без специальных знаний и приборов в домашних условиях будет сложно. Поэтому при появлении признаков неисправности лучше сразу обратиться за помощью к квалифицированным специалистам.

Как сделать вертикальный ветрогенератор на 220В для дома своими руками

Электроэнергия неуклонно дорожает. Чтобы чувствовать себя комфортно за городом в жаркую летнюю погоду и морозным зимним днем, необходимо или основательно потратиться, или заняться поиском альтернативных источников энергии. Россия – огромная по площади страна, имеющая большие равнинные территории. Хотя в большинстве регионов у нас преобладают медленные ветры, малообжитая местность обдувается мощными и буйными воздушными потоками. Поэтому присутствие ветрогенератора в хозяйстве владельца загородной недвижимости чаще всего оправдано. Подходящую модель выбирают, исходя из местности применения и фактических целей использования.

Ветряк #1 — конструкция роторного типа

Можно сделать своими руками несложный ветряк роторного типа. Конечно, снабдить электроэнергией большой коттедж ему вряд ли будет под силу, зато обеспечить электричеством скромный садовый домик вполне под силу. С его помощью можно снабдить светом в вечернее время суток хозяйственные постройки, осветить садовые дорожки и придомовую территорию.

Подробнее о других видах альтернативных источников энергии можно прочитать в данной статье: https://aqua-rmnt.com/otoplenie/alt_otoplenie/alternativnye-istochniki-energii.html

Так или почти так выглядит роторный ветрогенератор, сделанный своими руками. Как видите, в конструкции этого оборудования нет ничего сверхсложного

Подготовка деталей и расходников

Чтобы собрать ветрогенератор, мощность которого не будет превышать 1,5 КВт, нам понадобятся:

  • генератор от автомобиля 12 V;
  • кислотный или гелиевый аккумулятор 12 V;
  • преобразователь 12V – 220V на 700 W – 1500 W;
  • большая ёмкость из алюминия или нержавеющей стали: ведро или объёмистая кастрюля;
  • автомобильное реле зарядки аккумулятора и контрольной лампы заряда;
  • полугерметичный выключатель типа «кнопка» на 12 V;
  • вольтметр от любого ненужного измерительного устройства, можно автомобильный;
  • болты с шайбами и гайками;
  • провода сечением 2,5 мм2 и 4 мм2;
  • два хомута, которыми генератор будет крепиться к мачте.

Для выполнения работы нам будут нужны ножницы по металлу или болгарка, рулетка, маркер или строительный карандаш, отвертка, ключи, дрель, сверло, кусачки.

Большинство владельцев частных домов не признают использование геотермального отопления, однако подобная система имеет перспективы. Подробнее о преимуществах и недостатках данного комплекса можно прочитать в следующем материале: https://aqua-rmnt.com/otoplenie/alt_otoplenie/geotermalnoe-otoplenie-doma-svoimi-rukami.html

Ход конструкторских работ

Мы собираемся изготовить ротор и переделать шкив генератора. Для начала работы нам понадобится металлическая ёмкость цилиндрической формы. Чаще всего для этих целей приспосабливают кастрюлю или ведро. Возьмем рулетку и маркер или строительный карандаш и поделим ёмкость на четыре равные части. Если будем резать металл ножницами, то, чтобы их вставить, нужно сначала сделать отверстия. Можно воспользоваться и болгаркой, если ведро не выполнено из крашеной жести или оцинкованной стали. В этих случаях металл неминуемо перегреется. Вырезаем лопасти, не прорезая их до конца.

Чтобы не ошибиться с размерами лопастей, которые мы прорезаем в ёмкости, необходимо сделать тщательные замеры и тщательно всё пересчитать

В днище и в шкиве размечаем и высверливаем отверстия для болтов. На этой стадии важно не торопиться и расположить отверстия с соблюдением симметрии, чтобы при вращении избежать дисбаланса. Лопасти следует отогнуть, но не слишком сильно. При выполнении этой части работы учитываем направление вращения генератора. Обычно он крутится по движению часовой стрелке. В зависимости от угла изгиба увеличивается и площадь воздействия потоков ветра, а, значит, и скорость вращения.

Это ещё один из вариантов лопастей. В данном случае каждая деталь существует отдельно, а не в составе ёмкости, из которой вырезалась

Раз каждая из лопастей ветряка существует отдельно, прикручивать нужно каждую. Преимущество такой конструкции в её повышенной ремонтопригодности

Ведро с готовыми лопастями следует закрепить на шкиве, используя болты. На мачту при помощи хомутов устанавливаем генератор, затем подсоединяем провода и собираем цепь. Схему, цвета проводов и маркировку контактов лучше заранее переписать. Провода тоже нужно зафиксировать на мачте.

Чтобы подсоединить аккумулятор, используем провода 4 мм2, длина которых не должна быть более 1-го метра. Нагрузку (электроприборы и освещение) подключаем с помощью проводов сечением 2,5 мм2. Не забываем поставить преобразователь (инвертер). Его включают в сеть к контактам 7,8 проводом 4 мм2.

Конструкция ветряной установки состоит из резистора (1), обмотки стартера генератора (2), ротора генератора (3), регулятора напряжения (4), реле обратного тока (5), амперметра (6), аккумулятора (7), предохранителя (8), выключателя (9)

Достоинства и недостатки такой модели

Если всё сделано правильно, работать этот ветрогенератор будет, не создавая вам проблем. При аккумуляторе 75А и с преобразователем 1000 W он может питать уличное освещение, охранную сигнализацию, приборы видеонаблюдения и т.д.

Схема работы установки наглядно демонстрирует то, как именно энергия ветра преобразуется в электричество и то, как она используется по назначению

Достоинства такой модели очевидны: это весьма экономичное изделие, хорошо поддаётся ремонту, не требует особых условий для своего функционирования, работает надежно и не нарушает ваш акустический комфорт. К недостаткам можно отнести невысокую производительность и значительную зависимость от сильных порывов ветра: лопасти могут быть сорваны воздушными потоками.

Изготовить солнечную батарею возможно и самостоятельно. Пошаговая инструкция расположена здесь: https://aqua-rmnt.com/otoplenie/alt_otoplenie/solnechnaya-batareya-svoimi-rukami.html

Ветряк #2 — аксиальная конструкция на магнитах

Аксиальные ветряки с безжелезными статорами на неодимовых магнитах в России до последнего времени не делали по причине недоступности последних. Но теперь они есть и в нашей стране, причем стоят они дешевле, чем изначально. Поэтому и наши умельцы стали изготавливать ветрогенераторы этого типа.

Со временем, когда возможности роторного ветрогенератора уже не будут обеспечивать все потребности хозяйства, можно сделать аксиальную модель на неодимовых магнитах

Что необходимо подготовить?

За основу аксиального генератора нужно взять ступицу от автомобиля с тормозными дисками. Если эта деталь была в эксплуатации, её необходимо разобрать, подшипники поверить и смазать, ржавчину счистить. Готовый генератор будет покрашен.

Чтобы качественно отчистить ступицу от ржавчины, воспользуйтесь металлической щеткой, которую можно насадить на электродрель. Ступица снова будет выглядеть отлично

Распределение и закрепление магнитов

Нам предстоит наклеивать магниты на диски ротора. В данном случае используются 20 магнитов размером 25х8мм. Если вы решите сделать другое количество полюсов, то используйте правило: в однофазном генераторе должно быть сколько полюсов, столько и магнитов, а в трехфазном необходимо соблюдать соотношение 4/3 или 2/3 полюса к катушкам. Размещать магниты следует, чередуя полюса. Чтобы их расположение было правильным, используйте шаблон с секторами, нанесенными на бумаге или на самом диске.

Если есть такая возможность, магниты лучше использовать прямоугольные, а не круглые, потому что у круглых магнитное поле сосредоточено в центре, а у прямоугольных – по их длине. Противостоящие магниты должны иметь разные полюса. Чтобы ничего не перепутать, маркером нанесите на их поверхность «+» или «-». Для определения полюса возьмите один магнит и подносите к нему другие. На притягивающихся поверхностях ставьте плюс, а на отталкивающихся – минус. На дисках полюса должны чередоваться.

Магниты правильно размещены. Перед их фиксацией эпоксидной смолой, необходимо сделать бортики из пластилина, чтобы клейкая масса могла застыть, а не стекла на стол или пол

Для закрепления магнитов нужно использовать сильный клей, после чего прочность склейки дополнительно усиливают эпоксидной смолой. Ею заливают магниты. Чтобы предотвратить растекание смолы можно сделать бордюры из пластилина или просто обмотать диск скотчем.

Трехфазные и однофазные генераторы

Однофазный статор хуже трехфазного, потому что при нагрузке он даёт вибрацию. Это происходит из-за разницы в амплитуде тока, которая возникает по причине непостоянной отдачи его за момент времени. Трехфазная модель этим недостатком не страдает. Мощность в ней всегда постоянна, потому что фазы друг друга компенсируют: если в одной ток падает, а в другой он нарастает.

В споре однофазного и трехфазного вариантов последний выходит победителем, потому что дополнительная вибрация не продлевает срок службы оборудования и раздражает слух

В результате отдача трехфазной модели на 50% превышает тот же показатель однофазной. Другим плюсом отсутствия ненужной вибрации является акустический комфорт при работе под нагрузкой: генератор не гудит во время его эксплуатации. Кроме того, вибрация всегда выводит ветрогенератор из строя до истечения срока его эксплуатации.

Процесс наматывания катушек

Любой специалист вам скажет, что перед наматыванием катушек нужно произвести тщательный расчет. А любой практик все сделает интуитивно. Наш генератор не будет слишком быстроходным. Нам нужно, чтобы процесс зарядки 12-вольтового аккумулятора начался при 100-150 оборотах в минуту. При таких исходных данных общее число витков во всех катушках должно составлять 1000-1200шт. Осталось разделить эту цифру на количество катушек и узнать, сколько витков будет в каждой.

Чтобы сделать ветрогенератор на низких оборотах мощнее, нужно увеличить число полюсов. При этом в катушках возрастет частота колебания тока. Для намотки катушек лучше использовать толстый провод. Это уменьшит сопротивление, а, значит, сила тока возрастет. Следует учесть, что при большом напряжении ток может оказаться «съеденным» сопротивлением обмотки. Простой самодельный станочек поможет быстро и аккуратно намотать качественные катушки.

Статор размечен, катушки уложены на свои места. Для их фиксации используется эпоксидная смола, стеканию которой снова противостоят пластилиновые бортики

Из-за числа и толщины магнитов, расположенных на дисках, генераторы могут значительно различаться по своим рабочим параметрам. Чтобы узнать, какую мощность ждать в результате, можно намотать одну катушку и прокрутить её в генераторе. Для определения будущей мощности, следует измерить напряжение на определенных оборотах без нагрузки.

Например, при 200 оборотах в минуту получается 30 вольт при сопротивлении 3 Ом. Отнимаем от 30 вольт напряжение аккумулятора в 12 вольт, а получившиеся 18 вольт делим на 3 Ом. Результат – 6 ампер. Это тот объём, который отправится на аккумулятор. Хотя практически, конечно, выходит меньше из-за потерь на диодном мосту и в проводах.

Чаще всего катушки делают круглыми, но лучше их чуть вытянуть. При этом меди в секторе получается больше, а витки катушек оказываются прямее. Диаметр внутреннего отверстия катушки должен соответствовать размеру магнита или быть немногим больше его.

Проводятся предварительные испытания получившегося оборудования, которые подтверждают его отличную работоспособность. Со временем и эту модель можно будет усовершенствовать

Делая статор, учтите, что его толщина должна соответствовать толще магнитов. Если число витков в катушках увеличить и сделать статор толще, междисковое пространство увеличится, а магнитопоток уменьшится. В результате может образоваться то же напряжение, но меньший ток из-за возросшего сопротивления катушек.

В качестве формы для статора используют фанеру, но можно на бумаге разметить сектора для катушек, а бордюры сделать из пластилина. Прочность изделия увеличит стеклоткань, помещенная на дно формы и поверх катушек. Эпоксидная смола не должна прилипать к форме. Для этого её смазывают воском или вазелином. Для тех же целей можно использовать пленку или скотч. Катушки закрепляют между собой неподвижно, концы фаз выводят наружу. Потом все шесть проводов соединяют треугольником или звездой.

Генератор в сборе тестируют, используя вращение рукой. Получившееся напряжение составляет 40 вольт, сила тока при этом составляет примерно 10 Ампер.

Заключительный этап — мачта и винт

Фактическая высота готовой мачты составила 6 метров, но лучше было бы сделать её 10-12 метров. Основание для неё нуждается в бетонировании. Необходимо сделать такое крепление, чтобы трубу можно было поднимать и опускать при помощи ручной лебедки. На верхнюю часть трубы крепится винт.

Труба ПВХ – надежный и достаточно легкий материал, используя который можно сделать винт ветряка с заранее предусмотренным изгибом

Для изготовления винта нужна ПВХ труба, диаметр которой составляет 160 мм. Из неё предстоит вырезать шестилопастной двухметровый винт. С формой лопастей имеет смысл поэкспериментировать, чтобы усилить крутящий момент на низких оборотах. От сильного ветра винт нужно уводить. Эта функция выполняется с помощью складывающегося хвоста. Выработанная энергия копится в аккумуляторах.

Мачта должна подниматься и опускаться с помощью ручной лебедки. Дополнительную устойчивость конструкции можно придать, используя натяжные тросы

Вашему вниманию предоставлены два варианта ветрогенераторов, которые чаще всего используются дачниками и владельцами загородной недвижимости. Каждый из них по-своему эффективен. Особенно результат применения такого оборудования проявляется в местности с сильными ветрами. В любом случае, такой помощник в хозяйстве не помешает никогда.

Оцените статью: Поделитесь с друзьями!

Строим домик для генератора своими руками : Фабрика Тока

Регулярное отключение и перепады электричества в загородном доме наверняка неоднократно доставляло неудобство вам или вашим близким. Универсальным решением в данном случае становится использование небольшой электростанции, которая чаще всего работает на бензине или дизеле.

При этом установка и обеспечение бесперебойной и слаженной работы мини-электростанции потребует от вас определенных усилий. Для этого вам понадобится специально обустроенное помещение (в большинстве случаев оно должно быть отдельным от жилого дома) и полностью соответствовать определенным требованиям и условиям:

  • пожарная безопасность;

  • удобный доступ для обслуживания генератора;

  • наличие вентиляции;

  • защита от экстремального перепада температуры, прямого попадания солнца и прочих внешних негативных факторов;

  • защита от влаги.

Конечно, помимо этого перечня, существует и ряд других предписаний, необходимых при строительстве домика для генератора своими руками. И именно о них мы и поговорим с вами дальше.

С чего начать строительство домика для генератора

Возведение генераторной вам стоит начать с выбора места для будущего домика. Желательно, чтобы оно было не слишком далеко, но и не чересчур близко к жилому дому во избежание непредвиденных ситуаций.

Перед началом строительства рекомендуем найти площадку 2х2 метра. Почему? Потому что практика показывает, что для вашего удобства генераторная должна быть немного больше самого генератора примерно на 70 см в каждую из сторон. То есть в результате мы получим размеры примерно 2х2 метра. Что касается высоты помещения, то ее не стоит делать более 2 метров.

После того, как определитесь с местом для будущего генераторного домика, можете приступать непосредственно к его строительству. Приблизительный план этого процесса должен быть организован следующим образом:

  1. Снимите 10 метров верхнего слоя грунта, чтобы образовался ровный котлован.

  2. Засыпьте песок в образовавшееся углубление и тщательно утрамбуйте его.

  3. Сверху песка постелите 2-3 слоя рубероида. Он обеспечит надежную защиту домику от проникновения внутрь излишней влажности.

После этого, приступайте к устройству фундамента. Если у вас будет мини-электростанция, вам понадобится из досок изготовить опалубку в форме короба. Внутрь него вмонтируйте арматуру, а после уложите бетон. Высота такой плиты должна быть от 12 до 15 см.

Если же у вас будет дизельная электростанция с мощностью от 10 кВт, то для фундамента придется использовать армированный бетон (его масса должна быть не меньше 1,5 массы самого агрегата).

Такой фундамент сможет гасить вибрации генератора во время его работы. И именно поэтому последний рекомендуют надежно закреплять на бетонной плите любым удобным для вас способом. Также не забудьте заложить в фундамент анкера. В будущем на них вы будете крепить каркас домика.

Конструкция генераторной

Бесперебойная работа генераторной будет доступна лишь тогда, когда вы сможете постоянно поддерживать внутри температуру не ниже +5°С. Она считается оптимальной для качественной и бесперебойной работы агрегата. Поэтому так важно заняться утеплением здания.

Каркас

Для каркаса генераторной рекомендуем вам использовать стальной уголок. Его можно прикрепить на анкера, о которых мы уже упоминали ранее и которые вы должны были закрепить еще во время закладки фундамента.

Ко внутренним и внешним стойкам приваривают профилированный металлический лист с расстоянием в 10 см между каждым. После, образовавшееся свободное пространство заполните качественным теплоизолирующим материалом. Хорошо подойдет минеральная вата, которая соизмерима по тепловым характеристикам с кирпичной кладкой.

Для каркаса крыши вам также понадобится стальной уголок. Необходимо уложить металлические листы на его полочки, а сверху на них положить утеплитель. Сама кровля должна быть из металлочерепицы.

Дверь и площадка до генератора

Ширина двери в генераторную должна быть от 60 до 70 см в ширину. Зону между дверьми и самим генератором сделайте размером 1х2 м. Между остальными его сторонами расстояние может быть меньше - от 50 до 60 см.

Внутри обязательно отделайте стены специальной краской, которая будет препятствовать ржавению металлических листов. Так вы не только добьетесь приятного внутреннего оформления, но значительно продлите срок эксплуатации самого домика.

Вентиляция

В любой генераторной обязательно должна быть хорошая вентиляционная система. Самый простой способ для этого - вывести из домика наружу трубу (рекомендуем из оцинкованного железа в 10 см). При наличии у вашей электростанции воздушного охлаждения, вам понадобится принудительная система вентилирования. Монтировать такой вентилятор необходимо будет либо в стену, либо непосредственно в воздушный канал. При этом вентилятор может выполнять довольно различные функции:

Если мощность вашей установки будет ниже 6 кВт, вам понадобится монтировать не менее 2-х вентиляторов (производительность каждого - по 1000 м3/ч). Включаться и выключаться они должны автоматически во время начала и окончания работы двигателя генератора.

Не забудьте и о “низовой” вентиляции, которая образуется за счет негерметичного примыкания стены к полу. Так выхлопной газ, в котором будет содержаться чрезмерное количество углекислого газа, сможет беспрепятственно “вытечь” из генераторной. Это же относится и к бензиновым парам, накапливание которых может стать причиной возгорания или даже взрыва. Как вы уже догадались, именно это и есть главной причиной того, почему не стоит слишком “погружать” в землю домик для генератора.

Дополнительно в своем сооружении вы можете повесить полочки, где будете хранить свои инструменты или емкости с дополнительным топливом. Кронштейны для них можно смело закрепить на стене сооружения.

На заметку!
Помимо самого процесса строительства домика для генератора очень важно обеспечить для вас и специалистов возможность комфортного обслуживания генератора. Поэтому вот еще пару моментов, о которых нельзя забывать.

1.Рубильник

Прежде, чем включить генератор, рубильник должен отключить домик от магистральной сети. Поэтому он должен находиться в удобном месте и желательно у вас на виду. Не забудьте также и о его тщательной изоляции от металлической поверхности и других предметов.

2. Автоматика

Практически любой генератор можно оснастить автоматикой (если таковой не предусмотрено при производстве, конечно). Такое устройство автоматического ввода резерва самостоятельно будет реагировать на перепады электроэнергии в сети. Это не даст вашему генератору работать вхолостую.

Обратите внимание, что в моменты, когда вы будете переключать генератор, в сети скорее всего ненадолго упадет напряжение. В этот период особо чувствительным приборам желательно предоставить дополнительно стабилизатор питания (компьютер, телефон и т.п.). Он как раз позволит вам на протяжении нескольких минут поддерживать правильный уровень напряжения, необходимый для работы электроприборов.

В качестве стабилизатора можете использовать классический ИБП. К тому же, любой источник бесперебойного питания в принципе станет хорошим защитником при перепадах напряжения в сети в вашем загородном доме.

Как оформить домик для генератора снаружи

Несмотря на небольшие размеры генераторной, она также относится к малой форме архитектуры. Именно поэтому правильным решением для вас станет качественная внешняя отделка домика. Сюда относятся и очертания домика, и его наружное оформление, и подбор цветовой гаммы, которая должна быть гармоничной по отношению к остальным объектам участка.

Чтобы домик для генератора максимально гармонично вписался в общую атмосферу сада или лужайки, посадите вокруг него низкорастущие кустарники. Желательно, чтобы крона их была как можно плотнее и гуще. Хорошая идея - украсить стены генераторной вьющимися растениями. Помимо декорирования, такой ход позволит вам укрыть домик от ярких солнечных лучей и зноя, а также, растения-вьюны создадут дополнительную тень зданию. Зимой же такие растения станут отличной защитой от сильного ветра и сквозняка.

Если же вам необходимо временное хранилище для генератора, можно найти и более простой способ для этого. Вам подойдет постройка попроще. Однако, при этом не забывайте, что включать генератор в такой ситуации вам будет необходимо исключительно на свежем воздухе.

Ветрогенератор своими руками для частного дома

«Нам электричество сделать всё сумеет …» — так пели студенты электротехнических ВУЗов середины прошлого века. В этой юмористической «оде» электричеству отведено много фантастики, но сегодня мы можем с уверенностью сказать, что современный человек без электричества просто пропал бы. Если свечи и могли бы нам заменить «лампочку Ильича», то как быть со всем остальным?

К настоящему времени человеком открыты разные способы получения электрического тока:

  • гальванические элементы, в которых химическая энергия преобразуется в электрическую;
  • термогенераторы, в которых в электричество преобразуется тепловая энергия;
  • солнечные батареи, где в электроэнергию преобразуется солнечная энергия.

Каждый из таких источников имеет свои достоинства и недостатки. Однако преимущественное распространение получили генераторы, в которых механическая энергия преобразуется в энергию переменного электрического тока. Это так называемые индукционные генераторы, действие которых основано на явлении электромагнитной индукции.

Немного истории и теории

Вспомним немного школьный курс физики, из которого нам известно, что явление электромагнитной индукции было открыто в 1831 году английским физиком Майклом Фарадеем. А заключается оно в следующем: при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает электрический ток.

То есть в простейшем виде такой генератор выглядит как рамка, помещенная в поле постоянного магнита, вращающаяся под действием механической силы. Однако такой тип генератора переменного тока с неподвижной магнитной системой (индуктором) и вращающимися витками проводника (якорем) применяется очень редко. Связано это с тем, что для отведения тока от движущейся катушки требуются подвижные контакты, а при токе высокого напряжения в таких контактах будет иметь место сильное искрение. Поэтому в подавляющем большинстве индукционных генераторов переменного тока обмотку (якорь), в которой наводится ток, делают неподвижной и называют статором, а вращают магнитную систему (индуктор), который называют ротором. В мощных генераторах магнитное поле создают обычно с помощью электромагнита, питаемого от источника постоянного тока — возбудителя.

Однако с появлением магнитов из сплава неодим-железо-бор, которые по своим характеристикам значительно превосходят другие виды постоянных магнитов, появилась возможность изготавливать ротор генератора на основе постоянных магнитов. Неодимовые магниты, разработанные в 70–80-е годы прошлого века, отличаются высокими и стабильными магнитными свойствами при малых размерах.

Теперь несколько слов о механической энергии, которую генератор преобразует в электричество. Для вращения ротора генератора используются энергия воды (гидрогенераторы), энергия пара (парогенераторы). Существуют генераторы, работающие от дизельных и бензиновых двигателей внутреннего сгорания. Забота же об окружающей среде и об экономии собственных средств заставила человека вспомнить о таком «неутомимом работнике» как ветер. С незапамятных времен люди использовали энергию ветра для движения кораблей и для превращения зерна в муку. Современные ветряные двигатели для электрогенераторов ведут свою родословную именно от ветряных мельниц. Соединив ветряной двигатель (ветряк) с электрогенератором, изготовленным с применением современных магнитов, получим ветрогенератор на неодимовых магнитах — экологически безопасный и экономичный источник электрической энергии.

Чем хорош ветрогенератор

Сегодня даже заядлый скептик не будет оспаривать пользу этого вида источников переменного тока.

Конечно, величины напряжения, мощности и тока, полученных от генератора для ветряка, сделанного своими руками не позволят запитать все электроприборы в достаточно большом загородном доме. Но вот снабдить электричеством небольшой дачный домик, особенно если он расположен далеко от электрической сети, вполне рациональное решение. И даже если только часть потребляемой электроэнергии для дома вы получите от ветряка, то в перспективе экономия будет ощутимой.

Кроме того, сделать генератор для ветряка — это интересная творческая работа, выполнив которую вы по праву сможете гордиться собой.

Из чего состоят ветрогенераторы и какие они бывают?

Обязательными элементами такого ветрогенератора на магнитах являются:

1)    Мачта, на которой установлены ветровое колесо и генератор. Ее высота выбирается исходя их конкретных природных условий и потребностей человека.

2)    Двигатель для ветряка — ветровое колесо с лопастями, которое преобразует движение ветра во вращательное движение вала ротора генератора.

3)    Генератор, вырабатывающий переменный электрически ток, величина которого зависит и от параметров статора и ротора генератора, и от скорости вращения ветрового колеса, дающего движение ротору.

Кроме того в состав системы могут входить ряд вспомогательных устройств, обеспечивающих управление работой системы и улучшающие качество получаемого тока: контроллер, аккумуляторные батареи, преобразователи, стабилизаторы.

В зависимости от направления оси вращения различают два типа ветрогенераторов — вертикальные и горизонтальные.

Горизонтальные (пропеллерные) имеют больший КПД, но они более сложны по конструкции, так как включают систему, ориентирующую пропеллер по ветру. Изготовление таких ветрогенераторов сложнее, а работают они только при достаточно больших скоростях ветра. Кроме того, ветряки с горизонтальной осью вращения требуют достаточно большого пространства, а модели с вертикальной осью вращения значительно компактнее.

Вертикальные ветряки проще по конструкции, дешевле, но их КПД ниже.

Но обратимся к сердцу любого ветряка — электрогенератору переменного тока, ротор которого выполнен на неодимовых магнитах.

Как собрать генератор на магнитах

Собираем ротор

Ротор такого магнитного ветрогенератора конструктивно представляет собой сборку из двух стальных дисков, расположенных параллельно друг другу. Диски жестко скреплены между собой через распорную втулку и установлены на валу, вращение которого обеспечивает турбина ветряка. Можно рекомендовать сделать ротор из автомобильной ступицы в сборе с тормозными дисками. Это надежная и хорошо сбалансированная основа для ротора. Дешевле будет взять б/у ступицу. В этом случае ее необходимо разобрать, тщательно почистить, проверить и смазать подшипники. Можно диски для ротора изготовить самостоятельно из низкоуглеродистой стали. Конечно, можно взять и другой материал, но следует учесть, что при использовании немагнитного материала эффективность генератора значительно снижается.

По периметру каждого диска располагаются магниты. Какие магниты нужны для ветрогенератора? Можно взять дисковые, прямоугольные, но наилучший эффект дают неодимовые магниты-сектора. Их размер и количество могут быть разными в зависимости от вашей цели и возможностей. Однако число пар полюсов магнитов должно быть четным, причем для однофазного генератора их должно быть столько же, сколько и катушек в статоре, а для трехфазного — четыре или две пары на три катушки. Магниты по периметру диска устанавливаются с чередованием полюсов: N–S–N–S…. Для этого предварительно следует изготовить шаблон, где точно обозначить место каждого магнита.

Размеры дисков ротора рассчитываются, исходя из размеров магнитов и их количества. Толщина диска для ротора должна быть порядка толщины магнита.

Магниты приклеиваются к диску суперклеем, а затем диск заливается эпоксидной смолой. Чтобы избежать ее стекания по внутренней и наружной окружности диска делаются бортики из скотча, пластилина или другого подручного материала. Перед тем, как залить диск эпоксидкой рекомендуем пометить на каждом диске по магниту, полюса которых направлены встречно, чтобы затем не перепутать при сборке. При сборке генератора следует следить за тем, чтобы магниты на дисках ротора располагались точно напротив и были направлены противоположными полюсами друг к другу. Схематический чертеж ротора ветряка с распределением магнитных силовых линий представлен на рис. 1.

 

Рис. 1

Изготовление статора ветрогенератора

Теперь сформированное магнитное поле нужно преобразовать в электричество. Для этого служит статор — неподвижная обмотка из медного провода, расположенная так, чтобы силовые магнитные линии, образуемые магнитами ротора, при его вращении пересекали провода обмотки.

Статор генератора располагается в зазоре между дисками ротора. Состоит он из неподвижных плоских катушек без сердечников. В каждой катушке при пересечении силовыми линиями магнитного поля возникает ЭДС индукции, переменная по величине и направлению. Величина напряжения, значит, и эффективность ветрогенератора, зависят от скорости вращения ротора, от количества витков в каждой катушке, от числа самих катушек и диаметра медного провода, используемого для их изготовления.

Генератор может быть однофазным или трехфазным. Первый проще, но второй предпочтительнее по двум причинам. Во-первых, в ветряке с трехфазной схемой генератора отсутствуют вибрации, которыми в нагруженном состоянии грешит однофазный. Кроме того, трехфазный генератор эффективнее однофазного более чем в 1,5 раза.

Расчет числа и параметров катушек для ротора ведется исходя из числа магнитов, их ширины, выбранного соотношения 4/3, или 2/3 и диаметра провода.

Если для обмотки взять тонкий провод, то катушки статора можно намотать с большим количеством витков, напряжение на выходе генератора будет более высоким, но его нагрузочная способность ниже. При использовании более толстого провода с меньшим сопротивлением в зазоре для статора поместятся обмотки с меньшим числом витков, в результате выходное напряжение будет ниже, но выше нагрузочная способность. Форма катушек определяется формой магнитов, а оптимальной толщиной статора считается величина, равная толщине магнитов. Число витков каждой катушки получается делением общего числа витков обмотки на число катушек, а общее число витков обмотки статора определяется, исходя из ЭДС, величины магнитной индукции, средней скорости вращения ротора.

Намотав катушки, их раскладывают на предварительно подготовленном шаблоне с размеченными секторами, соединяют между собой в зависимости от выбранной схемы. В однофазном варианте все катушки соединяются между собой последовательно. При этом нужно учесть, что токи в соседних катушках будут иметь противоположные направления, поэтому соединяются начало с началом соседней, а конец с концом следующей. Провода от начала первой и конца последней катушек выводятся наружу. При трехфазном варианте между собой соединяются каждая третья катушка. Провода каждой фазы выводятся наружу и впоследствии соединяются звездой или треугольником. Схемы соединения обмоток генератора представлены на рис. 2.

Рис. 2

Для прочности под катушки и на них кладется стеклоткань, и вся конструкция заливается эпоксидной смолой. После ее застывания сверлятся отверстия для крепежных болтов.

Оба диска ротора устанавливаются на валу с двух сторон от статора на расчетном расстоянии, на передний диск ротора крепится ветроприемное устройство.

Заглянем в будущее

Человеческая мысль не стоит на месте и самые распространенные сегодня горизонтальные ветрогенераторы постепенно уступают свое место вертикальным. Связано это с появлением технологии магнитной левитации, или так называемых ветрогенераторов на магнитной подушке. В такой конструкции лопасти крыльев при малых габаритах максимально используют энергию ветра, то есть КПД тут будет значительно выше.

Первенство в применении этой технологии принадлежит китайцам, но сейчас во многих странах мира инженеры работают над созданием мощных ветрогенераторов с магнитной левитацией, позволяющих осуществить переход к источникам возобновляемой энергии в промышленном масштабе.

Статический генератор электроэнергии своими руками

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Электростатический генератор своими руками

Принцип работы генератора статического электричества (ещё их называют электрофорные машины) заключается в том, что диски вращаются относительно друг друга в противоположные стороны и создают положительные и отрицательные заряды. При вращении дисков по мере накопления зарядов происходит разряд — молния между электродами.

Как это работает — теория

Вращение дисков с металлическими секторами приводит к переносу электрического заряда внутри машины, который хранится в конденсаторах до момента возникновения искры или заряда утечки.

Самые важные части в электрофорном агрегате – нейтрализаторы. Это две перемычки со щетками установленные крестом. Если хотя бы одну из четырех щеток отодвинуть от сегментов, машинка перестает работать. Хотя казалось бы диски вращаются, электризуются трением о воздух и значит электричество вырабатывается.

Нейтрализатор делает следующее: он перетаскивает заряд с одной половинки диска на другую и диск оказывается не просто заряжен, а заряжен избирательно — не по всей плоскости.

Другими словами, диск собирает заряды из воздуха, а нейтрализаторы их перераспределяют. Заряд снимается щеткой, движется по проводнику к противоположной щетке и в тот момент когда напротив сегмента появится сегмент второго диска — перескакивает на него.

Далее этот сегмент подходит к щетке второго нейтрализатора и процесс повторяется, но уже на другом диске. Таким образом происходит кругооборот зарядов между дисками в процессе которого воздух между сегментами ионизируется и разделяется. В результате накачки увеличивается напряжение, кроме того в машинке работает эффект раздвигания обкладок конденсатора, что также способствует увеличению напряжения.

Миниатюрное устройство по созданию таких безвредных молний (но не для микроэлектроники) легко сделать своими руками.

Данный электростатический генератор способен генерировать более 20000 Вольт, но малый ток делает его безопасным для использования без специальных мер предосторожности.

Характеристики устройства

  • Высота: около 140 мм
  • Ширина: приблизительно 120 мм
  • Питание: 3 В 0,3 А
  • Статический заряд: 20 кВ
  • Диаметр диска: 120 мм

Руками тут ничего крутить не нужно (как это было в прототипе позапрошлого века) — всё делают 2 электромотора. достаточно нажать на кнопку включения и подождать некоторое время до накопления заряда на электродах.

Материалы и компоненты

Необходимо будет для монтажа: паяльник и припой, отвертка и плоскогубцы. Два мотора от старых CD плееров и всякая крепёжная мелочёвка.

Генератор работает от двух батареек АА и способен создавать разряды длинной 2 см. Самое сложное тут — 120 мм диски. Их нужно изготовить по такому принципу: взять два лазерных диска от CD или DVD. Сегменты приклеить из алюминиевого скотча (25 секторов). Приклеить диски к моторчикам. Сделать щетки из алюминиевых полосок.

Если всё сделать и настроить как надо, то искра достигнет размеров около 20 мм, а разряд будет пробивать каждые 0,5 сек.

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Что бы затем, полученной статикой запустить генератор — хотя бы на 10 ватт, этой мощности статики не хватит. А что бы иметь сотню ватт генератор на выходе статики, в качестве нагрузки, диаметр статики дисков должен быть не один метр. К тому же — для согласования кило ваттных генераторов с статикой дисков, у генераторов должна быть исключительно — не стандартная технология. Я бы пошёл по пути — ИСПОЛЬЗОВАНИЯ готовых стандартных в промышленности генераторов из АД.

Другое дело; Взяв Предпочтительное, с целю использовать в технологии; При этом ещё и пытаться осознать написанное под схемой качера: http://uploads.ru/MmRfO.jpg и пробовать сие адаптировать под тут показанное, под ИНДУКЦИОНКУ, Моторы, роторы, турбины, ветряки, ВД, БТГ, самоходы колёс, маятников, авто Тесла, тогда окажется понятным и то, что 400 лет назад был САМОХОД тележек Леонардо Да Винчи. … — Подробнее об использовании СЕ можно продолжить и голосом в скайп : FILL1133

И крепёжные пластины и диски имеют значок молнии — высокого напряжения, и разметку для проводников именно электрофорной машины, а значит они изготовлены специально для этого промышленным способом. Итого: купили электрофорную машину, разобрали, собрали, и гордо рассказали, как легко собрать электрофорую машину из старых CD. Хоть раз попробуйте не пиздеть, а реально сделать что-то из подручных материалов.

Проект Заряд

Автономное энергоснабжение. Свободная и альтернативная энергия будущего. Бестопливные генераторы и «вечные двигатели» в каждый дом!

Статический автономный генератор электроэнергии

Вот мы и закончили проводимые нами совместные работы по проверке некоторых технологий, опытов и устройств, о которых мы неоднократно писали ранее и которые дались нам не с первой попытки и с огромными проблемами и трудностями. Ну да обо всем по порядку… Материала накоплено очень много, начинаем его обрабатывать и будем им с Вами делиться, как и обещали. Пока же занимаемся обработкой и подготовкой материала по собственным опытам, опубликуем несколько пришелших нам за это время писем и сообщений. Письмо первое, публикуем «как есть». Никаких дополнительных материалов, доказательств, подтверждений, видео или даже фото у нас пока нет. Надеемся, что приведенный ниже текст это не очередная попытка приобрести например недвижимость коста дорада и никакая не уловка и не мошенничество, а автор имеет действующий образец и в скором времени предоставит тому доказательства.

Разработан очень простой по конструкции и надежный генератор электроэнергии, не имеющий ни одной подвижной детали, и могущий работать полностью автономно, после запуска от небольшого аккумулятора, производя во много раз большую мощность, чем потребляет сам. Т.е. способен, ничего видимо не потребляя, производить электроэнергию для потребителя. Нужно понимать, что это не «вечный двигатель»,а устройство, способное поглощать энергию из окружающего нас пространства, преобразовывать ее в электричество, и отдавать потребителю. Ближайший аналог, всем известный тепловой насос. Который производит гораздо больше тепла, чем потребляет электроэнергии.

Но предлагаемый генератор гораздо проще, дешевле, надежнее теплового насоса, и производит сразу электроэнергию. По своей сущности данный генератор очень напоминает обычный силовой трансформатор. Это замкнутый магнитопровод с катушками и электронный блок управления. Магнитопровод может быть изготовлен как из обычной трансформаторной стали, так и иных ферромагнитных материалов. Разумеется, есть ноу-хау, которые тут не раскрываются, но благодаря которым возможна работа устройства по специальному алгоритму. Сложность изготовления данного устройства очень небольшая. Не требуется никакого особого оборудования, кроме стандартного, для резки, и шихтовки трансформаторной стали, а также склейки пакетов и их шлифовки. Что и делается при изготовлении почти всех трансформаторов. Блок управления тоже очень простой, и состоит всего из нескольких недорогих и доступных элементов. В мире разработано очень много конструкций статических генераторов электроэнергии, основанных на переключении магнитного потока в сердечнике. Например конструкции Наудина, Флинна… Но они имеют огромные недостатки. Магнитопровод их должен выполняться из особого дорогого и недолговечного материала, имеют дорогие редкоземельные магниты, работоспособность данных генераторов все еще под вопросом. Мне пока неизвестны случаи удачного повторения данных конструкций. Сами авторы смогли получить избыточную энергию только на нагрузке нелинейного характера, в узком диапазоне мощности. Предлагаемый генератор может работать в любом необходимом диапазоне мощностей. Принцип его работы не переключение магнитного потока из одной половины сердечника в другую(что вообще считается невозможным по всем известным законам),а 100% модуляция магнитного потока, без влияния цепей управления на силовую катушку. Т.е. магнитный поток во всем магнитопроводе то максимален, то отсутствует полностью. За счет изменения магнитного потока в силовой катушке и вырабатывается электрический ток. Как в любом электромагнитном генераторе. Нагрузка совершенно не влияет на цепь управления. Поэтому даже при коротком замыкании силовой катушки нет повышения потребляемого тока самим генератором. Кроме того, предлагаемый генератор, не требует вообще никаких магнитов. Пока генераторы данного типа не предназначены для генерации больших мощностей. Максимум несколько киловатт. Причина в материале сердечника. На железе трудно построить малогабаритный генератор большой мощности. А нужные материалы гораздо дефицитней, или их трудно обрабатывать. Поэтому нужно заказывать сразу на заводе-изготовителе(например ферриты). На начальном этапе работ это нерационально. Но при должном совершенствовании, данные генераторы вполне смогут отдавать мощность примерно 1квт/кг веса сердечника и даже больше. Стоимость такого генератора вероятно не превысит 200 евро/квт мощности. Данный генератор ничего не излучает, кроме слабого магнитного поля(как обычные трансформаторы),а также почти не издает шума(очень тихое гудение или писк). На высоких частотах вообще никакого звука не будет слышно. Использование данных генераторов возможно практически в любой сфере человеческой деятельности. Это и питание радиоаппаратуры, особенно в удаленных местах, космической технике, подводной и пр. Отопление и энергоснабжение коттеджей и домов, это источник питания для электромобилей(или на первых порах для подзарядки аккумуляторов с целью удлинения пробега),можно использовать на водном транспорте, и многое иное. Просто невозможно перечислить… Были проведены опыты по исследованию отдельных частей, составляющих данный генератор. Например испытаны катушки, дающие магнитное поле гораздо более сильное, чем известные, при одинаковых параметрах обмоток, и мощности, подаваемой в них. Но в отличии от обычных катушек, которые, при воздействии на них внешнего переменного магнитного поля вырабатывают электроэнергию, данные катушки ничего не вырабатывают! Т.е. они не реагировали на внешнее магнитное поле, даже достаточно сильное. Подобные катушки и являются основой данного генератора. Испытывались и катушки — антиподы: они наоборот, будучи помещены во внешнее переменное магнитное поле вырабатывали электроэнергию, но при подаче на их обмотку тока, не создавали магнитного поля. Данную разновидность катушек тоже можно использовать в данном генераторе.

Для осуществления проекта ищу надежного и порядочного партнера, могущего на первом этапе вложить в проект не менее 5000-10000 евро, имеющего нужную производственную базу и специалистов(или могущий обеспечить производство всех нужных работ). Опытный образец нетрудно изготовить за один месяц. Сколько потребует его доводка, и создание промышленных образцов не берусь сказать. Скорее всего, нужно идти поэтапно. Вначале малые генераторы на железе, а после на иных, более совершенных материалах. Окупаемость вполне возможно в течении 18-24 месяцев, а то и раньше. Слишком много факторов на это влияет. Например, можно довести образец до промышленного уровня и продать крупной корпорации. Есть такие желающие на примете. Можно создать АО и постепенно развиваться. Есть и другие варианты. Это можно будет решить совместно с партнером. Что касается прав на разработку, то предлагаю оставить за автором минимум 50,1% ,а партнеру 49,9%. Иначе может быть вариант, когда разработка ложится «под сукно». Это, разумеется, не касается прибыли, я согласен на 10% от продажной стоимости устройств. Но и это конкретно будет обсуждаться с конкретным человеком, который пожелает вложить средства.

Шурыгин Юрий Александрович.

От редакции: Во избежании каких либо недоразумений и мошенничества, мы пока не публикуем почты автора, т.к. пока не имеем никаких подтверждений изложенных выше предположений и фактов…

Инструкция по сборке генератора статического электричества своими руками

До этого я уже создавал несколько генераторов статического электричества и эти проекты всегда вызывали сильный интерес. С ними очень весело проводить время и они позволяют делать много разных трюков с помощью электростатического разряда. Например, можно щелкать током своих друзей (и себя), заставлять руками частицы песка или пыли вести себя странно, так как они подвержены влиянию статических зарядов. Также можно притягивать струю воды, заряжать бумагу, чтобы она прилипала к стене и производить множество других магических трюков.

Вышеприложенное видео демонстрирует процесс сборки этого проекта, а текстовая версия ниже даст вам пошаговую инструкцию. Это третья версия моего генератора статического электричества, при этом она самая дешевая. Она позволяет создавать заряд примерно такой же, какой бывает, когда вы ловите искру от ковра, гуляя по нему в пижаме.

Ионизатор USB, который является основным компонентом проекта, можно найти здесь: ссылка

  • Ионизатор.
  • Изолированная проволока.
  • Термоусадочная трубка.
  • Горячий клей.
  • Припой и паяльник.
  • Батарейки-кнопки на 1.5v.
  • Изолента.

Шаг 1: Разбираем ионизатор

Ионизаторы такого типа разбираются очень просто. Если вы будете использовать их по назначению, то корпус, скорее всего, сам треснет уже через неделю. С помощью плоскогубцев моно легко вскрыть корпус и получить доступ к плате устройства. К слову, хочу заметить, что я бы не подключал такое устройство к USB-порту компьютера. Высоковольтные устройства лучше вообще не подключать к компьютеру.

Если вы обратите внимание на последние две картинки, то заметите, что я разделил устройство на две секции. Первая часть, близкая к USB, представляет собой конвертер, который преобразует постоянный ток от USB в переменный ток, который затем проходит через крошечный трансформатор во вторую часть устройства. Вторая часть состоит из цепи четырех последовательных усилителей напряжения, которым для работы нужен переменный ток. Но в конце мы имеем постоянный ток, который направляется на белый провод.

Схема представляет как раз то, что нужно, чтобы получить статический заряд, но нам нужно модифицировать её так, чтобы она работала от батареек.

Шаг 2: Добавляем входной и выходной провода

Чтобы изменить схему до нужного нам состояния, первым делом избавимся от USB. Отвернём два ушка по бокам, и порт будет держаться лишь на 4 пинах. Прислоним паяльник сразу ко всем пинам и высвободим плату от USB порта.

На другой стороне платы есть обозначения, по которым можно определить, какая клемма предназначена для положительного заряда и какая для земли, они соответственно обозначены символами V+ и GND. Я припаял к этим клеммам по проводу, другие концы проводов будут соединены с батарейками.

На последней картинке видно, что я работаю на другой стороне платы, где я выпаиваю короткий выходной провод и припаиваю вместо него новый, значительно более длинный.

Шаг 3: Изолируем схему

Нам нужно изолировать схему от высокого напряжения, которое она будет генерировать, иначе она поджарит сама себя. Перед тем как поместить всё в термоусадочную трубку, я сперва прошелся по схеме горячим клеем, это позволило создать для проводов соединение более прочное, чем просто маленькая капелька припоя. Затем я поместил поверх устройства термоусадочную трубку и малым огнём аккуратно закрепил её на месте. Концы трубки остались не слишком зажатыми, и я также заполнил их горячим клеем. Такие ионизаторы идут со световым индикатором, чтобы вы знали, что они работают, так что я убрал немного термоусадки в том месте, где находился диод.

Шаг 4: Запитываем генератор

Источники питания USB, под которые проектируются такие устройства, дают на выходе 5 Вольт постоянного тока. Достаточно сложно найти батарейку с таким же напряжением, но обычно электроприборы могут работать в небольшом диапазоне напряжений, поэтому мы можем совместить три батарейки на 1.5V и этого вполне должно хватить.

Чтобы соединить их, оголите небольшой участок заземляющего провода (также оставив длинный изолированный его конец) и согните его, чтобы можно было придавить этот участок к отрицательной клемме батареек. Я добавил к оголенной части немного припоя и она стала держать форму.

Затем поместите пачку батареек между двумя проводами, положительный вход совместите с положительной клеммой батареек, а заземляющий провод соедините с отрицательной клеммой батареек. Небольшое количество изоленты удержит батарейки вместе и плотно прижмёт провода к их клеммам.

При желании на положительный провод можно припаять выключатель, но я решил, что устройство будет всегда включено. Для выключения я просто просовываю небольшую пластиковую пластину между батареек, и она разрывает соединение.

Шаг 5: Заключение

Устройство на данном этапе полностью работоспособно. Для того чтобы оно зарядило ваше тело (или любой проводящий объект), выходной провод должен касаться вашей кожи, в то время как конец длинного заземляющего провода должен соприкасаться с поверхностью, на которой вы стоите. Более токопроводящая поверхность позволит девайсу работать лучше, так как это даст возможность получить больший дифференциал заряда между вами и вашим окружением.

Для своих предыдущих генераторов я создавал соединения на липучках, они позволяли надежно закрепить выходные провода на теле и прикрепить заземляющий провод к низу моей подошвы.

На этом всё! Надеюсь вам понравилось читать о моём проекте.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Генератор Тестатика — свободная энергия из атмосферы

Дата публикации: 31 октября 2019

Машина свободной энергии Testatika продолжает вдохновлять людей на эксперименты. Это когда-нибудь работало? Такой вопрос задают себе многие исследователи и физики, получившие классическое образование. В целом, конструкция напоминает типичную машину Вимшерста, но во многих других отношениях есть детали, которые остаются загадкой.

Оригинальная история

Электростатический генератор Тестатика, основанный на Pidgeon 1989 года, включает в себя цепь индуктивности. Предполагается, что прибор «свободной энергии» использует энергетический потенциал атмосферы, что в некотором отношении напоминает агрегат Вимшерста. Он был построен инженером и продвигался швейцарской религиозной общиной.

Изобретатель Бауман утверждал, что концепции устройств пришли к нему через посетителей из космоса, когда он находился в швейцарской тюрьме (1970-е) по обвинению в жестоком обращении с детьми, связанным с религиозным культом, основателем коего он был. Testatika известна как швейцарский конвертер ML или Thesta-Distatica. Примерная схема генератора Тестатика:

Работающие устройства, как утверждается, существуют с 1960-х в религиозной группе под названием Methernitha (недалеко от Берна, Швейцария). Конкретные и точные принципы работы приборов неизвестны. Согласно различным источникам, Testatika использует конструктивные особенности электростатической машины Пиджона: обладает индуктивной цепью, емкостной цепью и термоэлектронным выпрямительным клапаном. До сих пор в устройствах не использовались полупроводники или транзисторы. Всё устройство можно разделить на две большие составные части: генератор и вспомогательные цепи.

1. Генератор

В базовой системе Pidgeon указаны модификации для повышения, стабилизации и фиксации полярностей заряда в определенных точках машины. Многодисковая конденсаторная машина Wommelsdorf также имеет аспекты, применимые к Testatika. Тестатика имеет 50 стальных решёток на диск. Это инновация для электростатических машин прошлого. Основываясь на умозрительных заключениях учёных-энтузиастов, исследовавших изобретение, можно выделить несколько отличительных черт детища господина Баумана:

  1. Принцип основан на предыдущих исследованиях и патентах на электрические цепи, в которых секторы гофрированы.
  2. Такие гофрированные электростатические секторы — более эффективные носители заряда по сравнению с плоскими аналогами.
  3. Диски переносят заряды с вращающихся элементов на коллекторы.
  4. Перфорированные клавишные панели заменяют стандартные щетки или заостренные направляющие предыдущих вариантов электростатических машин.
  5. Коллекторы не трогают диски, заряд проходит через параллельный воздушный зазор от металлических решеток к площадкам. Во время работы воздушный зазор подвергается воздействию миниатюрных вихревых токов, которые циркулируют вокруг перфорированной поверхности.

Вышеописанный процесс, в отличие от системы Pidgeon, имеет дополнительный косвенно связанный коллектор на передней верхней центральной части первого диска.

Диски вращаются со скоростью всего 60 об/мин (варьируется до 15 об/мин). Расположены очень близко друг к другу. Передний — прозрачный, сделан из плексигласа (положительно заряженный «облачный»), задний — темный диск (отрицательный «заземленный») соответствуют трибоэлектрическому ряду. Диски могут быть легированы парамагнитными частицами.

Нейтрализующие стержни размещены так, что заряды индуцируются из одной области, накапливаясь в других местах. Они выравнивают, стабилизируют частицы противоположных знаков, обеспечивают правильную распределенную полярность заряда в определенных зонах.

2. Вспомогательные цепи

Статическую энергию электростатический генератор Тестатика преобразует в электродвижущую силу с помощью своего колебательного контура, выпрямителей клапана. Колебания электрического тока контролируются соединением термоэлектронного выпрямительного клапана, конденсаторов цилиндров и естественным сопротивлением.

Колебания электромагнитной цепи модулируются через трансформаторы, выпрямляясь в импульсы постоянного тока. Герман Плазон, эстонский изобретатель, описывает такие методы преобразования статической энергии. Термоэлектронный выпрямительный клапан имеет анодную сетчатую пластину, спиральную медную решетку, светящийся (нагретый) катодный провод, проходящий горизонтально через его центр, и соответствующие провода.

Подковообразный магнит содержит четыре блока из плексигласовой среды, чередующиеся с медными, алюминиевыми пластинами. Два подковообразных магнита с ламинированными блоками из металлизированного плексигласа, чередующиеся с медными и алюминиевыми пластинами, образуют, как говорят разные источники, «генераторы электронного каскада». Существует цепная реакция, образующая «свободные электроны». Изолированный провод также наматывается вокруг подковообразных магнитов для индукционных целей.

Используются два внешних цилиндра. Соединение каждой отдельной вторичной обмотки может быть основано на «катушке разрывающего разряда», разработанной Николой Теслой. Цилиндры по бокам частично действуют как конденсаторы. Эта конфигурация формирует сеть импульсов. Каждый цилиндр имеет сердечник из 6 анизотропных ферритовых магнитов с полым кольцом, пластиковыми проставками для воздушных зазоров, образующих трансформатор.

Центральный входной стержень соединяется внизу со стопкой взаимосвязанных блинных катушек. Один трансформатор подключен к выходному отрицательному полюсу, а другой к выходной положительной полярности относительно зазоров магнитного сопротивления. Каждый соединен с вторичной обмоткой блинной катушки. Использование алюминиевой экранирующей сетки и сплошных медных экранирующих листов направлено на минимизацию паразитных электростатических зарядов.

Два дроссельных узла находятся в вертикальных двойных стеклянных трубках со спирально повернутой алюминиевой полосой. Трубы составляют две трети высоты башни. Стеклянная трубка заканчивается наверху прямоугольными латунными стержнями, соединяющимися с выпрямителем. Деревянное основание имеет чередующиеся слои перфорированных металлических изолирующих пластин, образующих накопительный конденсатор.

Возможно, это еще один пример альтернативного мышления, необходимого для трансформации нынешнего энергетико-экологического кризиса. Несмотря на создание и демонстрацию этого устройства, технология не использовалась остальным миром в течение более 30 лет не только по моральным соображениям (изобретение было детищем секты, а сам инженер был обвинён в жестоком обращении с детьми), а потому, что ни у кого из очевидцев нет точных технических данных об устройстве чудо-машины.

Но тот простой факт, что само религиозное сообщество Methernitha не использует устройство, ставит под сомнение его эффективность в отношении получения свободной энергии. Все их потребности в электричестве удовлетворяются парой ветрогенераторов, а также они покупают электроэнергию как все остальные. Большой вопрос о возможностях этой машины до сих пор остается без ответа.

Электростатический генератор Тестатика своими руками

Сейчас в открытом доступе довольно много информации о внешнем виде и эксплуатации аппарата, вся она предположительная и технически сложная. На протяжении многих лет агрегат демонстрировался различным техническим специалистам и инженерам, которые приглашались в общину, но за 30 лет никто так и не получил рабочего прототипа устройства, чтобы его можно было собрать за пределами Methernitha. По убеждению метернитов, для того, чтобы понять природу и ощутить её голос, человек обязан испытать тишину и одиночество. Ведь именно там были получены знания об этой технологии.

Но народные умельцы не оставляют надежды получить свободную энергию и пытаются воссоздать творение Пола Бауманна своими руками.

Как получить атмосферное электричество для дома своими руками — схема и видео

Общая информация

В течение многих лет ученые ищут альтернативный источник электрической энергии, который позволит получать электричество из доступных и восстанавливаемых ресурсов. Возможность добыть ценные ресурсы из воздуха интересовала еще Теслу в XIX веке. Но если энтузиасты прошлых веков не имели в своем распоряжении столько технологий и изобретений, как современные исследователи, то сегодня возможности по реализации самых сложных и безумных идей выглядят вполне реально.

Получить альтернативное электричество из атмосферы можно двумя методами:

  • благодаря ветрогенераторам;
  • с помощью полей, которые пронизывают атмосферу.

Наукой доказано, что электрический потенциал способен накапливаться воздухом за определенный промежуток времени. Сегодня атмосфера настолько пронизана различными волнами, электроприборами, а также естественным полем Земли, что получить из нее энергоресурсы можно без особых усилий или сложных изобретений.

Классическим способом добычи энергии из воздуха является ветрогенератор. Его задача заключается в преобразовании силы ветра в электричество, которое поставляется для бытовых нужд.

Мощные ветровые установки активно используются в ведущих странах мира, включая:

  • Нидерланды;
  • Российскую Федерацию;
  • США.

Однако одна ветряная установка способна обслужить лишь несколько электроприборов, поэтому для питания населенных пунктов, фабрик или заводов приходится устанавливать огромные поля таких систем. Помимо существенных плюсов у этого способа есть и недостатки. Один из них — непостоянность ветра, из-за чего нельзя предугадать уровень напряжения и накопления электрического потенциала.

В числе плюсов ветрогенераторов выделяют:

  • практически бесшумную работу;
  • отсутствие вредных выбросов в атмосферу.

Реальность или миф

Когда речь идет о получении энергии из воздуха, большинство людей думает, что это откровенный бред. Однако добыть энергоресурсы буквально из ничего вполне реально. Более того, в последнее время на тематических форумах появляются познавательные статьи, чертежи и схемы установок, позволяющих реализовать такой замысел.

Принцип действия системы объясняется тем, что в воздухе содержится какой-то мизерный процент статистического электричества, только его нужно научится накапливать. Первые опыты по созданию такой установки проводились еще в далеком прошлом. В качестве яркого примера можно взять знаменитого ученого Николу Теслу, который неоднократно задумывался о доступной электроэнергии из ничего.

Талантливый изобретатель уделил этой теме очень много времени, но из-за отсутствия возможности сохранить все опыты и исследования на видео большинство ценных открытий осталось тайной. Тем не менее ведущие специалисты пытаются воссоздать его разработки, следуя найденным старым записям и свидетельствам современников. В результате многочисленных опытов ученые соорудили машину, которая открывает возможность добыть электричество из атмосферы, то есть практически из ничего.

Тесла доказал, что между основанием и поднятой пластиной из металла присутствует определенный электрический потенциал, являющий собой статическое электричество. Также ему удалось определить, что этот ресурс можно накапливать.

Затем ученый сконструировал сложный прибор, способный накапливать небольшой объем электрической энергии, используя лишь тот потенциал, который находится в воздухе. Кстати, исследователь определил, что незначительное количество электроэнергии, которая содержится в воздухе, появляется при взаимодействии атмосферы с солнечными лучами.

Рассматривая современные изобретения, следует обратить внимание на устройство Стивена Марка. Этот талантливый изобретатель выпустил тороидальный генератор, который удерживает намного больше электроэнергии и превосходит простейшие разработки прошлых времен.

Полученного электричества вполне хватает для функционирования слабых осветительных приборов, а также некоторых бытовых устройств. Работа генератора без дополнительной подпитки осуществляется в течение большого промежутка времени.

Энергия из пустоты

Наука не даёт вразумительного определения ни полю, ни энергии. Зато она ясно формулирует — энергия не берётся из ниоткуда и никуда не девается. Пытаясь добывать «энергию из ничего», мы можем только стараться «встраиваться» в процесс её естественного преобразования из одних видов в другие.

Энергия определяется полезной работой, а поле — пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.

Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.

Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.

Примерно этим занимаются исследователи и разработчики всех видов и мастей в попытках извлечь «энергию из ничего». То поле, из которого различные изыскатели стремятся научиться добывать энергетический ресурс, они называют эфир.

Нынешние и классические разработки

Современные открытия и технологические разработки предоставляют широкое поле деятельности в получении «холодного электричества». Кроме устройств по идеям Тесла, сегодня широко распространены такие разработки для получения «энергии из пустоты», как:

  • радиантное электричество;
  • использование мощных неодимовых магнитов;
  • получение тепла от механических нагревателей;
  • трансформация энергии земли и излучений космоса;
  • вихревые двигатели;
  • термические земляные насосы;
  • солнечные конвекторы;
  • торсионные генераторы.

Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные. Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности. Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем. Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.

Не все такие разработки можно назвать извлекающими именно «эфирную энергию». С точки зрения отсутствия расхода ресурсов на выработку электроэнергии, их по праву можно назвать извлекающими «энергию из ничего». Энергоносители этих систем не разрушаются при передаче энергии — отдавая её, они тут же её снова накапливают. Сама же система может вырабатывать электроэнергию если и не вечно, то, по крайней мере, очень-очень долго.

Принцип гальванической пары

Наша задача, найти разность потенциала, и в земле это сделать проще всего, так как она состоит из газов, воды и минеральных веществ. Грунт – это множество твердых частиц, между которыми находятся пузырьки воздуха и молекулы воды.

Элементарная единица почвы – мицелла. Это глинисто-гумусовый комплекс, обладающий разностью потенциалов. Эти частицы накапливают заряды по тому же принципу, что и вся планета, поэтому в почве постоянно протекают электрохимические реакции. И наша задача подключится к этой «сети».

Использовать можно два электрода, сделанных из разных металлов (медь и оцинкованное железо), то есть будет использоваться принцип, как в обычной солевой батарейке. Помимо гальванической пары нам потребуется электролит (раствор соли).

  • Погружаем электроды в грунт где-то на полметра, на расстоянии в 25 сантиметров друг от друга.
  • Устанавливаем вокруг кусок трубы нужного диаметра, чтобы оградить остальную почву от электролита, так как уровень соли не позволить расти в месте поливки никаким растениям.
  • Готовим насыщенный водный раствор соли и проливаем им землю между электродами.
  • Подключаем к выводам вольтметр спустя минут 15 и видим, что прибор показывает напряжение в 3В.

Итого, к полученному источнику питания можно подключить маломощную светодиодную лампу. Показания вольтметра будет разниться в зависимости от плотности грунта, его влажности и прочих показателей, так что на разных участках результаты будут отличными.

Способ с заземлением

Если ваш частный дом оборудован нормальным контуром заземления, то знайте, что часть потребляемого вами тока уходит через него в грунт, особенно если включено сразу много электроприборов.

В результате этого процесса, между нулевым проводом вашей сети и заземляющим возникает разница потенциалов, составляя от 15 до 20 Вольт. Подключив к ним низковольтную лампочку, вы заставите ее светиться

Интересно знать! Данный ток не будет регистрироваться электрическим счетчиком, так как фактически он через него уже прошел.

Схему можно усовершенствовать, установив трансформатор и выровняв тем напряжение. А включив в схему аккумулятор, можно запасать энергию, что позволит использовать схему, когда остальные приборы в доме «молчат».

Вариант рабочий, но подходит он только для частных домовладений, так как в квартирах нет нормального заземления, а использование водопроводных труб для этого законодательно запрещено. Тем более нельзя использовать для подключения землю и фазу, так как заземление окажется под напряжением в 220В – цена такого опыта, возможно, чья-то жизнь.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт

Как соорудить генератор свободной энергии своими руками?

Генераторы создаются на основе следующих комплектующих и приспособлений:

  • Элемент питания и резистор номиналом 2,2 КОМ. Его включать в чертёж обязательно.
  • Ферритовое колечко любой магнитной проводимости.
  • Конденсатор с ёмкостью 0,22 мкф, рассчитанный для напряжения до 250 Вольт.
  • Толстая медная шина, чей диаметр — около 2 миллиметров. В дополнение берут тонкие медные провода в эмалевой изоляции, с диаметром 0,01 мм. Тогда и радиантные установки дают результат.
  • Пластиковая или картонная трубка, чей диаметр составляет 1,5-2,5 сантиметра.
  • Любой транзистор, обладающий подходящими параметрами. Хорошо, если в базовой комплектации, помимо генератора, будет присутствовать дополнительная инструкция. Иначе невозможно заняться реализацией практических схем генераторов свободной энергии с самозапиткой.

Интересно. В случае с дополнительными развязками между питающей и высоковольтной цепями применяют специальный входной фильтр. Можно не ставить такое приспособление, а подавать напряжение напрямую.

Для сборки можно использовать плату из стеклотекстолита, либо другое основание, обладающее похожими характеристиками. Главное — чтобы поверхность вмещала радиатор со всеми необходимыми приспособлениями. На пластиковой трубке наматывают обе катушки таким образом, чтобы одна размещалась внутри другой. Виток к витку наматывают высоковольтную обмотку, тоже расположенную внутри. Иногда этого требуют и самодельные импульсные безтопливные генераторы энергии.

Форма генерируемых импульсов обязательно проверяется на работоспособность, когда сборка закончена. Для этого берут осциллограф, цифровой или электронный. При настройке следует обращать внимание только на один важный параметр — наличие крутых фронтов, которыми отличается генерируемая последовательность прямоугольных контактов.

Вам это будет интересно  Определение резонанса


Безтопливные генераторы

Схема генератора

Минимальные мощности из любых устройств можно получить несколькими способами:

  1. Атмосферный конденсат в качестве источника. Его можно использовать при создании трансгенератора.
  2. Ферримагнитные сплавы.
  3. Тёплая вода.
  4. Через магниты. Условия для них нужны минимальные.

Но необходимо научиться управлять этим явлением, чтобы эффект был максимальным.


Схема свободной энергии

Магнитный генератор

Подача магнитного поля к электрической катушке — главный эффект, которого можно добиться при использовании такого устройства. Список основных компонентов выглядит следующим образом:

  • Поддерживающая катушка, для регулировки электричества.
  • Питающая катушка.
  • Запирающая катушка.
  • Пусковая катушка, необходимая и для бестопливных приборов.

Схема включает транзистор управления вместе с конденсатором, диодами, ограничительным резистором и нагрузкой.

Создание переменного магнитного потока — вопрос, при решении которого у владельцев устройств возникает больше всего вопросов. Рекомендуется монтировать два контура, у которых есть постоянные магниты. Тогда силовые линии организуются со встречным направлением.

Альтернатива Марка


Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.


Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:
  1. Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
  2. Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось – сделайте ещё.
  3. Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
  4. Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
  5. Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.


Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.

Достоинства

  • Простота. Принцип легко можно апробировать дома;
  • Доступность. Не нужны никакие приборы и сложные приспособления – достаточно токопроводящей пластинки.

Недостатки

  • Невозможность просчитать силу тока, что может быть опасно;
  • К образованному при работе открытому контуру заземления притягиваются молнии. Удар молнии может достигать напряжения 2000 вольт, а это очень опасно. Именно поэтому способ не получил широкого распространения.

Где уже используют атмосферное электричество

Тем не менее, есть примеры использования приборов, работающих по описанному принципу — ионизатор люстра Чижевского уже не первое десятилетие продается и успешно работает.

Еще одной рабочей схемой получения электроэнергии из воздуха является генератор TPU Стивена Марка. Устройство позволяет получить электроэнергию без внешней подпитки. Многими учеными эта схема апробирована, но широкого применения пока не нашла из-за своих особенностей. Принцип действия этой схемы в создании резонанса токов и магнитных вихрей, которые способствуют возникновению токовых ударов.

В настоящее время в Грузии тестируется генератор Капанадзе. Этот источник энергии также работает без внешней подпитки и добывает электричество из воздуха без дополнительных ресурсов.

Полезные советы

Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии

Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты.

Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.

Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.

Вывод

Итак, поле электрическое нашей планеты, безусловно, может послужить практически неисчерпаемым источником энергии, но официально извлекать ее пока не научились и в этом направлении ведутся многие разработки. Не стоит забывать, что многие законы физики человек так и не объяснил, и ориентируется по теориям, которые периодически нарушаются.  А что озвученные нами схемы, то они малоэффективны, но при желании вы можете поэкспериментировать. На этом все! Надеемся, материал был Вам полезен!

Источники

  • https://220v.guru/vse-ob-elektroenergii/kak-dobyt-atmosfernoe-elektrichestvo-svoimi-rukami-iz-nichego.html
  • https://chebo.pro/stroyka-i-remont/kak-sdelat-samomu-energiyu-iz-efira-dlya-doma-prostye-shemy.html
  • https://zen.yandex.ru/media/elektrika/kak-poluchit-elektrichestvo-iz-zemli—probuem-dostat-rukami-do-nikoly-tesla-5a6206505f4967c7b95eb429
  • https://teplo.guru/elektrichestvo/besplatnoe-elektrichestvo.html
  • https://rusenergetics.ru/polezno-znat/svobodnaya-energiya-realno-rabotayuschie-skhemy
  • https://FB.ru/article/221625/elektrichestvo-iz-vozduha-svoimi-rukami-mojno-li-dobyivat-elektrichestvo-iz-vozduha
  • https://otlad.ru/svet/iz-vozduxa/
  • https://www.tproekt.com/staticeskoe-elektricestvo-iz-vozduha/

[свернуть]

Статический генератор электроэнергии своими руками

Проект Заряд

Автономное энергоснабжение. Свободная и альтернативная энергия будущего. Бестопливные генераторы и «вечные двигатели» в каждый дом!

Навигация по записям

Статический автономный генератор электроэнергии

Вот мы и закончили проводимые нами совместные работы по проверке некоторых технологий, опытов и устройств, о которых мы неоднократно писали ранее и которые дались нам не с первой попытки и с огромными проблемами и трудностями. Ну да обо всем по порядку… Материала накоплено очень много, начинаем его обрабатывать и будем им с Вами делиться, как и обещали. Пока же занимаемся обработкой и подготовкой материала по собственным опытам, опубликуем несколько пришелших нам за это время писем и сообщений. Письмо первое, публикуем «как есть». Никаких дополнительных материалов, доказательств, подтверждений, видео или даже фото у нас пока нет. Надеемся, что приведенный ниже текст это не очередная попытка приобрести например недвижимость коста дорада и никакая не уловка и не мошенничество, а автор имеет действующий образец и в скором времени предоставит тому доказательства.

Разработан очень простой по конструкции и надежный генератор электроэнергии, не имеющий ни одной подвижной детали, и могущий работать полностью автономно, после запуска от небольшого аккумулятора, производя во много раз большую мощность, чем потребляет сам. Т.е. способен, ничего видимо не потребляя, производить электроэнергию для потребителя. Нужно понимать, что это не «вечный двигатель»,а устройство, способное поглощать энергию из окружающего нас пространства, преобразовывать ее в электричество, и отдавать потребителю. Ближайший аналог, всем известный тепловой насос. Который производит гораздо больше тепла, чем потребляет электроэнергии.

Но предлагаемый генератор гораздо проще, дешевле, надежнее теплового насоса, и производит сразу электроэнергию. По своей сущности данный генератор очень напоминает обычный силовой трансформатор. Это замкнутый магнитопровод с катушками и электронный блок управления. Магнитопровод может быть изготовлен как из обычной трансформаторной стали, так и иных ферромагнитных материалов. Разумеется, есть ноу-хау, которые тут не раскрываются, но благодаря которым возможна работа устройства по специальному алгоритму. Сложность изготовления данного устройства очень небольшая. Не требуется никакого особого оборудования, кроме стандартного, для резки, и шихтовки трансформаторной стали, а также склейки пакетов и их шлифовки. Что и делается при изготовлении почти всех трансформаторов. Блок управления тоже очень простой, и состоит всего из нескольких недорогих и доступных элементов. В мире разработано очень много конструкций статических генераторов электроэнергии, основанных на переключении магнитного потока в сердечнике. Например конструкции Наудина, Флинна… Но они имеют огромные недостатки. Магнитопровод их должен выполняться из особого дорогого и недолговечного материала, имеют дорогие редкоземельные магниты, работоспособность данных генераторов все еще под вопросом. Мне пока неизвестны случаи удачного повторения данных конструкций. Сами авторы смогли получить избыточную энергию только на нагрузке нелинейного характера, в узком диапазоне мощности. Предлагаемый генератор может работать в любом необходимом диапазоне мощностей. Принцип его работы не переключение магнитного потока из одной половины сердечника в другую(что вообще считается невозможным по всем известным законам),а 100% модуляция магнитного потока, без влияния цепей управления на силовую катушку. Т.е. магнитный поток во всем магнитопроводе то максимален, то отсутствует полностью. За счет изменения магнитного потока в силовой катушке и вырабатывается электрический ток. Как в любом электромагнитном генераторе. Нагрузка совершенно не влияет на цепь управления. Поэтому даже при коротком замыкании силовой катушки нет повышения потребляемого тока самим генератором. Кроме того, предлагаемый генератор, не требует вообще никаких магнитов. Пока генераторы данного типа не предназначены для генерации больших мощностей. Максимум несколько киловатт. Причина в материале сердечника. На железе трудно построить малогабаритный генератор большой мощности. А нужные материалы гораздо дефицитней, или их трудно обрабатывать. Поэтому нужно заказывать сразу на заводе-изготовителе(например ферриты). На начальном этапе работ это нерационально. Но при должном совершенствовании, данные генераторы вполне смогут отдавать мощность примерно 1квт/кг веса сердечника и даже больше. Стоимость такого генератора вероятно не превысит 200 евро/квт мощности. Данный генератор ничего не излучает, кроме слабого магнитного поля(как обычные трансформаторы),а также почти не издает шума(очень тихое гудение или писк). На высоких частотах вообще никакого звука не будет слышно. Использование данных генераторов возможно практически в любой сфере человеческой деятельности. Это и питание радиоаппаратуры, особенно в удаленных местах, космической технике, подводной и пр. Отопление и энергоснабжение коттеджей и домов, это источник питания для электромобилей(или на первых порах для подзарядки аккумуляторов с целью удлинения пробега),можно использовать на водном транспорте, и многое иное. Просто невозможно перечислить… Были проведены опыты по исследованию отдельных частей, составляющих данный генератор. Например испытаны катушки, дающие магнитное поле гораздо более сильное, чем известные, при одинаковых параметрах обмоток, и мощности, подаваемой в них. Но в отличии от обычных катушек, которые, при воздействии на них внешнего переменного магнитного поля вырабатывают электроэнергию, данные катушки ничего не вырабатывают! Т.е. они не реагировали на внешнее магнитное поле, даже достаточно сильное. Подобные катушки и являются основой данного генератора. Испытывались и катушки — антиподы: они наоборот, будучи помещены во внешнее переменное магнитное поле вырабатывали электроэнергию, но при подаче на их обмотку тока, не создавали магнитного поля. Данную разновидность катушек тоже можно использовать в данном генераторе.

Для осуществления проекта ищу надежного и порядочного партнера, могущего на первом этапе вложить в проект не менее 5000-10000 евро, имеющего нужную производственную базу и специалистов(или могущий обеспечить производство всех нужных работ). Опытный образец нетрудно изготовить за один месяц. Сколько потребует его доводка, и создание промышленных образцов не берусь сказать. Скорее всего, нужно идти поэтапно. Вначале малые генераторы на железе, а после на иных, более совершенных материалах. Окупаемость вполне возможно в течении 18-24 месяцев, а то и раньше. Слишком много факторов на это влияет. Например, можно довести образец до промышленного уровня и продать крупной корпорации. Есть такие желающие на примете. Можно создать АО и постепенно развиваться. Есть и другие варианты. Это можно будет решить совместно с партнером. Что касается прав на разработку, то предлагаю оставить за автором минимум 50,1% ,а партнеру 49,9%. Иначе может быть вариант, когда разработка ложится «под сукно». Это, разумеется, не касается прибыли, я согласен на 10% от продажной стоимости устройств. Но и это конкретно будет обсуждаться с конкретным человеком, который пожелает вложить средства.

Шурыгин Юрий Александрович.

От редакции: Во избежании каких либо недоразумений и мошенничества, мы пока не публикуем почты автора, т.к. пока не имеем никаких подтверждений изложенных выше предположений и фактов…

Статическое электричество из воздуха на службе вашего быта

Дата публикации: 11 октября 2019

Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.

Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.

Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.

Электричество из воздуха: схемы, прошедшие проверку качества

Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.

Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.

В числе достоинств предлагаемого решения:

  • Доступность реализации в домашних условиях;
  • Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.

Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.

Схема получения электричества из воздуха по проекту Стивена Марка

Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.

Схема получения электричества из воздуха выглядит следующим образом:

  • Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
  • Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
  • Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
  • Устанавливается конденсатор на 10 микрофарад.
  • Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.

Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.

Несколько полезных советов по технике безопасности

  • Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
  • Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.

Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.

Вам нужно войти, чтобы оставить комментарий.

Статическое электричество из воздуха

Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально.

Виды добычи

Альтернативное электричество может добываться из воздуха двумя способами:

  1. Ветрогенераторами;
  2. За счет полей, пронизывающих атмосферу.

Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

Фото — грозовая батарея

Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

Фото — ветряки

Видео: создание электричества из воздуха

Как добыть энергию из воздуха

Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».

Фото — схема

Схема имеет свои достоинства:

  1. Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
  2. Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.

Недостатки:

  1. Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
  2. При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.

С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).

Фото — люстра Чижевского

Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.

Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:

  1. Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера; Фото — основание
  2. Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
  3. Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала; Фото — четыре катушки
  4. Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
  5. Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания. Фото — конечная обмотка

На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.

Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.

Фото — предположительная схема генератора Капанадзе

В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.

Генератор свободной энергии с самозапиткой своими руками. Схема генератора свободной энергии

Многие в своей жизни задумывались о возможности обладания источником возобновляемой энергии. Известный своими уникальными изобретениями гениальный физик Тесла, творивший в начале прошлого века, свои секреты широкой огласке не предал, оставив после себя лишь намёки на свои открытия. Говорят, в проводимых опытах ему удалось научиться управлять гравитацией и телепортировать предметы. Также известно о его работах в направлении получения энергии из-под пространства. Возможно, что у него получилось создать генератор свободной энергии.

Немного о том, что такое электричество

Атом создаёт вокруг себя два типа энергетических полей. Одно образуется круговым вращением, скорость которого близка к световой скорости. Это движение знакомо нам как магнитное поле. Оно распространяется по плоскости вращения атома. Два других возмущения пространства наблюдаются по оси вращения. Последние вызывают появление у тел электрических полей. Энергия вращения частиц и есть свободная энергия пространства. Мы не делаем никаких затрат для того, чтобы она появилась — энергия изначально заложена мирозданием во все частицы материального мира. Задача заключается в том, чтобы вихри вращений атомов в физическом теле сложились в один, который и можно будет извлечь.

Электрический ток в проводе не что иное, как ориентация вращения атомов металла по направлению тока. Но можно ориентировать оси вращения атомов перпендикулярно к поверхности. Такая ориентация известна как электрический заряд. Однако последний способ задействует атомы вещества только на его поверхности.

Удивительное рядом

Генератор свободной энергии можно увидеть в работе обычного трансформатора. Первичная катушка создаёт магнитное поле. Ток появляется во вторичной обмотке. Если достичь коэффициента полезного действия трансформатора больше 1, то можно получить наглядный пример того, как работают генераторы свободной энергии с самозапиткой.

Повышающие трансформаторы также являются наглядным примером устройства, берущего извне часть энергии.

Сверхпроводимость материалов может повысить производительность, но создать условия, чтобы степень полезного действия превышала единицу, пока никому не удавалось. Во всяком случае, публичных заявлений такого рода не существует.

Генератор свободной энергии Тесла

Известного всему миру физика в учебниках по предмету упоминают крайне редко. Хотя его открытие переменного тока сейчас использует всё человечество. У него более 800 зарегистрированных патентов на изобретения. Вся энергетика прошлого века и сегодняшних дней основана на его творческом потенциале. Несмотря на это, часть его работ была скрыта от широкой общественности.

Он участвовал в разработках современного электромагнитного оружия, будучи директором проекта «Радуга». Известный филадельфийский эксперимент, телепортировавший большой корабль с экипажем на немыслимое расстояние – его рук дело. В 1900 году физик из Сербии внезапно разбогател. Он продал часть своих изобретений за 15 миллионов долларов. Сумма в те времена была просто огромна. Кто приобрёл секреты Теслы, остаётся тайной. После его смерти все дневники, которые могли содержать и проданные изобретения, пропали бесследно. Великий изобретатель так и не открыл миру, как устроен и работает генератор свободной энергии. Но, возможно, на планете есть люди, обладающие этой тайной.

Генератор Хендершота

Свободная энергия, возможно, открыла свой секрет американскому физику. В 1928 году он продемонстрировал широкой общественности устройство, которое сразу окрестили бестопливным генератором Хендершота. Первый прототип работал только при правильном расположении прибора согласно магнитному полю Земли. Мощность его была невелика и составляла до 300 Вт. Учёный продолжал работать, совершенствуя изобретение.

Однако в 1961 году его жизнь трагически оборвалась. Убийцы учёного так и не понесли наказание, а само уголовное производство по факту только запутало расследование. Ходили слухи, что он готовился запустить серийное производство своей модели.

Устройство настолько просто в исполнении, что его сможет сделать практически любой желающий. Последователи изобретателя недавно выложили в сеть информацию о том, как собрать генератор Хендершота «Свободная энергия». Инструкция в качестве видеоурока наглядно демонстрирует процесс сборки устройства. С помощью этой информации можно за 2,5 – 3 часа собрать это уникальное устройство.

Не работает

Несмотря на пошаговую видеоподсказку, собрать и запустить генератор свободной энергии своими руками не получается практически ни у кого из пытавшихся это сделать. Причина не в руках, а в том, что учёный, дав людям схему с подробным указанием параметров, забыл упомянуть о нескольких мелких деталях. Скорее всего, сделано это было сознательно, чтобы защитить своё изобретение.

Не лишена смысла и теория о ложности изобретённого генератора. Многие энергетические компании таким образом ведут работу по дискредитации научных изысканий альтернативных источников энергии. Людей, идущих по ложному пути, в конечном счёте ждёт разочарование. Много пытливых умов после неудачных попыток отвергло саму идею свободной энергии.

В чём секрет Хендершота

Ещё при жизни автора изобретения последователи, собиравшие аппарат по его схеме, не могли его запустить. Кто имел возможность, приходили к изобретателю с просьбой помочь запустить аппарат. Он помогал не всем.

А с тех, кому решал довериться, брал обязательство в том, что секрет запуска аппарата будет сохранён. Хендершот хорошо разбирался в людях. Те, кому он открыл секрет, сохраняют в тайне знание о том, как запустить генератор свободной энергии. Схема запуска устройства так и не была до сих пор разгадана. Или те, у кого это получилось, решили также эгоистично сохранить знание в тайне от окружающих.

Магнетизм

Это уникальное свойство металлов даёт возможность собирать генераторы свободной энергии на магнитах. Постоянные магниты генерируют магнитное поле определённой направленности. Если их расположить должным образом, то можно заставить ротор долго вращаться. Однако постоянные магниты имеют один большой недостаток – магнитное поле со временем сильно ослабевает, то есть магнит размагничивается. Такой магнитный генератор свободной энергии может выполнять только демонстрационную и рекламную роль.

Особенно много в сети схем по сборке устройств с использованием неодимовых магнитов. Они имеют очень сильное магнитное поле, но и стоят они тоже дорого. Все устройства на магнитах, схемы которых можно найти в сети, выполняют свою роль ненавязчивой подсознательной рекламы. Цель одна – больше неодимовых магнитов, хороших и разных. С их популярностью растёт и благосостояние производителя.

Тем не менее магнитные двигатели, генерирующие энергию из пространства, имеют право на существование. Существуют удачные модели, о которых рассказ пойдёт ниже.

Генератор Бедини

Американский физик – исследователь Джон Бедини, наш современник, изобрёл на основе работ Теслы удивительное устройство.

Анонсировал он его ещё в далёком 1974 году. Изобретение способно увеличивать ёмкость существующих аккумуляторов в 2,5 раза и может восстановить большую часть неработающих аккумуляторов, которые не поддаются зарядке обычным методом. Как говорит сам автор, радиантная энергия увеличивает ёмкость и очищает пластины внутри накопителей энергии. Характерно, что при зарядке напрочь отсутствует нагрев.

Всё-таки она существует

Бедини удалось наладить серийное производство практически вечных генераторов радиантной (свободной) энергии. Ему это удалось, невзирая на то что и правительство, и многие энергетические компании, мягко говоря, невзлюбили изобретение учёного. Тем не менее сегодня любой может купить его, заказав на сайте автора. Стоимость устройства немногим более 1 тысячи долларов. Можно приобрести комплект для самостоятельной сборки. Кроме того, автор не напускает мистики и секретности на своё изобретение. Схема не является тайным документом, а сам изобретатель выпустил пошаговую инструкцию, позволяющую собрать генератор свободной энергии своими руками.

Не так давно украинская компания «Вирано», специализировавшаяся на производстве и реализации ветрогенераторов, начала продажу бестопливных генераторов «Вега», которые вырабатывали электроэнергию мощностью 10 КВт без какого-либо источника извне. Буквально в считанные дни продажа была запрещена из-за отсутствия лицензирования такого типа генераторов. Несмотря на это, запретить само существование альтернативных источников невозможно. В последнее время появляется всё больше людей, желающих вырваться из цепких объятий энергетической зависимости.

Битва за Землю

Что случится с миром, если в каждом доме появится такой генератор? Ответ прост, как и принцип, по которому работают генераторы свободной энергии с самозапиткой. Он просто прекратит своё существование в том виде, в котором пребывает сейчас.

Если в масштабе планеты начнётся потребление электричества, которое даёт генератор свободной энергии, произойдет удивительная вещь. Финансовые гегемоны утратят контроль над миропорядком и рухнут с пьедесталов своего благосостояния. Первоочередная задача их состоит в том, чтобы не дать нам стать действительно свободными гражданами планеты Земля. На этом пути они очень преуспели. Жизнь современного человека напоминает беличьи бега в колесе. Времени остановиться, оглядеться, начать неспешно размышлять нет.

Если остановишься, то сразу выпадешь из «обоймы» успешных и получающих награду за свой труд. Награда на самом деле невелика, но на фоне многих, не имеющих этого, выглядит значительно. Такой образ жизни — путь в никуда. Мы сжигаем не только свои жизни во благо других. Мы оставляем своим детям незавидное наследство в виде загрязнённой атмосферы, водных ресурсов, а поверхность Земли превращаем в свалку.

Поэтому свобода каждого находится в его руках. Теперь у вас есть знание, что в мире может существовать и работать генератор свободной энергии. Схема, с помощью которой человечество скинет многовековое рабство, уже запущена. Мы на пороге великих перемен.

🎈 Общественная лаборатория: Гидроэлектрический генератор своими руками

Наш процесс:

Нашим прототипом будет этот конкретный гидроэлектрический генератор: (http://www.re-energy.ca/docs/hydroelectric-generator-cp.pdf). Недостающая ссылка на шаблон находится здесь: [(http://www.re-energy.ca/docs/hydroelectric-t.pdf)]

Необходимые материалы: - Пластиковый кувшин на 4 л (прямоугольный, из-под уксуса, жидкости для омывателя лобового стекла или аналогичного - см. Рисунок) - 10 пластиковых ложек - 1 большая пробка (3.От 5 до 5 см) - Эмалированный магнитопровод, калибр 24 (около 100 м) - Пенопласт или плотный гофрокартон (примерно 22 на 30 см) - деревянный дюбель 6 мм (1/4 дюйма) (длина 20 см) - 4 керамических или редкоземельных магнита (18 мм или больше) - прозрачная виниловая трубка (длина 6 см, внутренний диаметр ¼ дюйма) - 4 латунных застежки для бумаги - наждачная бумага (для снятия эмали с проводов)

Некоторые из этих предметов мы могли найти в переработке (пластиковый кувшин объемом 4 л), либо иметь в наличии (ложки), либо уже иметь.Вот моя ориентировочная разбивка по стоимости

  • БЕСПЛАТНО (переработка в колледже?) Пластиковый кувшин 4 л
  • БЕСПЛАТНО (колледж) 10 пластиковых ложек
  • ????? 1 большая пробка (от 3,5 до 5 см)
  • 10,00 $ Эмалированный магнитный провод, калибр 24 (около 100 м)
  • 8,00 $ Foamcore или БЕСПЛАТНО тяжелый гофрированный картон (приблизительно 22 см на 30 см) (пенопласт может быть более водостойким)
  • $ 1,00 Деревянный дюбель 6 мм (1/4 дюйма) (длина 20 см)
  • $ 8.00 4 керамических или редкоземельных магнита (18 мм или больше)
  • 4,00 $ прозрачная виниловая трубка (длина 6 см, внутренний диаметр ¼ дюйма)
  • 3.00 $ или БЕСПЛАТНО 4 латунных застежки для бумаги

ИТОГО: $ 34,00 - $ 26,00

Если реалистично, я надеюсь, что мы сможем получить большинство из этих предметов к среде 10/8, чтобы мы могли начать строительство. Они также предоставили список инструментов. Вероятно, у нас есть доступ к большинству из них, но лишь к некоторым.

Список необходимых инструментов: - (одолжить?) Электродрель со сверлом ¼ ” - Ножницы - Электроизоляционная лента - Правитель - 10 см (3.5 дюймов) гвоздь или шило - Горячий клеевой пистолет, с 3 клеевыми стержнями - Белый клей - Универсальный нож - Точилка - Перманентный маркер на фетровом наконечнике - Магнитный компас - (одолжить?) Кусачки - Перчатки - Очки защитные

Вот изображение из собранных нами материалов:

Когда мы начали строительство, самым большим препятствием, с которым мы столкнулись, было то, что калибры проводов были нестабильными. Для адаптации нам пришлось отшлифовать эмаль на концах и соединить их изолентой.

Результат:

Ниже приведены некоторые изображения готового генератора.

С помощью мультиметра мы проверили, сколько электроэнергии производит наш самодельный генератор. Мы смогли произвести 1 ватт. К сожалению, этого недостаточно для питания одной светодиодной лампочки, которая требует около 2 Вт. Мы определили, что для повышения эффективности нашего генератора нам необходимо предпринять следующие шаги:

  1. иметь постоянный провод по всему генератору

  2. создать симметричную турбину

  3. убедитесь, что магниты не касаются провода.

Шаг редакции 1: Мы заказали 100 м эмалированного магнитного провода калибра 24. С доставкой в ​​район Новой Англии это стоило около 30 долларов. Затем мы разобрали нашу турбину, свернули провод и собрали заново. С дополнительным проводом мы добавили еще 4 катушки и магниты, чтобы потенциально увеличить мощность. Кроме того, мы обернули проволокой пластиковую трубку диаметром 1/4 дюйма, чтобы получить несформированную катушку.

Шаг версии 2: Используя Sketch up, мы создали идеальную турбину, которая скоро будет напечатана на 3D-принтере.Вот файл нашей модели SketchUp. Turbine.skp К сожалению, доступные нам 3D-принтеры могли печатать только размером 4 на 4 дюйма. Из-за этого ограничения мы не смогли напечатать нашу турбину до конца академического семестра.

Редакция Шаг 3. Мы также решили использовать материал, который жестче картона, чтобы прикрепить к нему магниты. Это гарантирует, что пластина не согнется со временем и не коснется наших проводов. Мы использовали фрисби, чтобы усилить магниты. Ниже представлена ​​наша обновленная модель.

Следующие шаги для будущего человека

Если хотите, попробуйте построить свой собственный гидроэлектрический генератор своими руками и посмотрите, сколько электроэнергии вы сможете произвести. Дополнительно кто-то мог

  1. увеличить или уменьшить масштаб

  2. Редизайн генератора и написание руководства DIY с открытым исходным кодом

  3. Продолжайте развивать идею утилизации старой электроники и использования недорогих материалов для производства энергии.

  4. Продолжить изучение способов сделать технологии мониторинга окружающей среды самодостаточными.

Комплект электрогенератора «сделай сам» - Северная архитектура

Текст: Роберт Хессон, вт, 23 марта 2021 г.

Рич Лаббок является создателем этого продукта. Он профессиональный исследователь в области возобновляемых источников энергии. «Система свободы электричества» представляет собой пошаговое руководство по созданию собственной домашней электростанции ». Этот продукт предлагает вам решение проблемы энергонезависимости.После покупки продукт состоит из следующих материалов: Чертежи, списки необходимых материалов и аудиовизуальные материалы с инструкциями по настройке. Продукт представлен вам в виде электронных книг и аудиовизуальных материалов. Существуют чертежи и руководство о том, как вы можете построить систему Electricity Freedom самостоятельно. В дополнение к этому есть также профессионально созданное видео, которое может показать вам, как система сделана от начала до конца. Этот продукт может быть изготовлен для всех, даже если кто-то может собрать его одной рукой.Творение настолько простое, что с легкостью справится даже ребенок. Более того, чтобы создать систему для себя, вам не потребуются какие-либо специальные навыки или знания. Подробнее здесь ...

Обзор системы свободы электричества

Рейтинг: 4,8 звезды из 19 голосов

Содержание: Электронная книга, чертежи
Автор: Рич Лаббок
Цена: $ 49,00

Доступ сейчас

Обзор системы My Electricity Freedom

Эта электронная книга обладает замечательными функциями и предлагает вам совершенно простые шаги, объясняющие все в деталях на очень понятном языке для всех, кому это интересно.

Не ждите и продолжайте заказывать Electricity Freedom System сегодня. Если в любой момент в течение двух месяцев вы почувствуете, что это не для вас, они вернут вам 100% компенсацию.

Цель состоит в том, чтобы упростить сопоставление показателей энергопотребления при выборе бытовой техники. Схема основана исключительно на самооценке производителей. Он подпадает под действие существующего законодательства о защите прав потребителей, касающегося описания товаров теми, кто их продает, и его исполнение рассматривается так же, как и в отношении других розничных жалоб.Схема была введена для бытовых приборов, а для коммерческих бытовых приборов схемы нет. Схема маркировки недавно была распространена на общественные здания.

В соответствии с Законом 1995 года об энергосбережении в жилых домах местные власти обязаны подготовить стратегию повышения энергоэффективности своего жилищного фонда. Это включает постановку задач для 10-летнего плана по повышению энергоэффективности жилых помещений на определенный процент (30,9). Ниже приводится типичный список мер по повышению энергоэффективности, которые местные власти могут установить в течение 10 лет. Два низкоэнергетических светильника на одно домохозяйство должны быть установлены в 80 домах, в которых их нет. Таблица 10.3 Типовые меры энергоэффективности для жилых помещений (на основе рекомендаций BRECSU - см. Различные тематические исследования) Таблица 10.3 Типовые меры энергоэффективности для жилых помещений (на основе рекомендаций BRECSU - см. Различные тематические исследования)

В исследовании, проведенном Мейером (2000), в котором респондентов спрашивали, какие функции они ожидают и требуют от системы домашней автоматизации, снижение температуры во время отсутствия жильцов было запрошено в первую очередь.Этот запрос подразумевает сокращение потребления тепловой энергии и связанное с этим снижение затрат на отопление. Как упоминалось ранее, установленная система шин обеспечивает возможность управления одной комнатой. Целевая температура в помещении может быть (заранее) определена для каждой комнаты в течение заданного времени. Кроме того, температуру подачи можно регулировать в зависимости от тепловой мощности, необходимой для отдельных помещений. Эти варианты управления могут снизить потребление тепловой энергии при условии, что они правильно запрограммированы.Однако количество фактически сэкономленной энергии сильно зависит от структурных условий конкретного здания. Чем меньше тепловая масса здания и хуже теплоизоляция обшивки здания, тем больше ...

Самым простым способом экономии энергии является изоляция труб отопления пеной или стекловолокном. Изоляция труб стоит от 0,30 до 0,80 на фут и ежегодно экономит около 0,50 на фут. Изоляция труб из стекловолокна должна быть не менее 19 мм (f дюйм.) толщиной и пенопластовой изоляцией толщиной 13 мм (2 дюйма). На паропроводах нельзя использовать пенопласт, так как он может расплавиться. Раньше паровые трубы обычно обматывались асбестом, а существующие можно оставить в покое, если они хорошо запечатаны, не отслаиваются и не лежат в жилом помещении. Если белая защитная оболочка повреждена или отсутствует, вызовите сертифицированного подрядчика по борьбе с выбросами асбеста. свежий воздух без значительного увеличения потребления энергии. Теплообменники часто включаются в системы отопления и охлаждения, как часть другого оборудования или как отдельные блоки.В плотно построенных небольших зданиях входящие и выходящие воздушные потоки часто примыкают друг к другу. Используя теплообменник, можно отвести 70 или более процентов тепла из отработанного воздуха ...

Международное энергетическое агентство (МЭА) было создано в 1974 году как автономное агентство в рамках Организации экономического сотрудничества и развития (ОЭСР) для выполнения комплексной программы энергетического сотрудничества между 25 странами-членами и комиссией. Европейских сообществ.Важная часть программы Агентства включает сотрудничество в исследованиях, разработке и демонстрации новых энергетических технологий для уменьшения чрезмерной зависимости от импортируемой нефти, повышения долгосрочной энергетической безопасности и сокращения выбросов парниковых газов. Исследовательские и опытно-конструкторские работы IEA SHC возглавляются Комитетом по энергетическим исследованиям и технологиям (CERT) при поддержке небольшого штата секретариата со штаб-квартирой в Париже. Кроме того, три рабочие группы отвечают за мониторинг различных соглашений о сотрудничестве в области энергетики, определение новых областей для сотрудничества и консультирование CERT по вопросам политики.

Hanson Building Products приветствовала публикацию последнего руководства Energy Saving Trust, озаглавленного «Энергоэффективность и Кодекс экологически безопасных домов, уровень 4» EST поощряет энергоэффективность и возобновляемые источники энергии, а также способствует лучшей теплоизоляции и эффективности отопления, а также более чистым видам топлива для транспорт. На крышке изображен EcoHouse Hanson, который демонстрирует последние разработки компании в области экологичного современного каменного строительства и «умного» образа жизни, а также преимущества изготовления за пределами строительной площадки, высокой термальной массы и естественного

С тех пор, как в июле 1998 года компания Facility Resource Management приняла в эксплуатацию кампус, использование ископаемого топлива уменьшилось на 15.Однако есть возможности для значительных дальнейших улучшений. Двусторонний подход к снижению энергопотребления состоит из 1) повышения тепловой эффективности зданий и эксплуатационной эффективности оборудования и 2) внедрения творческой политики и образовательных инициатив, которые побуждают студентов, преподавателей и сотрудников к экономии энергии. На здания и деятельность внутри зданий в настоящее время приходится более 90 энергопотребления кампуса. Поэтому усилия должны быть сосредоточены на ремонте здания и выборе приборов, которые минимизируют потребление энергии (см. Заявление EPAC об объектах в Разделе III).Следует создать новаторские стимулы для поощрения студентов, преподавателей и сотрудников к приобретению личного электронного оборудования и управлению им для минимизации энергопотребления.

В прошлом вопросы энергосбережения и ограничения спроса на электроэнергию были в основном экономическими. Владельцы сбалансировали стоимость установки con. Энергосбережение влияет на работу инженера-электрика, архитектора, дизайнера интерьера, а также владельца и жителей здания. Консервацию можно начать с выбора высокоэффективных двигателей, трансформаторов и другого оборудования.Оборудование для управления электрической нагрузкой часто необходимо для выполнения требований кодекса по энергетическим бюджетам. В электрическом проекте следует предусмотреть возможность расширения, упростив добавление дополнительного оборудования на более поздний срок, а не за счет увеличения размера оригинального оборудования. Сложное, чувствительное электронное оборудование становится все большей частью электрической нагрузки коммерческих зданий. Компьютеры, системы автоматизации зданий, системы автоматизации телефонной связи, принтеры, факсы, компьютерные сети и копировальные аппараты - обычное дело.Это высокотехнологичное оборудование позволяет экономить энергию за счет ограниченного пространства ...

Освещение потребляет около 8 процентов энергии, используемой в жилых домах и 27 процентов энергии, используемой в коммерческих зданиях по всей стране, и большая часть этой энергии отклоняется как тепло. Например, лампы I излучают около 88 процентов своей энергии в виде тепла, лампы Q - 85 процентов, лампы F - 79 процентов, лампы среднего напряжения - 73 процента, лампы MH - 67 процентов и лампы HS - 59 процентов. Таким образом, простой способ сэкономить на энергии - это использовать более холодные и более эффективные лампы.Это снижает потери энергии намного больше, чем можно подумать. Например, замена лампы I на лампу MH может показаться экономией энергии всего лишь на 88-67 19 процентов, но на самом деле происходит то, что 100-88 12-процентная светимость лампы I заменяется на 100 - 67 33-процентный коэффициент излучения лампы MH. Таким образом, последняя лампа дает такую ​​же мощность только при 12 33 входах, поэтому реальная экономия энергии составляет 88 - 67 x 12 33 64 процента. Точно так же лампа CFL мощностью 29 Вт с той же мощностью, что и лампа I мощностью 100 Вт, дает экономию не на 88 - 79 9 процентов, а на 88 - 79 x 12 21...

Герметичное сгорание или вентилируемая система обеспечат безопасность и энергоэффективность водонагревателя. В герметичной системе сгорания наружный воздух подается непосредственно в водонагреватель, а дымовые газы выводятся напрямую наружу. В оборудовании с механической вентиляцией для сжигания может использоваться домашний воздух, а дымовые газы удаляются вентилятором. Это небезопасное решение в плотно закрытом здании. В 1987 году Национальный закон об энергосбережении бытовой техники установил минимальные требования к водонагревательному оборудованию в Соединенных Штатах.На оборудовании указывается информация об энергосбережении. Министерство энергетики США (DOE) разработало стандартизированные энергетические коэффициенты (EF) в качестве меры годовой общей эффективности. Стандартные водонагреватели, работающие на газовых накопительных баках, могут получить EF от 0,60 до 0,64. Газовые безбаквальные водонагреватели мощностью до 0,69 с непрерывными пилотами и до 0,93 с электронным зажиганием. Стандарты DOE 2001 года для водонагревателей повысят критерии эффективности и должны привести к ...

Новая панель TrimoEnergy от Trimo - лишь одна из ряда продуктов для умного строительства, выпускаемых компанией для тех, кто стремится снизить затраты на электроэнергию и снизить выбросы CO2.TrimoEnergy использует инновационный предварительно окрашенный стальной листовой материал Prelaq, который при использовании для покрытия одной или обеих сторон облицовочной панели работает во время циклических сезонных изменений для снижения затрат на отопление и охлаждение, в результате чего годовая экономия достигает 10. В качестве внешнего покрытия TrimoEnergy работает за счет уменьшения теплопроводности в здание за счет отражения солнечной энергии в ближней инфракрасной (NIR) части спектра от здания, что удобно в жаркую погоду. В качестве внутреннего покрытия TrimoEnergy отражает тепловую инфракрасную энергию обратно в здание, что идеально в холодную зимнюю погоду.

МЭА спонсирует исследования и разработки в ряде областей, связанных с энергетикой. Миссия одной из этих областей, Программы энергосбережения для зданий и общественных систем (ECBCS), заключается в содействии и ускорении внедрения энергосберегающих и экологически устойчивых технологий в здоровые здания и общественные системы посредством инноваций и исследований в процессе принятия решений. строительные агрегаты и системы и коммерциализация. Цели совместной работы в рамках программы исследований и разработок ECBCS напрямую вытекают из текущих энергетических и экологических проблем, с которыми сталкиваются страны МЭА в области строительства, энергетического рынка и исследований.ECBCS решает основные проблемы и использует возможности в следующих областях. Общий контроль над программой осуществляется исполнительным комитетом, который не только контролирует существующие проекты, но также определяет новые области, в которых совместные усилия могут быть полезными. Кому ...

Смежные дома и квартиры по своей природе более теплоэффективны, чем отдельно стоящие жилые дома, поскольку у них общие стены. Теоретические исследования и измеренная обратная связь установили ценность объединения зданий в группы для энергосбережения, и это обычная практика в большинстве стран Европы.В Великобритании мы строим значительно больше отдельно стоящих домов, отчасти из-за ненадежных акустических характеристик, и эта проблема должна быть легко решаемой. Более высокие конструкции могут увеличить потребление энергии из-за большей экспозиции и необходимости в подъемниках. Многие города успешно развивают сочетание высокого качества с высокой плотностью.

Законодательные требования, касающиеся энергоэффективности, вряд ли останутся в силе. По-прежнему необходимо будет внести улучшения, чтобы продолжить сокращение потребления невозобновляемого топлива, отходов и загрязнения.Степень этих улучшений будет зависеть от скорости изменения климата и реакции правительства на него. Рисунок 10.11 Схема типичного производственного здания с мерами по повышению энергоэффективности Согласно Голду и Мартину (1999a, b), вероятными целями будущего законодательства, регулирующего энергоэффективность и окружающую среду, являются

Энергоэффективность, как и пространственные характеристики, является важным критерием дизайна офисов. Основным экологическим эффектом использования энергии является выброс углекислого газа, который является основным источником следующих пяти основных вариантов ремонта для достижения максимальной энергоэффективности в офисах:

Этикетка Energy Star (рис.1-2) был создан совместно с Министерством энергетики США (DOE) и Агентством по охране окружающей среды США (EPA), чтобы помочь потребителям быстро и легко идентифицировать энергоэффективные продукты, такие как дома, бытовая техника и освещение. Продукты Energy Star также доступны в Канаде. Только в Соединенных Штатах в 2000 году Energy Star привела к сокращению выбросов парниковых газов, эквивалентному снятию с дорог 10 миллионов автомобилей. На сегодняшний день удалось предотвратить выбросы углекислого газа на восемьсот шестьдесят четыре миллиарда фунтов благодаря обязательствам Energy Star.Программа Energy Star Homes рассматривает планы новых домов и оказывает поддержку в проектировании, чтобы помочь дому достичь пятизвездочного рейтинга Energy Star Homes, устанавливая стандарт большей ценности и экономии энергии. Дома, сертифицированные Energy Star, также имеют право на скидки на основные приборы. Программа также предоставляет компьютерное программное обеспечение Energysmart, которое проведет вас через компьютеризированный энергоаудит ...

Несмотря на все усилия правительства и других сторон, все еще существует ряд препятствий, которые сдерживают, если не препятствуют достижению большей энергоэффективности.Такие препятствия можно резюмировать следующим образом. Правовые. Задержки в реализации каких-либо мер могут подорвать их эффективность. Установленные законом ограничения, такие как получение разрешений, могут препятствовать реализации мер по повышению энергоэффективности. Человек Чрезмерно скептическое или враждебное отношение к гипотезе парникового эффекта в сочетании с такими проблемами, как загрязнение окружающей среды и истощение ископаемых видов топлива, может препятствовать продвижению энергоэффективности. Незнание выгод и затрат на энергоэффективность - еще один фактор, который может препятствовать реализации этих мер.Техническая сложность (с точки зрения доступа, совместимости или фиксации) установки мер энергоэффективности на фабрику или услуги. Такие установки, как солнечные отражатели или фотоэлектрические панели, могут ухудшить внешний вид здания.

Канадская ипотечная и жилищная корпорация профинансировала исследование, проведенное под руководством строителя тюков из Британской Колумбии Хабиба Гонсалеса. Используя данные о потреблении энергии в домах из тюков Британской Колумбии, их сравнили с аналогичными домами с каркасными стенами с помощью компьютерного моделирования. Ниже приводится выдержка из этого отчета. Хотя дома из соломенных тюков имеют теоретическое преимущество в энергосбережении по сравнению с обычными домами, имеется мало достоверных данных о том, как они работают на самом деле.В этом обзоре была сделана попытка дать первое представление о сравнении потребления энергии для отопления помещений в домах из соломенных тюков и в обычных домах. В большинстве обследований этого типа измеренные дома сравниваются с контрольными домами того же размера, качества строительства, заполняемости и т. Д. Контрольные дома для этого исследования было слишком сложно найти, учитывая разнообразие конструкций домов из соломенных тюков и использование плит на плитах. -слойные фундаменты. Только в 3 из 11 учебных домов были цокольные этажи или подвалы, предназначенные для ухода за детьми. Вместо реальных диспетчерских пунктов было смоделировано использование энергии в обычных домах...

Сертификат

ENERGY STAR был разработан EPA и Министерством энергетики США (DOE) для энергоэффективных печей, центральных и комнатных кондиционеров и тепловых насосов. Дома ENERGY STAR считаются энергоэффективными как минимум на 30 процентов по сравнению с текущими требованиями Международного кодекса энергосбережения. Коммунальные предприятия осознали, что предлагать скидки на покупку энергоэффективных приборов дешевле, чем строить новые электростанции. Местные электроэнергетические компании и некоторые газовые компании предлагают скидки на высокоэффективные тепловые насосы и центральные кондиционеры.Газовые компании предлагают скидки на высокоэффективные печи и котлы.

Мало кто будет оспаривать ценность минимизации или даже отказа от использования энергии, особенно если она производится из невозобновляемых ископаемых видов топлива, таких как уголь, нефть или газ, или производится на атомных электростанциях. Рост доступности энергии из возобновляемых источников, таких как энергия ветра, воды и солнца, снизит давление, которое было так очевидно в начале 1970-х годов, когда ОПЕК сократила предложение и значительно подняла цены.Строительство с «нулевым потреблением энергии» уже возможно, и есть несколько примеров «автономных зданий», которые заявляют о своей независимости с точки зрения чистого нулевого импорта и экспорта. В Великобритании в последнее время часть «тепла» ушла из этой области из-за снижения цен на энергоносители из-за конкурентных переговоров по тарифам после приватизации предприятий, ранее управляемых государством. Потребители смогли сократить свои счета за электроэнергию, фактически увеличив свое потребление. Это сложная политическая область.Например, один способ сократить потребление энергии и связанные с этим выбросы углерода, который ...

Как видно из главы 1, все здания в конечном итоге в большей или меньшей степени страдают от устаревания или неэффективности в той или иной форме. Недостатки в ткани и услугах возникают из-за их неспособности удовлетворить текущие требования и справиться с технологическими изменениями. Рано или поздно они не смогут удовлетворить некоторые, если не все потребности пользователей или законодательные требования. Это происходит по трем основным причинам, независимо от того, занято ли здание полностью или частично или полностью пустует.Во-первых, строительные стандарты и требования постоянно улучшаются благодаря политике правительства по повышению энергоэффективности и производительности зданий. Поскольку требования и ожидания пользователей недвижимости со временем растут, это также оказывает большое влияние на строительные нормы и правила. Во-вторых, износ, а также воздействие элементов приводят к постоянному износу или другим неблагоприятным изменениям в конструкции и тканях здания. В-третьих, достижения в области технологий и рост спроса со стороны России...

Исследования современных конструкций крыш, проведенные Строительным научно-исследовательским учреждением (BRE), показали, что обычная вентиляция - не единственное решение проблемы конденсации на чердаках. Конструкция «теплой дышащей крыши» (также называемая «герметичной скатной крышей») предлагает сухую чердак без сквозняков и обеспечивает лучшую энергоэффективность. Этот тип конструкции крыши требует минимальной фоновой вентиляции.

Одним из основных способов улучшения тепловых характеристик существующего здания является снижение коэффициента теплопроводности его ткани.Основные методы этого показаны ниже. На данном этапе стоит взглянуть на цели, поставленные правительством в рамках своей кампании по повышению энергоэффективности с помощью строительных норм. Части L и Раздел 6 английских валлийских и шотландских строительных норм, соответственно, регулярно пересматриваются, чтобы обеспечить более жесткий контроль над энергоэффективностью и энергосбережением.

Потребление энергии, относящееся к комфортным условиям, не ограничивается отоплением зданий зимой.Даже в умеренном климате, таком как Великобритания, потребуется некоторое охлаждение внутри здания для борьбы с перегревом летом. В некоторых больших офисных зданиях на охлаждение может приходиться значительная часть затрат на электроэнергию.

Таблица 10.8 Вопросы энергоэффективности Определите целевые показатели энергоэффективности. Однако из-за ужесточения контроля над энергоэффективностью в Строительных правилах добиться этого становится все труднее. Например, чтобы достичь целевого значения U, равного 0.16 Вт м2K для плоской кровли изоляция из минерального волокна должна иметь толщину около 250 мм.

Сплошные стены конструкции без штрафов обычно имеют толщину от 200 до 225 мм (буклет BRE BR 160, 1989). Снаружи они покрываются двухслойной штукатуркой, а внутренняя отделка обычно гипсокартоном, прикрепленным к деревянным балкам, прикрепленным к стене без штрафов с помощью обрезных гвоздей. Вплоть до конца 1960-х годов эта форма ограждения считалась относительно эффективной с термической точки зрения.Однако в связи с повышением требований к энергоэффективности после нефтяного кризиса начала 1970-х годов многие из этих первоначальных жилых домов без штрафов теперь считаются термически неэффективными (см. Типичные проблемы, перечисленные ниже). Для устранения этого недостатка потребуется некоторая форма системы внешнего покрытия «плащ-дождевик» для блоков без штрафов (см. Главу 9).

Любая схема адаптации к старому зданию должна включать в себя новейшие меры по повышению энергоэффективности, но необходимо следить за тем, чтобы не было конфликта или обесценивания его исторических деталей.Во многих случаях надлежащая экологическая практика может идти рука об руку с сохранением зданий.

В одной из публикаций Программы передового опыта Управления по энергоэффективности (GIR 32, 1995) были определены четыре типа «ремонта»: капитальный ремонт, приобретение и восстановление, преобразование и повторное улучшение. Включая расширения, они составляют большую часть работы по адаптации, представленной в этой книге.

Эти поправки к Правилам являются ответом на цель правительства по повышению энергоэффективности и сокращению выбросов углекислого газа.Новые требования более сложны, чем предыдущие версии, и впервые элементы применяются к изменениям в существующих зданиях. Пересмотренная часть L также сделает обязательными испытания зданий на герметичность под давлением, улучшая соблюдение нормативных требований, показывая, где есть недопустимые утечки, которые могут снизить энергоэффективность зданий. Часть L Строительных норм устанавливает стандарты строительных работ с целью экономии топлива и энергии и минимизации потерь тепла, повышения стандартов энергоэффективности за счет использования более энергоэффективных материалов и методов.Измерения основаны на характеристиках, что позволяет строителям гибко подходить к соблюдению новых стандартов.

Действия по повышению энергоэффективности В адаптированном здании это может быть лучше всего достигнуто за счет снижения потребления энергии и минимизации потерь тепла. Освещение, например, составляет большую часть потребления энергии в коммерческих зданиях (см. THERMIE Maxibrochures, 1992). Поэтому схемы адаптации должны стремиться к максимальному увеличению естественного дневного света (например, путем установки световых колодцев или солнечных труб), если это возможно, и обеспечивать энергоэффективное освещение там, где это необходимо.Глобальное потепление, вероятно, повысит спрос на активные системы охлаждения в зданиях. Кондиционер в здании увеличивает потребление энергии. Во многих случаях охлаждение здания обходится дороже, чем его обогрев. Поэтому для решения этой проблемы необходимо будет больше полагаться на меры пассивного охлаждения.

Именно по этим причинам программы переоборудования жилья так привлекательны и имеют дополнительный бонус в виде помощи в достижении более устойчивой окружающей среды.Более того, схемы смены вида использования генерируют меньше энергии и отходов, чем сопоставимые проекты нового строительства (Energy Research Group, 1999).

Адаптация собственности в отличие от строительства нового здания не только помогает снизить потребление энергии, загрязнение окружающей среды и количество отходов. Как указывает Эдвардс (1998), «переработка зданий и придание им новых» Использование низкоэнергетического освещения с соответствующими средствами управления для снижения затрат на электроэнергию.

Другими словами, устойчивое строительство, независимо от того, идет ли речь о новых или существующих зданиях, связано с множеством проактивных процессов.Если здание может продолжать эффективно функционировать в течение неопределенного периода времени, оно считается устойчивым. Например, устойчивость в этом контексте в первую очередь связана с такими вопросами, как минимизация строительных отходов и загрязнения, экономия энергии, увеличение использования переработанных материалов и материалов местного производства и меньшая зависимость от токсичных химикатов. Это также касается использования расчета затрат на весь жизненный цикл при разработке новых схем строительства и адаптации, чтобы помочь определить экономические уровни затрат на техническое обслуживание.Основные цели устойчивого строительства, поэтому биомасса использует энергию, хранящуюся в растениях и органических веществах, например, теплоэлектростанции, работающие на щепе. Однако важно понимать, что у этого процесса нет конечной точки - устойчивость означает постоянное совершенствование. Неудивительно, что адаптация здания считается одной ...

Ранее отмечалось, что устойчивое строительство в настоящее время является важной частью политической и экологической повестки дня. Модернизация существующих зданий может в некоторой степени способствовать созданию более устойчивой окружающей среды.Это означает повышение энергоэффективности и сокращение потерь невозобновляемых видов топлива и материалов (особенно см. Главу 10).

Даже за несколько лет произошел ряд изменений, которые повлияли на адаптацию зданий. Разумеется, экологичность продолжает приобретать все большее значение, и это отражается во многих достижениях в строительной отрасли. Например, сейчас широко признана необходимость максимального использования экологически чистых материалов и процессов.В частности, растущее значение энергоэффективности для устойчивого ремонта таково, что оправдывает новую отдельную главу.

Еще одна мера пассивной энергоэффективности - установка вентиляционной трубы на крыше, которая действует как «ловушка ветра». Это форма пассивной вытяжной вентиляции с круглым или квадратным решетчатым кожухом. Monodraught Ltd - одна из компаний, предлагающих и применяющих этот метод максимального увеличения естественного дневного света в здании.

Система освещения может включать галогенные лампы для качественного освещения.Долговечные натриевые лампы можно использовать в осветительной арматуре на лестницах пожарных лестниц и в менее используемых зонах здания в рамках общей стратегии энергоэффективности. Различные меры по повышению энергоэффективности освещения более подробно обсуждаются в главе 9.

Как указано BRECSU (GPG 155, 2001), энергоэффективность жилища может быть повышена, не дожидаясь полного ремонта. Схемы ремонта и улучшения предоставляют множество возможностей для энергетических мероприятий.Действительно, эффект масштаба обычно означает, что дешевле совмещать меры по повышению энергоэффективности с ремонтом и улучшением. Как правило, проводить эти меры по отдельности позже, как правило, дороже и вредно. Основные меры по повышению энергоэффективности зданий кратко изложены ниже. Система управления зданиями для обеспечения энергоэффективности и качества воздуха в помещениях. Установлено кровельное покрытие Energy Star с высоким коэффициентом отражения. 20-процентная экономия энергии.

Благодаря шарнирно-сочлененной конструкции фундамента система CLASP часто использовалась для школ и других подобных зданий в районах с проблемами оседания грунта при горных работах.Однако более старые версии (например, Mark 1 и Mark 2), особенно, вероятно, потребуют значительного повышения энергоэффективности, как показано на рисунке 10.7.

Значение информационных технологий как для дома, так и для работы огромно. Интеллектуальные объекты недвижимости, которые будут включать в себя меры экологического контроля, а также интерактивное телевидение с подключением к Интернету и меры по повышению энергоэффективности, вероятно, будут одними из самых влиятельных достижений в строительных технологиях в течение следующих 20 лет.Этими современными удобствами будут не только новостройки. Существующая недвижимость также должна будет учитывать эти достижения, чтобы избежать устаревания. Адаптация здания - это процесс, с помощью которого это можно сделать.

Викторианские ванны обычно имели стандартную форму несущей каменной конструкции (например, толстые стены из твердого песчаника, увенчанные скатной крышей). Конструкция крыши обычно состояла из ферм из тяжелых деревянных балок или стропильных ферм из низкоуглеродистой стали.Следовательно, к этим свойствам могут применяться меры по повышению энергоэффективности школьных зданий с высокой тепловой массой, описанные ранее.

По мнению многих исследователей, влияние плохих жилищных условий на здоровье является значительным (см., Например, Burridge and Ormandy, 1995). Предотвращение сырости и переохлаждения - еще одна причина помимо применения мер по энергосбережению, почему модернизация жилья должна включать в себя тепловую эффективность. Управление национальной статистики (Anon, 2000b), например, сообщило, что преждевременная смерть в Великобритании от болезней, связанных с простудой, таких как респираторные и сердечно-сосудистые заболевания, превышает 50 000 в год.Другими словами, на заболевания, связанные с простудой, приходится около 10 процентов всех смертей в Великобритании, где, по данным www.statistics.gov.uk, среднегодовая смертность составляет около 580000 человек. Одинокие пожилые люди и малообеспеченные семьи особенно подвержены этому современному скандалу, которого, конечно, не должно происходить в таких масштабах ни в одной части мира. Тем не менее, недвижимость, в которой проживают эти уязвимые жители, выиграет от повышения энергоэффективности и других ...

В идеале пристройка должна давать возможность улучшить экологические характеристики собственности. У клиента может быть политика расширения, которая требует максимального использования местных материалов, услуг с низким энергопотреблением и высокой тепловой эффективности ткани. См. Главу 10 для получения более подробной информации о мерах по обеспечению устойчивости. Используйте как можно больше местных материалов, но избегайте вторичных материалов с высокими затратами на транспортную энергию. Это не только снижает затраты, но и помогает обеспечить совместимость пристройки с существующей конструкцией.

На услуги приходится большая часть, если не все потребление энергии в здании. На них также приходится около 40-50% капитальных затрат на новую работу и они могут составлять значительную часть стоимости схемы адаптации. Более того, службы могут занимать почти 30 процентов площади в здании. Поэтому крайне важно уделять внимание энергоэффективности услуг в здании.

Глобальные проблемы, касающиеся энергосбережения и сокращения загрязнения в целях борьбы с изменением климата, а также потеря ограниченных ресурсов также сыграли свою роль как в спросе, так и в предложении собственности.Устойчивость - это основной политический ответ правительств как на Западе, так и в других частях развитого мира на эти проблемы (см. Главу 10). Таким образом, адаптация зданий в основном заключается в реагировании на изменения спроса на недвижимость. По этой причине он более распространен в промышленно развитых странах. Поскольку фонды собственности стареют, а использование зданий со временем меняется, адаптация стала более распространенной. Любое здание, которое плохо работает с точки зрения энергоэффективности, комфортных условий или воздействия на окружающую среду, является потенциальным кандидатом для адаптации (Energy Research Group, 1999).

Из-за их высокой теплоемкости и медленного теплового отклика некоторые традиционные здания относительно хорошо экономят энергию. Старые здания, как правило, имеют толстые сплошные стены, маленькие окна и естественное освещение и вентиляцию, что приводит к экономии энергопотребления (Scottish Civic Trust, 1981). Однако это будет зависеть от значений теплопроводности материала рассматриваемого здания. Как мы видели, адаптация - важный критерий устойчивости. Это потому, что это снижает как потребление энергии, так и образование отходов.Это сводит к минимуму потребность в использовании свежих материальных ресурсов и энергии, необходимых для их производства и транспортировки. Другими словами, реальное энергопотребление и потребление энергии на транспорт намного ниже, чем при аналогичной схеме нового строительства. Более того, поскольку это позволяет избежать сноса, адаптация сводит к минимуму загрязнение и отходы.

Достичь правильного баланса между естественной и механической вентиляцией в зданиях непросто. В наши дни на проектировщиков и строителей возлагается повышенная ответственность за минимизацию утечки воздуха из зданий в качестве средства повышения энергоэффективности.Однако основные недостатки этой цели заключаются в том, что устранение фоновой вентиляции из здания может снизить качество воздуха в помещении и увеличить риск образования промежуточной конденсации во внешней ткани. Последнее может привести к проблемам, связанным с влажностью, таким как грибок

.

Очевидно, что достижение более высокого уровня соответствия строительным нормам и другим законодательным положениям, таким как правила пожарной безопасности, энергоэффективность, доступ для инвалидов и звукоизоляция, выгодно для всех заинтересованных сторон (особенно см. Главы 10 и 11).Выполнение этих требований делает здания более безопасными, удобными и эффективными, а также удобными для пользователя. Например, в соответствии с Законом 1995 года об энергосбережении в жилых домах местные власти теперь обязаны оценивать энергоэффективность своего жилищного фонда. Это явно имеет значение для улучшения тепловых характеристик корпуса в целом.

Меры, необходимые для повышения энергоэффективности тканей школьных зданий, показаны на Рисунке 10.7-10.10. Другие меры, которые можно предпринять, представлены на следующем рисунке 10.8 Типичный разрез тяжелого школьного здания с указанием мер по энергоэффективности

Наружная изоляция и естественно вентилируемая полость повышают тепловую эффективность и устраняют внутриклеточную конденсацию, тем самым предотвращая разрушение конструкции и экономя энергию. 2. Повышение теплоизоляции крыши для повышения ее энергоэффективности.

Затраты на содержание старого здания, даже если оно было отремонтировано, обычно выше, чем затраты на новое строительство.Доход от аренды, который может быть получен от существующего здания, может быть не таким высоким, как доход, полученный от современного объекта, который полностью удовлетворяет потребности современного пользователя здания. Более того, затраты на электроэнергию, вероятно, будут выше, поскольку трудно соответствовать стандартам изоляции нового строительства. Некоторые материалы, необходимые для использования в работе по адаптации, чтобы соответствовать существующим, дороги и труднодоступны.

Замена старых или неэффективных котлов центрального отопления часто необходима в схемах ремонта жилых и коммерческих помещений.В таких случаях следует использовать конденсационные котлы из-за их потенциала энергосбережения. В частности, конденсационные газовые котлы работают со средней годовой эффективностью 85 процентов, что примерно на 15 процентов больше, чем у стандартных котлов (Harrison and Trotman, 2000). Потребление энергии Меры по энергосбережению Энергосбережение, связанное с освещением в жилых и нежилых зданиях, может быть улучшено с помощью светильников. В схеме ремонта замена существующей осветительной арматуры с использованием современного оборудования часто может привести к значительной экономии энергии, а также к улучшению визуальных условий (THERMIE, 1992).В современных светильниках используются системы отражателей, которые заменяют существующие рассеиватели или призматические панели.

Одним из основных требований при любых адаптационных работах является повышение энергоэффективности здания. Обычно это достигается путем улучшения уровня изоляции внешних стен, крыши и первого этажа здания, чтобы снизить общий коэффициент теплопроводности ткани (см. Главу 10).

Согласно BRE и Energy Saving Trust (EST) здания в Великобритании потребляют до 50 процентов энергии страны.Двадцать восемь процентов выбросов углекислого газа в Великобритании приходится на бытовое потребление энергии. Девяносто процентов от общего потребления энергии приходится на энергопотребление в зданиях, а оставшиеся 10 процентов связаны с производством энергии. Это вкупе с примерно 10 миллиардами энергии, расходуемой в Великобритании ежегодно, делает энергоэффективность основным критерием устойчивости. В ответ британское правительство в середине 1990-х издало несколько законодательных актов для решения этой проблемы. Например, Закон об энергосбережении в жилых помещениях 1995 г. и Закон об энергосбережении 1996 г. конкретно посвящены этому вопросу.Эти два закона требуют, чтобы все местные органы власти, ответственные за жилищные вопросы, подготовили, опубликовали и представили Государственному секретарю (для тогдашнего DETR) отчет об энергосбережении, определяющий меры по энергосбережению для жилых помещений в их районе. ...

Потери тепла через ткань здания имеют большое влияние на его энергоэффективность. Согласно Кэрнсу (1993), примерные проценты тепловых потерь от неизолированного жилища следующие (с пересмотренными цифрами в результате увеличения уровней изоляции, указанными в скобках). энергоэффективность в существующих зданиях.Схемы солнечной энергии составляют одну группу, и они рассматриваются ниже. На базовом уровне, однако, цели по энергоэффективности могут быть достигнуты в рамках программы модернизации к

.

В Таблице 10.6 перечислены некоторые типовые критерии эффективности для различных категорий зданий в зависимости от их площади. В качестве альтернативы критерии также могут быть основаны на объеме здания (например, ГДж м3). Эти эталоны энергии можно использовать для определения степени требуемых мер по повышению энергоэффективности. Обычно их находят путем расчета Нормализованного показателя эффективности (NPI) по следующей формуле Npi _ Скорректированное годовое потребление энергии Минимальная площадь

Энергетический менеджмент.Телевизионный мониторинг, энергоменеджмент, Холодильное оборудование. Энергетический менеджмент.6 6. Энергетический менеджмент Мониторинг внутренних и внешних условий, оптимизация потоков энергии, зональный контроль, сброс пиковой нагрузки, отключение энергии для незанятых помещений, улучшенная изоляция, системы рекуперации энергии от оборудования. 6. Управление энергопотреблением. Мониторинг внутренних и внешних условий, оптимизация потоков энергии, контроль зон, сброс пиковой нагрузки, отключение энергии для незанятых помещений, улучшенная изоляция, системы рекуперации энергии из оборудования.1. Энергоэффективность (см. Главу 10).

Во многих схемах модернизации повышение тепловых характеристик стен часто является одной из основных задач. Это требуется не только для повышения энергоэффективности здания. Это также делается для предотвращения разрушения ткани, а также для улучшения ее внешнего вида и защиты от атмосферных воздействий. Очевидно, что повышение теплового КПД стен является одним из основных методов повышения энергоэффективности здания. Другой - двери и окна для защиты от сквозняков.Цель состоит в том, чтобы снизить потери тепла и потребление энергии за счет снижения теплопроводности ткани. Это можно сделать одним из трех способов

Кладка «хребет стены» (см. Рисунок 14.36) может использоваться для офисных блоков, где сборные железобетонные перекрытия могут перекрывать до 8 м стены или хребет коридора. В настоящее время при планировании офиса принято считать, что глубина пространства от окна должна быть не более 6 м, чтобы пользователь мог наслаждаться естественным дневным светом. В сочетании с затратами на электроэнергию для освещения и кондиционирования воздуха такая планировка имеет свои преимущества.Каменные конструкции также обладают высокой естественной тепловой массой, что способствует естественной вентиляции и снижает потребность в кондиционировании воздуха.

По экологическим и финансовым соображениям часто бывает полезно изучить исторические строительные материалы и системы. Деревянный каркас, каменная кладка, плетень, мазня и солома - все это дает возможность использовать экологически чистые природные материалы для создания красивых, нетоксичных и эффективных домов.

Глубина, на которую будут проходить самые глубокие скважины, будет, как обычно, зависеть от характера грунта и предполагаемого строительства.Например, для проектирования атомной электростанции на глубоких аллювиях требуется детальное знание грунта до глубины примерно 200 м, в то время как общие знания о природе грунта потребуются вплоть до коренной породы или скального материала.

Вард насчитывает около 36 программ энергоэффективности и зеленого строительства, что примерно вдвое превышает многомиллиардные пожертвования Гарварда.11 Другими словами, для повышения своей нормы прибыли менеджеры по управлению целевым капиталом из Гарварда были бы хорошо посоветованы вкладывать как можно больше денег. в инициативы по обеспечению устойчивости университетского городка. То же самое можно сказать и о большинстве частных университетов.

Однако на практике принятие этой ответственности сталкивается с рядом серьезных проблем. Во-первых, чтобы `` встроить '' определенные посредники или устранить нежелательные, необходимо предсказать, какие посреднические роли технологии в дизайне будут играть в контексте их будущего использования, в то время как однозначной связи между действиями дизайнеров и возможная посредническая роль продуктов, которые они разрабатывают. Технологические посредничества не являются внутренними качествами технологий, но возникают в результате сложных взаимодействий между дизайнерами, пользователями и технологиями.Как стало ясно выше, технологии могут использоваться непредвиденными способами и, следовательно, могут играть непредвиденные посреднические роли. Энергосберегающая лампочка является еще одним примером этого, которая фактически привела к увеличению потребления энергии, поскольку такие лампы часто используются в местах, которые ранее не освещались, например, в саду или на фасаде дома, тем самым сводя на нет выход из строя. их экономизирующий эффект (Steg, ...

Компьютерное моделирование может быть полезным инструментом проектирования для оценки будущего энергопотребления здания.Стратегии, разработанные на этапе планирования, могут быть перепроверены после завершения проекта и при необходимости улучшены. Это включает в себя подробный послужной список с выделением фактических значений энергопотребления, которые могут отличаться от первоначальных оценок. Потребление энергии может регистрироваться в отношении конкретного исследовательского проекта или за определенный период времени. Постоянный контроль и документация также снижают риск сбоев системы. Постоянное совершенствование процедур использования и адаптация к требованиям пользователей улучшит энергетические характеристики здания и сделает объекты более удобными и простыми в использовании, что помогает избежать ошибок при обращении.

Плотина (включая электростанцию, водозаборные туннели и т. Д.) Была построена из 4,5 миллионов кубических ярдов (3,4 миллиона кубических метров) бетона. Этого было бы достаточно, чтобы построить двухполосную дорогу из Сиэтла, штат Вашингтон, в Майами, штат Флорида. Общий вес плотины составляет 6,6 миллиона тонн (5,9 миллиона метрических тонн). Каждый из генераторов электростанции весит 4 миллиона фунтов (1,8 миллиона килограммов), примерно столько же, сколько четыре с половиной полностью загруженных самолета.

Мощность источника света, срок службы, энергоэффективность, а также некоторые преимущества и недостатки'1 Таблица 11.3. Мощность источника света, срок службы, энергоэффективность, а также некоторые преимущества и недостатки'1 Высокая энергоэффективность Высокая энергоэффективность Наивысшая энергоэффективность

Независимо от того, как вы отапливаете свой дом, вы всегда можете найти способы предотвратить потери тепла. Создавайте защищенные входы, чтобы двери не открывались прямо на улицу. Грязевые комнаты, сапоги и закрытые веранды - это больше, чем просто практично, они также экономят на расходах на электроэнергию. Внутри дома сопоставьте распределение тепла с активностью. Офис, в котором вы сидите подолгу, скорее всего, потребует больше тепла, чем кухня, где вы перемещаетесь или создаете

.

Элементы управления оптимальным запуском и остановом изменяют время запуска системы отопления в зависимости от погоды, чтобы достичь требуемой температуры за требуемое время.Время нагрева сокращается в более мягкую погоду, что позволяет экономить электроэнергию. Оптимальные средства остановки отключают котлы, когда результирующее падение температуры все еще позволяет достичь требуемой температуры в конце работы. Это означает, что в мягкие дни они закрываются раньше. Наибольшая экономия энергии, вероятно, будет в легких зданиях и системах отопления с низкой тепловой мощностью.

Светодиоды

- это революционная новая технология освещения, которая снижает потребление энергии, позволяет программировать освещение с помощью компьютера и допускает широкие вариации цвета освещения.В светодиодах используются микросхемы, а не лампы, поэтому они излучают намного меньше тепла, чем лампы накаливания или даже люминесцентные лампы. Сделанные на компьютерных микросхемах, они легко регулируются и программируются. Светодиоды уже широко используются в светофорах, поскольку города и округа по всей стране используют их для замены стандартных лампочек. Помимо экономии энергии, длительный срок службы светодиодов снижает затраты на обслуживание при замене перегоревших ламп почти на 90. Мой коллега по световому дизайну недавно использовал светодиоды для подсветки моста со скоростным трамвайным транспортом, запрограммировав световое шоу каждый раз, когда проезжает поезд.Возможности использования светодиодов в дизайне освещения безграничны

Самая распространенная форма стеновой конструкции с использованием восстановленной каменной сборной облицовки, производимая Trent Concrete, получила оценку B в Зеленом справочнике по спецификациям BRE 2008 года. Этот рейтинг подчеркивает неотъемлемые устойчивые преимущества бетона. Во-первых, он обладает огромной силой. Предлагая превосходную устойчивость к гниению и деградации, продукция Trent прослужит долго. Затраты на энергию в течение всего срока службы также значительно снижаются благодаря впечатляющей тепловой массе бетона.Сохраняя тепло зимой и снаружи летом, здание гораздо меньше полагается на отопление и кондиционирование воздуха, тем самым сводя к минимуму его долгосрочный углеродный след.

Традиционный подход к кондиционированию воздуха заключается в создании системы с воздуховодом, в которой вентиляторы работают с постоянной скоростью в течение всего года. Обычно для охлаждения помещений требуются гораздо большие объемы воздуха, чем для чистой вентиляции. Таким образом, воздушная система имеет большие вентиляторы и воздухообрабатывающее оборудование в больших пустотах под потолком.Размеры воздуховодов и вентиляторов определяются пиковыми летними условиями, которые могут длиться всего несколько часов. В остальное время вентиляторы без надобности выталкивают большие объемы воздуха, а потребление электроэнергии на обработку воздуха выше, чем необходимо. Современная экономичная и экономичная альтернатива - использовать холодную поверхность (охлаждаемые потолки или балки) для охлаждения и использовать воздушную систему меньшего размера для вентиляции и скрытого охлаждения. Используя низкие скорости воздуха (1-2 м / с вместо 5-6 м / с), можно добиться значительного снижения энергопотребления вентилятора.

Целью освещения учебных помещений является сбережение энергии при поддержании богатой учебной среды за счет тщательного выбора и расположения осветительных приборов и элементов управления. Учреждения и учебные заведения имеют ограниченный бюджет и требуют чрезвычайно надежного, защищенного от вандалов освещения с низким энергопотреблением. Техническое обслуживание, как правило, некачественное и требует ремонта, а не профилактики, поэтому оборудование должно быть как можно более необслуживаемым.

Энергоэффективность, техническое обслуживание и использование здания были постоянными темами в дизайне.Для достижения целей клиента везде, где это возможно, были приняты простые и надежные стратегии. Команда разработчиков работает с BP Solar, которая предоставит фотоэлектрическую установку (модули, электропроводку и оборудование для кондиционирования электроэнергии) в виде пакета «под ключ», который будет установлен на заключительных этапах основного строительного контракта.

В здании достигается экономия энергии до 50 по сравнению со стандартным дизайном супермаркета за счет сочетания новейших и передовых методов устойчивого строительства.Он набрал максимальный рейтинг BREEAM в 31 балл за энергоэффективность. Низкий уровень внешнего искусственного освещения означает, что на уровне потолка устанавливается меньше светильников. Освещение для местных товаров экономично в установке и эксплуатации.

Как экологичное здание сохраняет экономию энергии в долгосрочной перспективе? Это один из критических вопросов при проектировании зеленого здания, поскольку существует множество свидетельств того, что энергоэффективность здания со временем ухудшается. Системы изнашиваются, и люди, обслуживающие и эксплуатирующие новое здание, могут не проводить необходимый ремонт, проводить профилактическое обслуживание и, как правило, не управлять энергопотребляющими системами здания, как это было изначально спроектировано.LEED призывает к принятию двух простых мер по противодействию этой тенденции к снижению энергоэффективности «зеленым» зданиям. Во-первых, проекты могут получить балл LEED, разработав план мониторинга и проверки в соответствии с установленными международными протоколами, а затем установив датчики, которые измеряют фактическую производительность ключевых энергопотребляющих систем, таких как чиллеры и бойлеры. Датчики подключены к зданию. Лидирующей силой в США, занимающейся измерениями и проверкой, является Федеральная программа управления энергопотреблением, которая...

Узкий план (ширина 13,5 м) и высокие потолки (3,45 м) позволяют использовать естественный свет. Есть большие площади остекления, в виде открывающихся окон. На уровне присутствия они управляются вручную, в то время как верхние окна бункера являются неотъемлемой частью стратегии естественной вентиляции и находятся под контролем системы управления энергопотреблением здания. На верхнем этаже есть окна верхнего этажа, что делает этот этаж намного выше

. Системы воздушного барьера

обеспечивают ряд преимуществ для строительных проектов, в том числе повышенный внутренний комфорт, долговечность и энергоэффективность.Благодаря этим характеристикам они подходят для множества применений в различных климатических условиях. Воздушные барьеры могут снизить утечку воздуха до приемлемого уровня на площади менее 1,50 квадратных футов общей площади здания и часто устанавливаются для зданий. Воздушные барьеры обычно регулируются энергетическими кодексами, в которых признается важность герметичности зданий и энергоэффективности. По состоянию на начало 2006 года несколько штатов разработали существующее и находящееся на рассмотрении законодательство о воздушных преградах, а также критерии соответствия.

Это было исследовано в другой статье автора в 1999 г. (Wood, 1999b). Автоматизированное здание - это представление многих людей об «умном здании». Роберт Хеллер (1990) дал «заглянуть в будущее» описание жизни в интеллектуальном здании, «оснащенном сенсорными, биометрическими и персональными датчиками и сканерами». Многие здания имеют сложные системы управления, стремящиеся обеспечить относительно статические внутренние условия окружающей среды и / или обеспечить безопасность с помощью контроля доступа.Они могут быть известны как системы управления энергопотреблением (EMS) или системы управления зданием (BMS).

Сопротивление проникновению воздуха Воздушный барьер должен препятствовать потоку воздуха. Хотя на национальном уровне нет обязательных требований, отдельные штаты приняли кодексы энергосбережения, которые требуют герметичности и допускают различные варианты соответствия в отношении сопротивления инфильтрации воздуха в материалах, сборках или целых зданиях (как описано ранее). и уровни потребления энергии.Воздушные барьеры играют решающую роль в контроле этих эффектов утечки воздуха.

По словам Смита (I997), общие капитальные затраты на строительство мало отличались от тех, которые можно было бы ожидать от «приблизительно эквивалентного здания с кондиционером». С точки зрения зарегистрированной температуры воздуха в помещении, здание «работало не хуже, чем прогнозировалось, если не лучше», при этом потребление энергии составляло примерно половину. «Истгейт» превосходит другие здания Хараре аналогичного качества и размера ».

Построенный на длинном узком участке недалеко от кольцевой дороги Амстердама, штаб-квартира ING находится между районом высотных зданий Зуйдас и зеленой зоной Далле Ньиве Меер. Архитекторы намеренно оставили конструкцию низко с зеленой стороны и заставили ее подниматься в сторону города. Для того, чтобы автомобилисты имели вид на зеленую зону и в то же время офисам был виден вид на шоссе, здание построено на пилотах высотой от 9 до 12,5 метров. Большое внимание было уделено энергоэффективности конструкции, например, благодаря двойному фасаду, который способствует естественной вентиляции, обеспечивая при этом звукоизоляцию от шума транспорта.Насосная система использует водоносный горизонт, расположенный на глубине 120 метров под зданием, для хранения тепла и холода. Последовательные этажи в зданиях переплетаются и позволяют переходить от одного к другому. Атриумы, лоджии и сады также разнообразят внутреннее пространство. Как писали архитекторы, «штаб ...

Хотя здания с хорошей изоляцией помогают снизить потребление энергии и косвенно ограничивают выбросы углекислого газа за счет уменьшения количества необходимого тепла, растущее беспокойство по поводу потенциального воздействия на озоновый слой газов CFC, используемых в качестве пенообразователей, привело к пересмотру материалы и процессы их производства, в результате чего был подписан Монреальский протокол.Теперь производители пенополиуретана предлагают пенообразователи с содержанием пенообразователя

.

За счет установки компактных люминесцентных светильников на внутренней световой полке и установки датчиков дневного света с регулируемым затемнением можно было включать искусственное освещение только тогда, когда дневной свет начинал падать. Искусственный свет отражается от потолка и попадает в рабочую плоскость по тем же путям, что и дневной свет, обеспечивая бесшовную интеграцию между обоими источниками света и минимизируя потребление энергии на освещение.Используя эту стратегию, можно снизить годовое потребление энергии на освещение с 44 кВтч м2 в год в передовом современном офисе в Великобритании до 19 кВтч м2 в год по нашей исследовательской модели.

Датчики движения для освещения экономят энергию. В большинстве случаев освещение является непрямым для комфорта пациента. Элементы управления дневным освещением ограничивают потребление энергии и используют доступный солнечный свет. В каждой частной палате пациента есть возможность контролировать температуру в пределах заданных значений. Большие энергосберегающие окна в палатах обеспечивают хорошее дневное освещение.

Project воплощает в себе множество передовых методов проектирования и строительства. Владельцы зданий, чувствительные к годовым затратам на электроэнергию, долгосрочным расходам на техническое обслуживание и возрастающей угрозе ответственности из-за синдрома больного здания, могут потребовать рейтинг LEED, чтобы получить все преимущества высокопроизводительного проектирования. Баллы LEED доступны при соблюдении критериев проектирования и строительства, указанных в шести категориях экологически чистых объектов, эффективности использования воды, энергии и атмосферы, материалов и ресурсов, качества окружающей среды в помещениях, а также инноваций и процесса проектирования.Пункты в каждой категории подробно описывают стратегии, которые поддерживают экологически чувствительные условия строительства. Например, баллы за экологически чистые объекты присуждаются за реконструкцию заброшенных участков, площадок для хранения велосипедов, восстановление естественной среды обитания, управление ливневыми водами на месте и снижение светового загрязнения. Слишком часто проектирование и строительство зданий руководствуются рыночными соглашениями. Одет в декоративную ...

Когда отводные туннели больше не понадобились для изменения маршрута реки Колорадо вокруг плотины, они были частично заполнены бетоном и использовались для другой цели.Два внутренних туннеля были заполнены на одну треть своей длины ниже входных отверстий. Стальные трубы диаметром 30 футов (9,1 метра) теперь будут соединять водозаборные башни водохранилища как с водозаборными колодцами электростанции, так и с водосточными сооружениями каньона. На выходе из двух внутренних туннелей находятся ворота размером 50 x 35 футов (15,2 x 10,7 метра). Каждые ворота можно закрыть, когда это необходимо, например, когда туннели нужно опорожнить для осмотра или ремонтных работ.

Утвержденный документ строительных норм дает руководство по минимальным критериям тепловых характеристик зданий на основе стандартов для их отдельных элементов или общей энергоэффективности всего здания.Чтобы учесть относительную эффективность изоляционных материалов, значения теплопроводности (Вт · м · К) приведены при стандартном значении 10 ° C, что позволяет проводить прямые сравнения. Показатели U не иллюстрируют прямую сопоставимость из-за различной толщины и большого разнообразия комбинаций материалов, обычно используемых в строительстве.

В отличие от многих зданий, стремящихся к низкоэнергетической форме, в этом проекте сочетание ограничений площадки, необходимости обеспечить хорошее присутствие здания от Гринфорд-роуд, которая проходит с севера на юг, и сильное желание со стороны клиента не Чтобы скрыть характер деятельности здания его штаб-квартиры, это привело к тому, что обычно считается наихудшим сценарием («кошмар» Славида) в отношении нежелательного нагрева и ослепления от малоуглового солнечного излучения, большого количества остекления, обращенного на восток и запад.

В объекте проектировщиками применен ряд энергосберегающих мероприятий. Мощность вентиляторов в кондиционерах была снижена за счет использования воздуховодов большего размера, чем обычно, для снижения общего статического давления. Для рекуперации энергии между вытяжными и наружными воздуховодами был установлен контур рекуперации тепла. Потребление энергии снижается зимой за счет предварительного нагрева холодного наружного воздуха, а летом за счет предварительного охлаждения горячего наружного воздуха. Экономайзеры котельной трубы предварительно нагревают подпиточную воду котла.Тепло рекуперируется из продувочных линий котла и водяного контура конденсатора для предварительного нагрева входящих линий подпитки ГВС. При необходимости водяной экономайзер обеспечивает охлаждающую воду. Раздельное измерение энергии для систем отопления, вентиляции и кондиционирования, освещения и общей мощности позволяет контролировать и анализировать каждое из них. В помещениях, отличных от палаты пациентов, дизайнеры установили двухуровневые средства управления освещением и датчики движения. Датчики фотоэлементов ограничивают потребление энергии и используют доступный солнечный свет.

Из-за низкой потребности в отоплении помещений в высокопроизводительных домах производство тепла должно быть простым и с низкими капитальными затратами.Коллективное производство тепла для многих домов избавляет от необходимости покупать и обслуживать систему в каждом отдельном доме. Чрезвычайно низкий спрос на энергию приводит к особым требованиям к такой системе централизованного теплоснабжения.

Анализ маркетинговых успехов в Европе, Северной Америке и Новой Зеландии, проведенный в рамках Задачи 28 38 Международного энергетического агентства (МЭА), привел к следующим рекомендациям. имеют односторонний акцент на «дополнительных инвестиционных затратах, приводящих к ежегодной экономии энергии».

Противоречия между солнцем и ветром во дворах любой ориентации разрешаются с помощью интерстиция. Регулируемые конструкции могут расширяться вверх в жаркие летние месяцы, ловя океанский бриз с запада и одновременно затеняя внутренний двор. Зимой, когда солнце ниже и во дворе меньше необходимости в вентиляции, крышка снимается, открывая двор снова в небо. В большинстве случаев, предоставляя достаточно места для такой конструкции, чтобы она могла свободно плавать, интерстиций предлагает способ обеспечить комфорт круглый год с помощью средств с низким энергопотреблением.Но все зависит от ориентации и окружения.

В 2007 году организация отреагировала на проблему изменения климата, изменив рейтинговую систему LEED, чтобы требовать определенных минимальных уровней энергоэффективности от всех сертифицированных проектов. Начиная с 2007 года, в результате этих изменений руководство USGBC ожидает, что здания

, сертифицированные по стандарту LEED, будут

Класс энергопотребления домов варьируется от стандартной конструкции (на основе потребления масла 8,5 литров в год) до Minergie (4.5 литров) и пассивные дома (1,5 литра). Они предлагают услуги по проектированию с обширным выставочным залом, где клиенты могут указать все варианты отделки до строительства объекта.

Настоятельно рекомендуется уделять первоочередное внимание долгосрочным затратам на электроэнергию и техническое обслуживание в процессе окончательной разработки проекта. Переработанные материалы следует указывать, в первую очередь, из местного региона, затем из близлежащих регионов и в третьих из более отдаленных источников. Следует избегать недавно обработанных материалов с коротким сроком службы, изготовленных из невозобновляемых добытых ресурсов, а также переработанных материалов, требующих межконтинентального импорта.Материалы с высокими показателями энергопотребления также должны иметь длительный срок службы, например добытый в карьерах магматический камень, нержавеющая сталь и т. Д., Или должны быть изготовлены из переработанных материалов, таких как алюминиевые профили из переработанных банок и лома

Можно спроектировать здание с низким энергопотреблением или даже с нулевым потреблением энергии, и были построены его образцы. Однако растущее признание энергии, используемой на этапе строительства (воплощенная энергия), требует пересчета нулевого положения. Это все еще возможно, особенно если здание генерирует и распределяет избыточную энергию и если материалы способны реализовать скрытую энергию в конце срока полезного использования здания, когда оно «демонтировано».Плотно прилегающее здание, построенное для удовлетворения сегодняшних потребностей, а не для удовлетворения, возможно, никогда не реализованных ожидаемых потребностей в будущем, снижает первоначальные затраты. Также может быть, что спецификации будут ниже и будут использоваться менее сложные технологии. Натуральные материалы и материалы с самостоятельной отделкой не требуют отделки или косметического ремонта, также можно указать материалы, которые не нуждаются в очистке или являются самоочищающимися. Возможно строительство необслуживаемого здания.

Практически в каждом случае клиент выражал заинтересованность в строительстве здания с низким энергопотреблением и в той или иной форме поддерживал экологически сознательный дизайн.Во многих случаях это было частью политики компании или изложено в кратком изложении, в некоторых случаях компания была вовлечена в какой-либо аспект энергетического бизнеса и хотела продемонстрировать свою эффективность в этом отношении, в других случаях полное кондиционирование воздуха просто не разрешалось. за исключением особых обстоятельств.

Хотя можно было бы разумно ожидать, что инженеры будут автоматически стремиться к энергоэффективности в своих проектах, было обнадеживающим (вспоминая, что я учился на инженера) сложилось впечатление, что это важный вопрос и для этой группы архитекторов.Мало того, была очевидна значительная экологическая осведомленность, а также желание предпринять позитивные шаги в направлении создания более экологически чистой окружающей среды. Низкое энергопотребление, естественная вентиляция и дневной свет, использование местных материалов и пассивных систем отопления - все это рассматривалось как подходящие цели проектирования. Архитекторы и инженеры также стремились вернуть контроль над внутренней средой в руки пользователей здания. Была очевидна обратная реакция на централизованно управляемый, равномерно кондиционируемый и искусственно освещенный, энергоемкий, герметичный стеклянный блок.

Проектные цели проекта заключались в устойчивом строительстве и энергоэффективности. На раннем этапе было принято решение, что дневное освещение должно быть основным средством освещения. Искусственное освещение рассматривалось как необходимое дополнительное средство для использования в течение длительного времени или в экстремальных зимних условиях. Легкая структура Gridshell, разработанная Buro Happold, была хорошо задокументирована в другом месте, но цель этого тематического исследования - проиллюстрировать природу и качество дневного света, а также его значение с точки зрения энергии, поскольку это `` зеленое '' здание в что «экологичность» и энергоэффективность являются частью идеала самого музея.Строительство здания было завершено в мае 2002 года, и до сих пор не было необходимости в дневном искусственном освещении, хотя в настоящее время ведутся работы по консервации и обучение. Тот факт, что в дневное время не использовалось электричество для освещения помещения, свидетельствует об энергетике здания ...

Тщательно спроектировав здание так, чтобы оно помогало втягивать больше воздуха, чем естественным образом выходит из туннеля (и добавляя пару простых устройств с низким энергопотреблением, таких как излучающая плита, которая сама вытягивается из грунтовых вод), можно сделать пространство под этой очень большой стеклянной стеной, выходящей на юг, комфортным летом, почти исключительно с помощью пассивных средств.Теперь, когда состав скина известен, мы разработаем структуру, которая будет работать с ним. Опять же, природа кожи определяет организацию структуры, а природа кожи определяется как оптическими, так и термическими критериями.

7 проектов по использованию возобновляемых источников энергии для ветряных турбин, которые можно выполнить за выходные

Помните, когда вы могли сделать свой собственный небольшой генератор для хобби, который включал скручивание проволоки вокруг нескольких гвоздей? Становится так просто сделать ветряную турбину своими руками из материала, найденного в вашем доме или даже из старой стиральной машины или беговой дорожки.Мы исследовали Интернет, чтобы найти несколько основных идей о том, что нужно для создания любительской турбины или солнечной панели, которые могли бы фактически компенсировать некоторые затраты на электроэнергию на вашей ферме, в коттедже, лодке или коттедже. Вот несколько креативных идей, которые можно решить.

# 1 Ветряная турбина генератора переменного тока сделай сам - Новости Матери-Земли

Этот простой проект включает в себя автомобильный генератор переменного тока с регулятором напряжения и создание автономного источника электроэнергии для удаленной кабины автора.

Маленькая турбина установлена ​​наверху старой телебашни (помните те?), Со стандартными трубопроводами и кронштейнами для обеспечения безопасности.Система подключена к местным аккумуляторным батареям. Весь проект DIY Wind Turbine стоил около 1000 долларов.

Это не самый красивый ветряк, но он дешевый. Автор предупредил, что из-за веса двигателя установить самодельную ветряную установку на вершине 20-футовой башни было непросто.

# 2 Самодельная лопата для снега Ветряная турбина

В следующем проекте творчески используется обычный инструмент, найденный в северной стране; лопата для снега.Этот автор купил большую часть этого оборудования на Amazon и создал башню для своего ветряного двигателя своими руками на деревянных полноприводных автомобилях.

Большая часть материала, который он купил на Amazon, состоит из труб, соединений и ниппелей для электропроводки. Проект генерировал мощность с помощью 300-ваттного двигателя с постоянными магнитами, установленного на основании.

Автор, Маунтин (Бумер) Майк, вложил всего 200 долларов в эту ветряную турбину, сделанную своими руками. Очень низкий порог для установки ветряной турбины.Полный список запчастей можно найти на SolarPowerSimplified.com

.

# 3 DIY Беговая дорожка Мотор с вертикальным доступом Ветряная турбина

Следующий проект ветряной турбины своими руками - установка, которую можно разместить где угодно. Он может быть даже портативным. Использование ободов велосипедных колес, трубы из ПВХ и утилизированного двигателя беговой дорожки.

Эту портативную вертикальную турбину с примерно 50 Вт генерируемой мощности можно перемещать и размещать там, где дует ветер. Единственный недостаток, который отмечает автор, заключается в том, что для начала вращения требуется довольно много ветра.Все материалы были собраны в гаражах и мусорных магазинах, что фактически сделало стоимость этого проекта ветряной турбины своими руками 0 долларов.

# 4 DIY Мотор для стиральной машины Вертикальная ветряная турбина

Автор дает пошаговое руководство по созданию простой ветряной турбины с использованием обрезанной трубы из ПВХ и двигателя старой стиральной машины. Лезвия из ПВХ уложены друг на друга на одной опоре для красивого внешнего вида.

Руководство по 15 шагам; проиллюстрировано и объяснено очень подробно. С помощью ручных электроинструментов и использованных материалов вы можете реализовать полностью функциональный проект ветряной турбины своими руками.Таким образом, сделайте это за один уик-энд! Автор утверждает, что эта версия стиральной машины вырабатывает 50 Вт без нагрузки. В конкретных планах можно найти изготовление вертикального ветрогенератора из мотора стиральной машины.

# 5 Самодельная ветряная турбина двигателя постоянного тока из ПВХ и нежелательной пластмассы

Скорее всего, если вы домашний разнорабочий, то у вас есть запасные трубки из ПВХ, пластик и проводка, чтобы приступить к работе с этим простым двигателем постоянного тока. Этот пример взят из Юго-Восточной Азии, где творчество с использованием простых деталей, имеющихся в доме или деревне, является обязательным.

Электродвигатель-генератор постоянного тока и ПВХ

Отсутствуют подробные письменные инструкции, но видео дает пошаговое руководство по созданию простого генератора. Список деталей включен на их страницу с видео. На канале Creative Think есть множество других электронных проектов DIY, которые можно попробовать, поэтому стоит добавить их в закладки, чтобы просмотреть их позже.

# 6 DIY Велосипедное колесо Вертикальная ветряная турбина

Вот еще один пошаговый ветрогенератор, сделанный своими руками из старого велосипедного колеса и связки труб из ПВХ.Музыкальное сопровождение раздражает, но простой видеоурок стоит посмотреть, чтобы найти самые разные идеи.

Велогенератор

# 7 Самодельная ветряная турбина мощностью 1000 Вт

Кредит изображения - Самодельная ветряная турбина мощностью 1000 Вт

Это отличное пошаговое руководство по созданию «почти коммерческой» ветряной турбины. Эта ветряная турбина мощностью 1000 ватт может заряжать аккумуляторную батарею, питающую автономный дом. Это генератор с постоянными магнитами, вырабатывающий трехфазный переменный ток, выпрямленный до постоянного тока, который затем подается на контроллер заряда.Магниты вращаются по ветру, катушки закреплены, поэтому щетки или контактные кольца не нужны.

6 шагов, которые следует учесть перед созданием собственной ветряной турбины

На инновационном сайте Greeneco Products есть аккуратное руководство, в котором показаны шаги, которые следует учесть, прежде чем приступить к выбору идеальной ветряной турбины, сделанной своими руками. К ним относятся:

  • Изучите технологию - Изучите терминологию и безопасность или работу с электрическими компонентами
  • Изучите местные погодные условия - Допускают ли местные ветровые условия использование вашей собственной ветряной турбины.
  • Определите, сколько электроэнергии вам потребуется для выработки - Тщательно проанализируйте свои потребности в электроэнергии. Покроет ли ваш проект все потребности или вы увеличите мощность сети.
  • Сделай сам или найми подрядчика - Есть ли у вас навыки, чтобы взяться за проект самостоятельно, или у вас есть бюджет, чтобы нанять его.
  • Доступ к качественным материалам - Ветровые турбины требуют серьезных наказаний. У вас есть доступ к качественным компонентам, которые прослужат вам долго.
  • Рассмотрите возможность сочетания ветра и солнца - Если позволяют местные условия, подумайте о добавлении солнечных батарей в проект. Когда не дует ветер, покрытие будет лучше.

Строительство ЛЭП с контуром большого пальца. Длина петли составляет 62 мили, начиная от новой подстанции Бауэр на юго-западе округа Тускола до новой подстанции Рэпсон в округе Гурон, в городке Сигел.

Домашние ветряные турбины будущего. - В регионе большого пальца Мичигана будет больше пользователей домашних ветряных турбин, используемых на фермах и коттеджах.Развитие технологий сделало этот потенциал более доступным. Даже в магазинах товаров для дома Big Box продаются ветрогенераторы для домашнего использования.

Строительство ветряной турбины за пять минут. MidAmerican Energy собрала это потрясающее видео, в котором показан весь процесс создания ветряной турбины. Видео длится чуть более пяти минут и включает в себя фактоиды на протяжении всего процесса.

Поддерживаемая Google ветряная линия электропередачи устраняет препятствия - с 2012 года. Chicago Tribune сообщает, что предлагаемая линия Atlantic Wind Connection (AWC) преодолела первое нормативное препятствие.Линия электропередачи стоимостью 5 миллиардов долларов для передачи энергии от ветряных электростанций у восточного побережья. По словам официальных лиц, проект Google Renewable Power перейдет к следующему этапу процесса утверждения.


Поделиться:

Нравится:

Нравится Загрузка ...

DIY Fidget Spinner Electricity Generator

Электрический генератор - это очень распространенная и полезная электрическая машина, которая была обнаружена Майклом Фарадеем в 1832 г.С тех пор мы используем эти машины на всех наших электростанциях, чтобы обеспечить нашу планету электричеством. В этом проекте мы собираемся построить простой генератор с использованием электромагнита и прядильщика , чтобы понять концепцию генератора.

Прежде чем мы начнем, важно знать о генераторах . Они не производят электричество. Да, вы не ослышались! Фактически, электричество никогда не может быть произведено; по закону сохранения энергия может передаваться только из одного состояния в другое.Итак, в генераторе ротор вращается с использованием любой механической муфты турбины или двигателя, и это механическое вращение преобразуется в электрическую энергию в статоре. Мы собираемся сделать то же самое, мы будем использовать спиннер в качестве ротора и электромагнит в качестве статора, чтобы производить электричество , достаточно маленькое, чтобы светить светодиод. Звучит интересно, правда? Приступим ...

Необходимые материалы:
  1. Фиджет спиннер
  2. Электромагнит
  3. Неодимовые магниты

Как работает электромагнит?

Прежде чем приступить к проекту Fidget Spinner Electricity Generator , поскольку мы используем электромагнит, давайте разберемся, как он работает.В нашем проекте мы используем электромагнит 12В 0,25А (более подробные технические характеристики будут рассмотрены позже). Таким образом, очевидно, что если мы поставим 12 В, он будет потреблять около 0,25 А и создавать магнитное поле (B) , которое будет притягивать любой металлический предмет в окружающей его области. Это магнитное поле создается потому, что ток течет через катушку, которая находится внутри электромагнита, и, как мы знаем, согласно закону индукции Фарадея , все проводники с током создают вокруг себя магнитное поле.Это магнитное поле сосредоточено в определенной точке из-за расположения катушек и, следовательно, способно притягивать металл. Но мы не хотим, чтобы это работало здесь.

Помня о том же законе Фарадея, мы должны иметь возможность также генерировать ток, создавая переменное магнитное поле около электромагнита, чтобы он действовал как генератор. Итак, чтобы создать это переменное магнитное поле, мы будем использовать неодимовые магниты со спиннером.

Электрогенератор Организация проекта:

Установка для этого относительно проста, вам просто нужно разместить неодимовые магниты над спиннером (как показано ниже) и поместить его прямо над электромагнитом.

Неодимовые магниты очень мощные и будут пытаться притягиваться к электромагниту, если вы вращаете его свободной рукой. Следовательно, используйте некоторое приспособление, чтобы удерживать их обоих нетронутыми. Я использовал гайку и болт, как показано на рисунке ниже. Как только это будет сделано, подключите светодиод к выходной клемме электромагнита (без полярности), и вы готовы к вращению.

Производство электроэнергии с помощью Fidget Spinner для свечения светодиода:

Наш мини-генератор готов к работе.Просто поверните спиннер рукой, и вы должны заметить, что светодиод светится. То же самое можно найти в презентации video в конце этой страницы. Чем быстрее вы вращаете, тем ярче он светится. Потратьте немного времени и наслаждайтесь результатом, а позже давайте проанализируем, что здесь происходит.

Хорошо, теперь, чтобы перейти к техническим вопросам, давайте проанализируем несколько вещей. Вы должны были заметить, что светодиод светится независимо от того, в каком направлении вы вращаете спиннер или с какой полярностью вы подключаете светодиод.Это потому, что здесь светодиод на самом деле светится от переменного напряжения . Какие....?????

Да, ни один генератор не может вырабатывать постоянное напряжение. Когда напряжение вырабатывается в генераторе, его напряжение по умолчанию будет переменным током. Даже в генераторах постоянного тока мгновенное напряжение, создаваемое статором, является переменным, а затем механически преобразуется в постоянный ток с помощью устройства, называемого коммутатором .

Оценка потока, производимого спиннером:

Пока все хорошо, вы можете пойти дальше и дать себе cookie для понимания вещей на данный момент.Но давайте попробуем выяснить еще кое-что, используя некоторые формулы.

Используемый здесь электромагнит имеет номер модели ZYE1-P20 / 16, который имеет следующие характеристики, упомянутые в его техническом описании. (Их больше, я перечислил только необходимые)

Напряжение: 12 В

Ток: 0,25 А

Удерживающая сила: 2,5 кг / см 2 или 25 Н

Диаметр центра: 8 мм

Чтобы найти количество витков внутри катушки, воспользуемся формулой

  F = ((NI) 2 × µ0 × a) / (2 × g2)  

Где,

F = Удерживающая сила в Ньютонах

N = количество витков, которое мы собираемся найти

I = Ток, протекающий через электромагнит, в амперах

µ0 = Магнитная постоянная, которая равна 4π × 10 -7

a = Площадь притяжения, м 2

г = зазор между электромагнитом и металлом в метрах

В них мы знаем силу из таблицы, которая составляет 25 Н, ток равен 0.25A, а площадь притяжения рассчитывается с использованием πr 2 (где r равно 8 мм), что дает 0,125 м 2 . Наконец, зазор составляет 0,01 м, поскольку 25 Н дано на каждый см расстояния.

Используя указанное выше значение, мы рассчитали, что количество витков в нашем электромагните составляет примерно 715 витков. Теперь, когда мы знаем количество витков в нашем электромагните, мы можем использовать эту информацию, чтобы найти Магнитодвижущую силу (ммс) , создаваемую спиннером, когда он вращается вместе с магнитами.

  MMF = I × N  

Где I - ток, а N - количество витков.

Ток, протекающий через светодиод, может быть приблизительно 20 мА.

MMF = 0,02 * 715
    = 14.3 При 

Это значение MMF очень и очень мало по сравнению с реальными генераторами, но для спиннера с магнитами это все, что мы могли получить. Также обратите внимание, что эти расчеты мы выполнили только для понимания основы и не предназначены для использования для анализа.

Надеюсь, вы поняли, что проект вам понравился, и вы узнали из него что-то полезное. Если у вас есть какие-либо сомнения, используйте раздел комментариев или форумы, чтобы решить эту проблему.

Гидроэлектрический генератор: как построить маленький

Гидроэлектрический генератор - лучшее, что можно построить для производства электроэнергии, если поблизости протекает ручей.

Все мы знаем, что ученые находятся в постоянном поиске альтернативных источников энергии, и это происходит потому, что в последние годы количество традиционных источников энергии начало значительно сокращаться.

Они разработали различные системы, которые преобразуют энергию природы в электричество, и многие из этих систем могут быть построены дома в меньшем масштабе, чтобы снизить потребление электроэнергии. После того, как мы увидели, как производить электричество с помощью магнитов или энергии ветра, пора поговорить о людях, которые живут рядом с рекой.

Часто называемый гидро-, микрогидравлическим или ручным гидрогенератором , эту систему не очень сложно построить.

Чтобы построить гидроэлектрический генератор, вы должны выполнить следующие шаги:

1. Подготовка дисков

Наш гидроэлектрический генератор будет состоять из двух основных частей:
- Статор (эта часть не движется и снабжена витками провода для сбора электроэнергии)
- Ротор (ротор - это часть, которая движется и имеет несколько мощных магнитов. что вызовет электричество в катушках)
Сначала вам понадобятся шаблоны и картон. Два шаблона, которые содержат схему ротора и статора, необходимо вырезать и прикрепить к передней и задней части картона.После того, как эти шаблоны хорошо приклеены к картону, сделайте отверстие (1 см) в центре диска статора.

2. Присоединение статора

Теперь вам нужно сделать 4 катушки, которые будут прикреплены к картону. Для этого необходимо использовать картон с овальным сечением. Затем начните наматывать провода на этот картон, чтобы получилась плотная катушка (200 витков). Осторожно снимите катушку с овальной части и затем повторите эту процедуру, чтобы сделать еще три катушки.

Расположите катушки на картоне по шаблонной схеме (их обмотки должны чередоваться по часовой стрелке и против часовой стрелки).Вы должны быть уверены, что электрон будет следовать по пути, указанному стрелками на шаблоне, начиная с левой катушки против часовой стрелки.

Соедините концы катушек и используйте изоляционную ленту, чтобы избежать ошибок. Используйте мультиметр, чтобы проверить электрическое сопротивление (Ом). Если провода подключены правильно, счетчик должен показывать около 10 Ом.

3. Установка ротора

На этом этапе вам нужно прикрепить 4 сильных магнита к шаблону статора.Проверьте магниты, отметьте южный полюс на двух из них и северный полюс на двух оставшихся. Магниты должны быть расположены на шаблоне так, чтобы их полярность чередовалась (Н-С-Н-С).

Тогда вам понадобится пробка и 8 пластиковых ложек. Вы должны укоротить ложки так, чтобы длина ручки не превышала 1 см. Посмотрите на шаблон ротора и вставьте ложки в пробку (глубиной 1 см).

4. Турбина

Проделайте в пробке отверстие диаметром 6 мм (убедитесь, что отверстие находится по центру), снова зафиксируйте геометрическое положение ложек и добавьте немного горячего клея в каждую ложку, чтобы закрепить ее.

5. Корпус генератора и окончательная сборка

Найдите пластиковый резервуар или бутылку, чтобы прикрепить ротор, статор и небольшую турбину. После того, как вы найдете центр бака, проделайте в этом месте отверстие (6 мм) и закрепите статор с его катушками чуть выше отверстия. Затем прикрепите к одному валу турбину и ротор (ложки должны быть обращены к горлышку бутылки, а магниты должны быть близко к катушкам (3 мм между катушками и магнитами)).

Похоже, наш небольшой гидроэлектрический генератор почти готов к работе.Все, что нам сейчас нужно, это поток воды, чтобы турбина вращалась непрерывно, пока есть вода для ее вращения. Если турбина правильно подключена к генератору, этот поток должен производить достаточно гидроэлектроэнергии, чтобы обеспечивать энергией наши коммунальные предприятия или заряжать аккумуляторы.

Рабочий электрогенератор

Пользователь Youtube TheDamHeroes, вдохновленный разработкой, представленной в этой статье, разместил работающий гидроэлектрический генератор. Посмотрите это в действии ниже:

(Посещали 114900 раз, сегодня 4 раза)

Идеи генераторов DIY | Backdoor Survival

Существует множество различных вариантов выработки энергии, о которых вы, возможно, даже не думали или даже не подозревали.Знание того, как собрать генераторы энергии, - это не только ценный навык для торговли и бартера, но и может сделать вашу жизнь намного более приятной в ситуации SHTF.

Когда я начал исследовать эту тему, было удивительно, сколько там лежит старого хлама, который можно было бы использовать для выработки электроэнергии, имея немного ноу-хау и инструменты.

Я хочу, чтобы после прочтения этого вы воодушевились «взять на себя ответственность» за свои будущие потребности в электроэнергии. Для тех, кто пользуется солнечной энергией, это может быть ценным дополнением к опциям, которые у вас есть для зарядки батарей, когда это необходимо.

В то же время я понимаю, что не всем удобно складывать некоторые из этих вещей, и некоторые вещи нужно покупать, если только у вас нет больших навыков.

Я, например, не хотел бы делать ветряную мельницу, но если вы удобны, то во что бы то ни стало, я призываю вас исследовать. Я включил несколько вариантов генераторов, которые находятся в разных ценовых диапазонах, для тех, кому нужно что-то получить сейчас или у которых ограниченное пространство.

Многие из этих идей довольно сложны, поэтому я включил несколько ссылок на видео на Youtube, где новаторские люди покажут вам, как сделать эти генераторы.

Целые книги могут быть написаны по любой из этих концепций, и, вероятно, так и было для краткости и для начала, я включил эти ссылки и рекомендую вам посмотреть несколько видеороликов, прежде чем начинать свой собственный проект. Нет ничего лучше, чем наблюдать за чем-то руками.

Идеи для самостоятельной работы с генератором

Генератор

из двигателя газонокосилки

Использование генератора в газонокосилке - проверенный способ выработки значительного количества энергии.Несмотря на то, что для этого вам необходим бензин, газонокосилки сжигают так мало, что это заслуживает рассмотрения. Некоторые сообщают, что двигатель мощностью 2 лошадиных силы проработает около 4 часов на галлоне бензина.

Есть много косилок с приличными двигателями, но нуждающихся в другом ремонте, из-за которого кому-то не стоит их оставлять. Вам также понадобится генератор. Генераторы для грузовиков можно найти на свалках или, если у вас есть друг, который всегда работает с грузовиками, вы можете сказать, что вам нужен генератор. Вы можете использовать генераторы меньшего размера, но для выработки электроэнергии лучше подходят генераторы большего размера.

Имейте в виду, что при этом вырабатывается мощность 12 вольт, поэтому вам нужно будет приобрести инвертор, чтобы повысить мощность до стандартных 120 вольт для работы ваших типичных приборов и т. П. Те, у кого есть солнечная энергия, вероятно, уже имеют один из них под рукой, но в противном случае они не очень дороги. Конечно, чем больше инвертор, тем дороже.

В приведенном выше видео используется инвертор мощностью 500 Вт, который обеспечивает достаточно небольшую мощность и значительную способность зарядки аккумулятора.Существует множество версий этого генератора, и просмотр нескольких видеороликов - один из лучших способов понять основы.

Гидравлические турбины

Те, у кого есть проточная вода, имеют преимущество, когда дело доходит до этого типа электрогенератора. Чем быстрее поток, тем лучше ваши возможности по выработке электроэнергии.

Если у вас не хватает потока, вы можете что-то сделать. Выкопайте участок ручья, чтобы было больше перепадов.По сути, вам нужна вода, чтобы вращать колесо, и все, что вы можете сделать, чтобы облегчить это, будет большим подспорьем.

Наличие резервуара с водой может помочь. Есть несколько способов сделать это. Во-первых, вы можете попрактиковаться в водосборе. Если вы соберете дождевую или ливневую воду и храните ее в резервуаре, вы можете выпустить эту воду, чтобы быстрее вращать турбину. Это позволяет вам генерировать дополнительную энергию в ключевые моменты времени.

Еще один способ взглянуть на это - использовать поршневой насос, чтобы использовать давление воды для перекачки воды в резервуар из ручья, реки или ручья. Эта вода затем помещается в заглушенное место или резервуар и может быть выпущена или настроена на вытекание по мере необходимости, чтобы у вас был лучший поток через ваше водяное колесо / турбину.

Это может быть особенно полезно, если скорость потока воды в вашем ручье временами бывает нерегулярной или просто для того, чтобы у вас дома была максимальная мощность. Чем большего падения и скорости вы достигнете, тем быстрее вы наберете мощность.

Есть так много способов отвести воду или уловить лишнюю воду. Водяные турбины - это потрясающая вещь, если вам посчастливилось иметь источник воды, но даже если вы это сделаете, в период засухи вам понадобится еще один резервный источник энергии или значительно сократите потребление энергии.Вот несколько полезных ссылок на видео на Youtube.

Ветряные турбины

Маленькие ветряные турбины недороги, и я хотел попробовать их сам, но полагаю, что их ждет та же участь, что и большие здесь. Вы также должны знать о проблеме птиц и ветряных мельниц.

Экологи и любители птиц сетуют и борются с реальностью того, сколько птиц погибает в районах, где используется много ветряных турбин. .Даже небольшая ветряная мельница может внести свою долю потерь. Решать, сможете ли вы с этим справиться, зависит от вас.

Вот несколько турбин для подзарядки аккумуляторной батареи или просто для подачи электроэнергии в ваш дом. Большинство людей заряжают аккумуляторы, чтобы при необходимости воспользоваться преимуществами ветра. Я добавляю большую и меньшую турбину, чтобы вы на нее посмотрели.

Одним из главных преимуществ этой турбины является то, что она имеет более низкую скорость 4,5 миль в час.

Это означает, что вы можете начать развивать мощность на той скорости, которая на самом деле не такая уж и высокая. Это серьезное улучшение по сравнению со старыми моделями.

Ветрогенератор BestEquip

Эта турбина мощностью 400 Вт является хорошим вариантом для тех, кто хочет испытать энергию ветра, но не вкладывать большие средства.

Если вы просто хотите использовать ветер в качестве дополнения, а не основного источника энергии к существующей системе, то это решение стоит рассмотреть. Хозяйственные постройки и сараи, которым требуется немного энергии или которые обращены в правильном направлении, чтобы ловить ваши обычно преобладающие ветры, могут справиться с этой меньшей турбиной.Легко собирается и имеет гарантию.

Самодельные ветряные турбины

Если у вас есть немного под рукой, можно сделать свой собственный ветряк. Вот ссылка на видео по созданию собственной ветряной турбины с некоторыми основными расходными материалами, перечисленными ниже.

  • 27 ″ лопаты для снега
  • 4 ″ круглый всепогодный бокс.
  • Круглый чехол для защиты от атмосферных воздействий, 4 дюйма.
  • Ниппель для оцинкованной трубы, 3/4 дюйма X 12 дюймов
  • Соединитель с установочным винтом EMT Snap N, 3/4 ″
  • JB Weld
  • Самосверлящие винты
  • Подшипники подушки подушки

Вам также понадобятся стержень из кабелепровода EMT 3/4 ″.

Посетите сайт этого сотрудника. У него есть несколько отличных идей по созданию собственных энергосистем.

Солнечные генераторы

Это еще одна концепция производства электроэнергии, которая имеет миллион различных вариантов реализации. Чтобы немного сузить круг вопросов, вам нужно подумать о том, что вам нужно в этих терминах.

  • Что-то, что сделает ваш генератор портативным . Многие люди пользуются вагонами или тележками. У вагона много преимуществ. Например, вы можете тянуть его с помощью квадроцикла или газонного трактора, если хотите, или просто тянуть рукой и перемещать генератор, не ломая компоненты и не перемещая их по отдельности, потому что они такие тяжелые,
  • Батареи .Герметичные морские батареи доступны в любом крупном автомобильном магазине или Wal-Mart и предлагают более дешевую и столь же эффективную альтернативу тем, которые продаются исключительно для солнечных батарей. Чем больше ампер-часов хранит батарея, тем больше энергии у вас под рукой, поэтому две батареи позволят хранить больше места, чем одна.
  • Инвертор . Он может отличаться по размеру. Вы захотите, чтобы размер вашего инвертора соответствовал размеру системы, которую вы хотите создать. Более крупные инверторы стоят дороже, поэтому, если вы просто создаете небольшой генератор, нет смысла тратить на действительно большой, если у вас нет планов расширения в короткий период времени.
  • Панели солнечных батарей. Они бывают всех размеров, некоторые из них занимают больше места, чем другие, или даже складываются. Панель на 100 Вт стоит вложенных средств. Конечно, вы можете выбрать меньший размер, но с такой низкой ценой на панели, зачем беспокоиться о меньших панелях, которые потребуют больше времени для зарядки аккумулятора?
  • Разные провода и разъемы . Опять же, это будет зависеть от других ваших компонентов. Иногда эти вещи прилагаются, но вам, скорее всего, понадобятся кабели для подключения аккумулятора.

Вот несколько ссылок на некоторые солнечные генераторы, созданные другими выживальщиками.

Предварительно установленные опции

Вы можете сократить путь и приобрести небольшой солнечный генератор по разумной цене. Вот несколько легких и недорогих вариантов. Вы можете зарядить их несколькими способами, поэтому, если у вас еще нет солнечных панелей, вы все равно можете купить один из этих генераторов и добавить панели позже, если хотите.

Портативный резервный генератор синусоидальной волны

Это впечатляющий блок питания с розетками для всех ваших нужд.При весе чуть более 5 фунтов это достаточно легкий и достаточно маленький, чтобы даже те, кто живет в небольших квартирах в городе, могли иметь под рукой резервную мощность в шкафу!

Goal Zero Yeti 150

Ground Zero производит солнечные генераторы, которые удовлетворяют самые разные потребности в энергии. Yeti 150 идеально подходит для тех, кому нужен базовый резервный источник питания.

Ground Zero продает солнечные панели собственной марки, но за эти деньги я бы просто купил другую и менее дорогую марку. Если у вас более высокие потребности в хранении энергии, Ground Zero предлагает генераторы, которые могут обеспечить резервное питание для всего дома.

Время зарядки аккумуляторов зависит от продолжительности солнечного света и размера солнечных панелей. Существует ограничение на количество подключенных панелей.

Почему не бывает нескольких типов?

Ни один генератор не будет идеальным для всех. На самом деле, вы вполне можете сделать несколько типов. Если у вас есть место, вы можете иметь небольшую ветряную турбину, а также солнечный генератор.

Те, кому посчастливилось иметь на своей территории проточную воду, могут добавить водяное колесо.Использование большого количества источников энергии может привести к тому, что вы сможете обеспечить большую часть или даже всю вашу собственную энергию, что сэкономит вам много денег и сделает вас менее зависимым от сети в любой ситуации - от стихийного бедствия до экономического коллапса. .

Не торопитесь, изучая навыки, необходимые для построения этих систем, и делайте это правильно. Хотя это может занять у вас больше времени, чем вы ожидаете, если вы только начинаете работу с проектами такого типа, приобретение навыков того стоит, и вы можете сэкономить много денег, покупая что-то готовое.

Даже если вам придется купить большую часть деталей, есть вероятность, что вы сможете собрать что-то, что даст больше энергии по той же цене, что и готовая установка, или снизит стоимость на меньшей установке, которая у вас есть. Ваш глаз.

Вы сделали генератор дома? Что было самым простым и самым сложным в этом? Прокомментируйте, пожалуйста, ниже, чтобы мы могли учиться вместе. Держу пари, что у некоторых из вас есть отличные идеи для создания устойчивой энергии с тем, что у вас есть под рукой!

Если вам понравилась эта статья, подпишитесь на нашу страницу в Facebook.

Бесплатные планы для создания собственной электростанции на педали велосипедного генератора

Создание собственного генератора альтернативной энергии решения требуют усилий в механическом проектировании и электрическом дизайн. Комбинация этих двух элементов позволяет использовать энергию и преобразовать его из одного состояния в другое. Помните, энергия не может может быть создан или уничтожен, просто изменен из одной формы в другую. Ключевые точки проектирования, которые должны быть в верхней части вашего списка:

  1. КПД вашего электрогенератора.(Определяется мощность / мощность x 100) Обратите внимание: если вы получите значение более 100%, вы следует запатентовать свое изобретение и приготовиться потратить Миллионы долларов, потому что этого еще никто не делал.
  2. Как установить генератор к прочной конструкции, поэтому он не будет двигаться во время выработки электроэнергии?
  3. Как хранить энергия от вашего генератора (аккумулятор, Конденсатор, сжатый воздух, закачка воды на высоком уровне бак, быстроходный маховик)
  4. Как пользоваться энергия от вашего генератора (какие напряжения и токи и сечения проводов / предохранителей)
  5. Как добраться рассеивать тепло от обмоток генератора
  6. Выбор генератор, который прослужит максимально долго. (Щетка против бесщеточного, шариковый подшипник против втулки подшипник)
  7. Создание генератор, на который не будет утомительно смотреть или Слушайте тоже, безопасно, без точек защемления для рук и пальцев и одежду, которую можно поймать и повредить.

НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ ВОПРОСЫ Часто задаваемые вопросы о том, как построить собственный ГЕНЕРАТОРНАЯ СИСТЕМА

«Почему не могу ли я сэкономить энергию для батареи и вернуть ее в двигатель, чтобы водить мой генератор? «

ОТВЕТ:

Если вы Чтобы узнать больше об этой теме, используйте поисковый запрос: "История вечные двигатели ».Короче говоря, каждый раз энергия переходит из одного состояния в другое, часть ее теряется в процессе трансформации. В этом случае в обмотках генератора есть сопротивление, которое нагревается при операционная. Вы можете потерять до 20% своей энергии из-за этот эффект. Когда энергия переходит от вашего генератора к вашему Аккумулятор у вас есть еще два источника потерянного питания. Более потери сопротивления в разъемах и проводке, а также потери тепла в аккумулятор, который вы заряжаете.От 3 до 15% вашего энергия может быть потеряна на этапе зарядки аккумулятора. Следующий между вашей батареей и вашим электродвигатель, приводящий в движение генератор. Опять ты имеют тепловые потери в проводке к электродвигателю, которые может составлять от 1% до 5%. А затем обмотки в электрическом двигатель также испытывает потери энергии из-за сопротивления в проводе катушки.

"Сколько мощность и токи можно ли генерировать с помощью своего тела "

ОТВЕТ:

г. выходные данные генератора в этой таблице основаны только на приближения

Ручной генератор

Велосипед

Кросс-тренажер Airdyne

Гребной тренажер

ВОЗРАСТ
Дошкольное учреждение

От 2 до 5 Ватт

.От 1 до 0,4 Амперы при 12В

От 10 до 20 Ватт

От 0,8 до 1,6 А при 12 В

N / A

N / A

Начальная школа

От 5 до 10 Ватт

От .4 до .8 Амперы при 12В

От 10 до 25 Ватт

.8 к 2 Амперы при 12В

От 15 до 35 Ватт

1,2 к 3 Амперы при 12В

От 5 до 25 Ватт

.4 к 2 Амперы при 12В

Средняя школа

От 10 до 25 Ватт

.8 к 2 Амперы при 12В

От 35 до 70 Ватт

2.С 9 до 5,8 А при 12 В

От 45 до 95 Ватт

3,7 к 8 Амперы при 12В

От 25 до 50 Ватт

От 2 до 4 Амперы при 12В

Средняя школа / Взрослые

От 25 до 50 Ватт

От 2 до 4 Амперы при 12В

75 к 400 Вт

6.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *