Регулятор оборотов двигателя 380в своими руками: Частотный регулятор для асинхронного двигателя своими руками

Содержание

Преобразователь частоты для асинхронного – схема

Асинхронный двигатель (машина) – это электрический двигатель, частота вращения которого не совпадает с частотой тока (ЭДС), прикладываемого к статору.

Рис. 1. Асинхронный двигатель

 

К преимуществам таких двигателей можно отнести их низкую стоимость, простоту изготовления и эксплуатации, а также возможность прямого включения (без регулирования или преобразования питающего тока). Есть у них и недостатки: высокие требования к пусковому току, сложная регулировка оборотов, низкий коэффициент мощности и др.

Здесь стоит отметить, что асинхронные двигатели рассчитаны на работу только с трехфазным напряжением, только в этом случае не требуются никакие преобразователи.

Однако, в быту часто требуется запитать асинхронный двигатель от обычной сети переменного тока с одной фазой, и именно здесь кроется основная проблема.

 

Необходимость использования частотного преобразователя

Есть несколько способов управления асинхронным двигателем, и один из них – регулировка частоты.

Изменяя частоту питающего тока, вы меняете частоту вращения двигателя, можете запустить его или наоборот – остановить.

В качестве преобразователя напряжения наибольшее распространение нашли инверторные схемы. Они обеспечивают широкий диапазон регулировки частот, обладают высоким КПД и другими отличными техническими характеристиками.

Схему работы инверторов можно изобразить следующим образом.

Рис. 2. Схема работы инверторов 

 

Однофазное переменное напряжение преобразуется в постоянное, подается в блок с импульсным инвертором, который формирует три независимых переменных напряжения (одинакового уровня, но со смещенной фазой) — ключа.

 

Схема инверторного преобразователя для асинхронного двигателя

Преобразователи можно приобрести в готовом виде, а можно изготовить своими руками.
Сложность проектирования и создания таких схем заключается в логике их работы. В настоящее время с приходом программируемых контроллеров Arduino и т.п. имеется возможность создавать сложные схемы с широким диапазоном регулировки частот всех трех питающих напряжений. Однако, для начала рассмотрим простые варианты.

Двигатель ДИД-0.5ТА (напряжение питания около 27 В, частота вращения – до 400 Гц) имеет небольшую мощность и широко применяется в системах автоматики. Чтобы привести его в движение и отрегулировать частоту вращения вала можно использовать следующую схему.

Рис. 3. Схема двигателя

 

По сути она представляет собой три разделенных генератора частоты (ключа) на базе логических элементов.

За регулировку отвечает резистор R2. Такая схема не подойдет для запуска асинхронных двигателей, работающих от трехфазного напряжения 380 В.

Для этих целей можно использовать адаптированную схему.

Рис. 4. Адаптированная схема

 

Здесь блоки выходных ключей A2 и А3 изображены схематично, так как полностью дублируют блок А1.

Программировать здесь ничего не нужно.

 

Более сложные реализации

Многие производители предлагают специальные контроллеры, на базе которых управление асинхронными двигателями существенно упрощается.

Один из таких вариантов – контроллер MC3PHAC.

Рекомендуемая производителем схема подключения.

Рис. 5. Схема подключения

 

Реализация платы частотного преобразователя может быть, например, такой.

Рис. 6. Реализация платы частотного преобразователя

 

Обмен данными по последовательному интерфейсу RS232 с персональным компьютером не обязателен. Схема может работать автономно.

Управляющие сигналы и процедуры инициализации можно уточнить в даташите производителя.

 

Еще один вариант с готовой прошивкой для микроконтроллера

Схема использовалась для питания трехфазного двигателя на пилораме (наверное, самый популярный способ использования трехфазных двигателей).

Рис. 7. Схема для питания трехфазного двигателя

 

Блок питания к ней.

Рис. 8. Схема блока питания

 

Вариант печатной платы.

Рис. 9. Печатная плата

 

Частота может регулироваться в диапазоне 2,5-50 Гц с шагом 1,25. ШИМ – 1700 – 3300 Гц. Мощность двигателя – не более 4 кВт.

После одиночного короткого нажатия на кнопку «пуск» подается пусковая частота – 10 Гц. А удерживание инициирует дальнейший разгон до 50 Гц (в течении приблизительно 2 секунд).

Прошивка для контроллера PIC16F628(A) здесь.

Автор: RadioRadar

Как увеличить обороты электродвигателя 380в

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото — мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото — регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т. д.

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото — схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Фото — схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото — схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Как можно регулировать обороты асинхронного двигателя: обзор способов

Благодаря надежности и простоте конструкции асинхронные двигатели (АД) получили широкое распространение. В большинстве станков, промышленном и бытовом оборудовании применяются электродвигатели такого типа. Изменение скорости вращения АД производится механически (дополнительной нагрузкой на валу, балластом, передаточными механизмами, редукторами и т.д.) или электрическими способами. Электрическое регулирование более сложное, но и гораздо более удобное и универсальное.

Для многих агрегатов применяется именно электрическое управление. Оно обеспечивает точное и плавное регулирование пуска и работы двигателя. Электрическое управление производится за счет:

  • изменения частоты тока;
  • силы тока;
  • уровня напряжения.

В этой статье мы рассмотрим популярные способы, как может осуществляться регулировка оборотов асинхронного двигателя на 220 и 380В.

Изменение скорости АД с короткозамкнутым ротором

Существует несколько способов:

  1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
  1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

Частотное регулирование

В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:

то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.

Достоинствами данного метода являются:
  • плавное регулирование;
  • изменение скорости вращения ротора в большую и меньшую сторону;
  • жесткие механические характеристики;
  • экономичность.

Недостаток один — необходимость в частотном преобразователе, т.е. увеличение стоимости механизма. К слову, на современном рынке представлены модели с однофазным и трёхфазным входом, стоимость которых при мощности 2-3 кВт лежит в диапазоне 100-150 долларов, что не слишком дорого для полноценной регулировки привода станков в частной мастерской.

Переключение числа пар полюсов

Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.

В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.

При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.

Достоинства данного метода:

  • жесткие механические характеристики двигателя;
  • высокий КПД.
  • ступенчатая регулировка;
  • большой вес и габаритные размеры;
  • высокая стоимость электромотора.

Способы управления скоростью АД с фазным ротором

Изменение скорости вращения АД с фазным ротором производится путем изменения скольжения. Рассмотрим основные варианты и способы.

Изменение питающего напряжения

Этот способ также применяется для АД с КЗ ротором. Асинхронный двигатель подключается через автотрансформатор или ЛАТР. Если уменьшать напряжение питания, частота вращения двигателя снизится.

Но такой режим уменьшает перегрузочную способность двигателя. Этот способ применяется для регулирования в пределах напряжения не выше номинального, так как увеличение номинального напряжения приведет к выходу электродвигателя из строя.

Активное сопротивление в цепи ротора

При использовании данного метода в цепь ротора подключается реостат или набор постоянных резисторов большой мощности. Данное устройство предназначено для плавного увеличения сопротивления.

Скольжение растет пропорционально увеличению сопротивления, а скорость вращения вала электромотора при этом снижается.

  • большой диапазон регулирования в сторону понижения скорости вращения.
  • снижение КПД;
  • увеличение потерь;
  • ухудшение механических характеристик.

Асинхронный вентильный каскад и машины двойного питания

Изменение скорости работы асинхронных электромоторов в данных случаях выполняется путем изменения скольжения. При этом скорость вращения электромагнитного поля неизменна. Напряжение подается напрямую на обмотки статора. Регулировка происходит за счет использования мощности скольжения, которая трансформируется в цепь ротора, и образует добавочную ЭДС. Такие методы используются только в специальных машинах и крупных промышленных устройствах.

Плавный пуск асинхронных электродвигателей

АД кроме безусловных преимуществ, обладают существенными недостатками. Это рывок на старте и большие пусковые токи, в 7 раз превышающие номинальные. Для мягкого старта электродвигателя используются следующие методы:

  • переключение обмоток по схеме звезда – треугольник;
  • включение электродвигателя через автотрансформатор;
  • использование специализированных устройств для плавного пуска.

В большинстве частотных регуляторов есть функция плавного пуска двигателя. Это не только снижает пусковые токи, но и уменьшает нагрузки на исполнительные механизмы. Поэтому регулирование частоты и плавный пуск довольно сильно связаны между собой.

Как сделать устройство для изменения скорости вращения электродвигателя своими руками

Для регулировки маломощных однофазных АД можно использовать диммеры. Однако этот способ ненадежен и обладает серьезными недостатками: снижением КПД, серьезным перегревом устройства и опасностью повреждения двигателя.

Для надежного и качественного регулирования оборотов электродвигателей на 220В, лучше всего подходит частотное регулирование.

Приведенная ниже схема позволяет собрать частотное устройство для регулировки электромоторов мощностью до 500 Вт. Изменение скорости вращения производится в границах от 1000 до 4000 оборотов в минуту.

Устройство состоит из задающего генератора с изменяемой частотой, состоящего из мультивибратора, собранного на микросхеме К561ЛА7, счетчика на микросхеме К561ИЕ8, полумоста регулятора. Выходной трансформатор Т1 выполняет развязку верхнего и нижнего транзисторов полумоста.

Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4. Выпрямитель, удвоитель напряжения питающей сети, включает в себя диодный мост VD9, с конденсатором фильтра на которых происходит удвоение напряжения питания полумоста.

Напряжение первичной обмотки: 2х12В, вторичной обмотки 12В. Первичная обмотка трансформатора управления ключами, состоит из 120 витков медного провода сечением 0,7мм, с отводом от середины. Вторичная – две обмотки, каждая по 60 витков повода сечением 0,7 мм.

Вторичные обмотки необходимо максимально надежно заизолировать друг от друга, так как разница потенциалов между ними доходит до 640 В. Подключение выходных обмоток к затворам ключей производится в противофазе.

Вот мы и рассмотрели способы регулировки оборотов асинхронных двигателей. Если возникли вопросы, задавайте их в комментариях под статьей!

Способы регулировки оборотов вращения асинхронных двигателей

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

Что такое асинхронный двигатель?

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц, р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже),

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют ‘Экономитель энергии Electricity Saving Box’. Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

где 2p – число полюсов, Z1 – количество пазов в сердечнике статора, y – собственно, шаг укладки обмотки.

Стандартные значения оборотов:

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z1b / h или 2p = 0,5Di / h,

где 2p – число полюсов, Z1 – количество пазов в статоре, b – ширина зубца, см, h – высота спинки, см, Di – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором,
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

Самостоятельное изготовление регулятора оборотов электродвигателя

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.
Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.
Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

Частотные преобразователи для промышленных электродвигателей, частотные регуляторы для насосов и вентиляторов

Частотные преобразователи и устройства плавного пуска для асинхронного электродвигателя это высокотехнологичное оборудование, позволяющее не только экономить электроэнергию и снижать нагрузку на оборудование и электрические сети вашего производства, а так же значительно снизить нагрузку на всю электрическую сеть нашей страны.

Наша компания относительно недавно на рынке регулируемого электропривода, но на протяжении этого времени зарекомендовала себя как надежный и качественный поставщик, о чем свидетельствуют отзывы наших партнеров, о которых есть информация на нашем сайте. Это конечно не все кто приобрел наше оборудование, по Вашему запросу мы готовы предоставить любые имеющиеся рекомендации. В производстве нашего оборудования используются комплектующие ведущих мировых производителей электронных компонентов и модулей, проверенных временем и тяжелыми условиями эксплуатации. Мы осуществляем модульную сборку своих приборов в России.

В распоряжении ООО «Лидер» имеется штат квалифицированных специалистов, а так же оборудование позволяющее тестировать преобразователи частоты и устройства плавного пуска в различных режимах, что позволяет гарантировать их надежность и работоспособность перед отгрузкой конечному потребителю. В настоящее время очень много предложений на рынке аналогичной продукции, может быть и по более привлекательной цене, но как показывает практика низкая цена, не всегда гарантирует заявленное качество оборудования и сервисного обслуживания. Мы не навязываем собственный продукт! Мы рекомендуем покупать продукцию ООО «Лидер». Конечный выбор за Вами!

Ниже представлены три линейки частотных преобразователей, каждая из которых содержит в себе весь спектр мощностей от 0,75 кВт до 630 кВт.

Серия А300 — для общепромышленной нагрузки

Общепромышленная серия преобразователей частоты подходит для оборудования с тяжелым пуском и высокой нагрузкой (станки, экструдеры, куттеры, компрессоры, конвейеры, погружные насосы и мн. др.). Преобразователь частоты с высокоточным пусковым моментом при низких скоростях (пусковой вращающий момент: 0.5Hz/150% (векторное управление), 1Hz/150% (U/f)), встроенным ПИД-регулятором (см. инструкцию по настройке), функции полной защиты двигателя с возможностью изменять параметры настройки, съемным выносным пультом управления, повышенным перегрузочным моментом до 200%, автоматическим подъемом крутящего момента, функцией коррекции скольжения, автоматическим регулированием напряжения (AVR) и встроенным интерфейсом RS-485.

Преобразователь частоты серии А300 имеет съемный пульт управления и может использоваться удаленно, до 60 метров от частотного преобразователя по витой паре без переходников и дополнительных модулей, усилителей сигнала.

Серия В600 — для вентиляторной нагрузки (Снят с производства)

Специальная вентиляторная серия преобразователей частоты предназначена для управления электродвигателями насосов, вентиляторов, дымососов и прочего оборудования. Инвертор имеет высокоточный пусковой момент при низких скоростях, встроенный ПИД-регулятор, функции полной защиты двигателя с возможностью изменять параметры настройки, перегрузочный момент до 180%, автоматический подъем крутящего момента, функцию коррекции скольжения, съемный выносной пульт управления, автоматическое регулирование напряжения (AVR) и встроенный интерфейс RS-485 (протокол Modbus-RTU)

В частотных преобразователях серии В600 мощностью от 18.5 кВт установлен двухстрочный пульт управления, который позволяет отслеживать два параметра одновременно.

Серия B601 — для вентиляторной нагрузки

Улучшенная серия для управления электродвигателями насосов, вентиляторов, дымососов и прочего оборудования. Инвертор имеет высокоточный пусковой момент при низких скоростях, Векторное управление, встроенный ПИД-регулятор, функции полной защиты двигателя с возможностью изменять параметры настройки, перегрузочный момент до 160%-1с, автоматический подъем крутящего момента, функцию коррекции скольжения, несущая частота 1-16 кГц, выходная частота 0-600Гц, съемный выносной пульт управления, автоматическое регулирование напряжения (AVR) и встроенный интерфейс RS-485 (протокол Modbus-RTU)

Серия B60 mini (Снят с производства)

Серия Мини используется для регулирования приводов с асинхронным электродвигателем, предназначена для управления приводами насосов, вентиляторов, лентопротяжных машин, транспортёров миксеров и т. д — для использования в системах малой автоматизации.

устройство и принцип работы прибора, достоинства и недостатки

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

https://youtube.com/watch?v=vVeR4jVfTIg

Виды устройств

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Измерения

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.

Декор дня рождения своими руками

Закрыть…


Ковбойские остроносые сапогиПринцип работы самодельного замка заключается в следующем. В одной его половине находится постоянный магнит. а в другой — металлическая пластина. Одна из них крепится к двери. Вторая, с удаленной металлической пластиной, оснащается герконом КЭМ-1 и крепится к дверной коробке. Если дверь находится в закрытом положении, две части замка прижимаются, магнит оказывает действие на геркон, замыкая его контакты. Если же дверь открывается, магнит уходит, и контакты геркона размыкаются.


Батарея, системный блок компьютера, даже блок питания для ноутбука — это все лучшие друзья. Я уже молчу, про такие хорошие грелки, как мы с мужем.


Берите наполнитель и набивайте куклу. Когда полностью равномерно распределите набивку, зашейте изделие. Ручки необходимо пришивать к туловищу практически около самой шеи.

Из одной паллеты, отшлифованной, пропитанной и лакированной, получается садовый столик вроде журнального, слева на рис. Если в наличии есть пара, из них буквально за полчаса можно сделать настенный рабочий стол-стеллаж, в центре и справа. Цепи для него также можно сплести самому из мягкой проволоки, обтянутой трубкой из ПВХ или, лучше, термоусаживаемой. Для полного поднятия столешницы мелкий инструмент укладывают на полку настенной паллеты.


Ну а если стеклянную чашу, вазу, конфетницу, сосуд для пунша или обыкновенные бокалы наполнить водой, разбросав на дне морскую гальку, и отпустить в «свободное плавание» свечи-таблетки, получим волшебную подсветку для романтического Нового года. Для более интересного и неожиданного эффекта можно поэкспериментировать с цветом воды.Как производится установка шипов на резину?


Игрушки ручной работы для детей — это красиво, дешево и приятно. Каждый ребенок нуждается в оригинальных и обучающих игрушках, но не всегда есть возможность их приобрести. Сегодня мы покажем вам 5 примеров веселых игрушек, которые вы можете сделать самостоятельно. Они могут быть сделаны из картона, бумаги или дерева. В общем вдохновляйтесь и чаще радуйте своих детей.

Для основания такой конструкции можно использовать толстую фанеру, а для её верхней части – поликарбонат. Найти в сети солнечные батареи сегодня тоже не проблема.

Внимание! При стыковке панелей не стоит прилагать слишком большие усилия, вы можете повредить место стыка. Именно столько ножей должно быть у хозяйки на кухне, чтобы процесс приготовления пищи всегда был простым и приятным.


Именно столько ножей должно быть у хозяйки на кухне, чтобы процесс приготовления пищи всегда был простым и приятным.


Для изготовления кормушки своими руками нам потребуется:


Расчет древесины. Доски, носящие название клепки, имеют двояковыпуклые стороны для придания бондарному изделию выпуклости. Чтобы их сделать такими, нужно взять нижнюю часть ствола дерева и расколоть подобием рубки дров. Если его аккуратно пилить, то нарушится природная целостность волокон, что плохо для такого изделия. Сразу приступать к фигурному выпиливанию не стоит – поленья нужно просушить в течение 2 месяцев. Причем сушить не под палящим солнцем, а в темном прохладном помещении.

Как плести браслеты из шнурков

Тот факт, что большинство новогодних костюмов для детей дошкольного возраста легко шьются на основе комбинезона, может значительно сузить и облегчить творческий поиск. Если научится шить комбинезон — основу для новогоднего костюма и придумать (почерпнуть), смастерить своими руками декоративные элементы к нему, то можно сделать удивительные и довольно интересные модели новогодних нарядов для детей. Главное заранее все продумать до мелочей, вооружится знаниями по теме — чтобы результат труда приятно удивил и порадовал всех.


Проектирование шкафа-купе

Картинки

Подарок маме на день рождения своими руками фото инструкция

Похожие новости
.

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Изготовление самодельных реле

Изготовить самодельный регулятор оборотов электродвигателя 12 В не составит какого-либо труда. Для такой работы потребуется следующее:

  • Проволочные резисторы.
  • Переключатель на несколько положений.
  • Блок управления и реле.

Использование проволочных резисторов позволяет изменять напряжение питания, соответственно, и частоту вращения двигателя. Такой регулятор обеспечивает ступенчатый разгон двигателя, отличается простой конструкции и может быть выполнен даже начинающими радиолюбителями. Такие простейшие самодельные ступенчатые регуляторы можно использовать с асинхронными и контактными двигателями.

Принцип работы самодельного преобразователя:

  1. Питание от сети направляется на конденсатор.
  2. Используемый конденсатор полностью заряжается.
  3. Нагрузка передается на резистор и нижний кабель.
  4. Электрод тиристора, соединенный с положительным контактом на конденсаторе, получает нагрузку.
  5. Передаётся заряд напряжения.
  6. Происходит открытие второго полупроводника.
  7. Тиристор пропускает полученную с конденсатора нагрузку.
  8. Конденсатор полностью разряжается, после чего повторяется полупериод.

В прошлом наибольшей популярностью пользовались механические регуляторы, выполненные на основе вариатора или шестеренчатого привода. Однако они не отличались должной надежностью и часто выходили из строя.

Самодельные электронные регуляторы зарекомендовали себя с наилучшей стороны. Они используют принцип изменения ступенчатого или плавного напряжения, отличаются долговечностью, надежностью, имеют компактные габариты и обеспечивают возможность тонкой настройки работы привода.

Дополнительное использование в схемах электронных регуляторов симисторов и аналогичных устройств позволяет обеспечить плавное изменение мощности напряжения, соответственно электродвигатель будет правильно набирать обороты, постепенно выходя на свою максимальную мощность.

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 — скорость вращения магнитного поля

n2— скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

  • неискажённая форма выходного напряжения (чистая синусоида)
  • хорошая перегрузочная способность трансформатора

Недостатки:

  • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
  • все недостатки присущие регулировке напряжением

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

Недостатки:

  • можно использовать для двигателей небольшой мощности
  • при работе возможен шум, треск, рывки двигателя
  • при использовании симисторов на двигатель попадает постоянное напряжение
  • все недостатки регулирования напряжением

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

Плюсы электронного автотрансформатора:

  • Небольшие габариты и масса прибора
  • Невысокая стоимость
  • Чистая, неискажённая форма выходного тока
  • Отсутствует гул на низких оборотах
  • Управление сигналом 0-10 Вольт

Слабые стороны:

  • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
  • Все недостатки регулировки напряжением

Использование широтно-импульсной модуляции

Для управления и регулировки числа оборотов вращения электродвигателя асинхронного типа, можно использовать импульсный регулятор-стабилизатор напряжения (инвертор). Он будет выполнять функцию источника питания. В его основу положено применение импульсного ШИМ-регулятора марки ТL494. Питающее напряжение электродвигателя, выходящее после ШИМ-регулятора, будет изменяться в соответствии с изменением частоты вращения. Используя этот способ, достигается больший экономический эффект, устройство достаточно простое и при этом увеличивает эффективность регулирования.

На рисунке выше изображена схема использования ШИМ-регулятора для трехфазного асинхронного двигателя, подключенного через конденсатор к однофазной сети.

Этот способ, несмотря на свою эффективность, имеет два существенных недостатка – это:

  • невозможность реверсивного управления двигателем без использования дополнительных коммутирующих аппаратов;
  • частотные преобразователи , использованные в регуляторе, отличаются высокой стоимостью и выпускаются ограниченным числом производителей.

Принцип работы однофазной асинхронной машины

При однофазном питании асинхронника в нем вместо вращающегося магнитного поля возникает пульсирующее, которое можно разложить на два магнитных поля, которые будут вращаться в разные стороны с одинаковой частотой и амплитудой. При остановленном роторе электродвигателя данные поля создадут моменты одинаковой величины, но различного знака. В итоге результирующий пусковой момент будет равен нулю, что не позволит двигателю запустится. По своим свойствам однофазный электродвигатель похож на трехфазный, который работает при сильном искажении симметрии напряжений:

на рисунке а) показана схема асинхронной однофазной машины, а на б) векторная диаграмма

Основные виды однофазных электроприводов

Как упоминалось однофазный двигатель не может развивать пусковой момент, следствием чего становится невозможность его самостоятельного запуска. Для этого придумали несколько способов компенсации магнитного поля противоположного по знаку основному.

Двигатели с пусковой обмоткой

В данном способе пуска кроме основной обмотки Р, имеющей фазную зону 120 0 , на статор наматывают еще и пусковую П, которая имеет фазную зону 60 0 . Также пусковая обмотка сдвигается относительно рабочей на 90 0 электрических. Для того, чтоб создать фазовый сдвиг между токами обмоток Iр и Iп последовательно в пусковую обмотку подключают элемент, приводящий к сдвигу фаз ψ (фазосдвигающее сопротивление Zп):

Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.

Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:

Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные

Конденсаторный двигатель

Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость Ср. Данные обмотки сдвинуты относительно друг друга на 90 0 электрических и имеют фазные зоны тоже 90 0 . При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:

Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма

В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.

Изменение скорости АД с короткозамкнутым ротором

Существует несколько способов:

  1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
  1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

Частотное регулирование

В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:

то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.

Достоинствами данного метода являются:

  • плавное регулирование;
  • изменение скорости вращения ротора в большую и меньшую сторону;
  • жесткие механические характеристики;
  • экономичность.

Недостаток один — необходимость в частотном преобразователе, т.е. увеличение стоимости механизма. К слову, на современном рынке представлены модели с однофазным и трёхфазным входом, стоимость которых при мощности 2-3 кВт лежит в диапазоне 100-150 долларов, что не слишком дорого для полноценной регулировки привода станков в частной мастерской.

Переключение числа пар полюсов

Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.

В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.

При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.

Достоинства данного метода:

  • жесткие механические характеристики двигателя;
  • высокий КПД.
  • ступенчатая регулировка;
  • большой вес и габаритные размеры;
  • высокая стоимость электромотора.

Особенности конструкции

Микросхема оснащена всем необходимым для осуществления качественного управления двигателем в различных скоростных режимах, начиная от торможения, заканчивая разгоном и вращением с максимальной скоростью. Поэтому ее использование намного упрощает конструкцию, одновременно делая весь привод универсальным, так как можно выбирать любые обороты с неизменным моментом на валу и использовать не только в качестве привода конвейерной ленты или сверлильного станка, но и для перемещения стола.

Характеристики микросхемы можно найти на официальном сайте. Мы укажем основные особенности, которые потребуются для конструирования преобразователя. К ним можно отнести: интегрированную схему преобразования частоты в напряжение, генератор разгона, устройство плавного пуска, блок обработки сигналов Тахо, модуль ограничения тока и прочее. Как видите, схема оснащена рядом защит, которые обеспечат стабильность функционирования регулятора в разных режимах.

На рисунке ниже изображена типовая схема включения микросхемы.

Схема несложная, поэтому вполне воспроизводима своими руками. Есть некоторые особенности, к которым относятся предельные значения и способ регулирования скоростью:

  • Максимальный ток в обмотках двигателя не должен превышать 10 А (при условии той комплектации, которая представлена на схеме). Если применить симистор с большим прямым током, то мощность может быть выше. Учтите, что потребуется изменить сопротивление в цепи обратной связи в меньшую сторону, а также индуктивность шунта.
  • Максимальная скорость вращения достигается 3200 об/мин. Эта характеристика зависит от типа двигателя. Схема может управлять моторами до 16 тыс. об/мин.
  • Время разгона до максимальной скорости достигает 1 секунды.
  • Нормальный разгон обеспечивается за 10 секунд от 800 до 1300 об/мин.
  • На двигателе использован 8-полюсный тахогенератор с максимальным выходным напряжением на 6000 об/мин 30 В. То есть он должен выдавать 8мВ на 1 об/мин. При 15000 об/мин на нем должно быть напряжение 12 В.
  • Для управления двигателем используется симистор на 15А и предельным напряжением 600 В.

Если потребуется организовать реверс двигателя, то для этого придется дополнить схему пускателем, который будет переключать направление обмотки возбуждения. Также потребуется схема контроля нулевых оборотов, чтобы давать разрешение на реверс. На рисунке не указано.

Изготовление своими руками

Если нет возможности, а также желания приобретать регулятор заводского типа, то можно собрать его своими руками. Хотя регуляторы типа » tda1085 » зарекомендовали себя очень хорошо. Для этого нужно детально ознакомиться с теорией и приступить к практике. Очень популярны схемы симисторного исполнения, в частности регулятор оборотов асинхронного двигателя 220в (схема 5). Сделать его несложно. Он собирается на симисторе ВТ138, хорошо подходящем для этих целей.

Схема 5 — Простой регулятор оборотов на симисторе.

Этот регулятор может быть использован и для регулировки оборотов двигателя постоянного тока 12 вольт, так как является довольно простым и универсальным. Обороты регулируются благодаря изменению параметров Р1, определяющему фазу входящего сигнала, который открывает переход симистора.

Принцип работы прост. При запуске двигателя происходит его затормаживание, индуктивность изменятся в меньшую сторону и способствует увеличению U в цепи «R2—>P1—>C2». При разряде С2 симистор открывается в течение некоторого времени.

Существует еще одна схема. Она работает немного по-другому: путем обеспечения хода энергии обратного типа, которое является оптимально выгодным. В схему включен довольно мощный тиристор.

Схема 6 — Устройство тиристорного регулятора.

Схема состоит из генератора сигнала управления, усилителя, тиристора и участка цепи, выполняющего функции стабилизатора вращения ротора.

Наиболее универсальной схемой является регулятор на симисторе и динисторе (схема 7). Он способен плавно убавить скорость вращения вала, задать реверс двигателю (изменить направление вращения) и понизить пусковой ток.

Принцип работы схемы:

  1. С1 заряжается до U пробоя динистора D1 через R2.
  2. D1 при пробитии открывает переход симистора D2, который отвечает за управление нагрузкой.

​Напряжение при нагрузке прямо пропорционально зависит от частотной составляющей при открытии D2, зависящего от R2. Схема применяется в пылесосах. Она содержит универсальное электронное управление, а также способность простого подключения питания 380 В. Все детали следует расположить на печатной плате, изготовленной по лазерно-утюжной технологии (ЛУТ). Подробно с этой технологии изготовления плат можно ознакомиться в интернете.

Таким образом, при выборе регулятора оборотов электродвигателя возможна покупка заводского или изготовление своими руками. Самодельный регулятор сделать достаточно просто, так как при понимании принципа действия устройства можно с легкостью собрать его. Кроме того, следует соблюдать правила безопасности при осуществлении монтажа деталей и при работе с электричеством.

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото – схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото – схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Регулятор оборотов частотный FC-101 | VERTRO

Регулятор оборотов частотный FC-101 | VERTROVERTRO | Регулятор оборотов частотный FC-101 | VERTRO

Назначение:

Регулятор оборотов частотный FC-101 применяется для регулирования производительности систем подпора и дымоудаления противопожарной вентиляции. Обеспечивает защиту и контроль электродвигателя во время работы.

Ключевые особенности:

  • Мастер Quick Menu упрощает настройку и эксплуатацию частотного преобразователя;
  • Наличие доп. выходов для подключения заслонок и датчиков: 2 релейных, 2 аналоговых и 2 цифровых;
  • Возможность подключения к системе диспетчеризации зданий по одному из нескольких протоколов:
    – BACnet
    – Modbus RTU
    – N2 metasys и др.
  • Возможность установки на расстоянии до 50 метров от электродвигателя;
  • Наличие сертификатов, позволяющих использование частотные преобразователи в системах подпора и дымоудаления.
  • Характеристики
  • Документация
  • Revit

Технические характеристики

Тип регулятораПитание регулятораПитание вентилятораМощностьТокСтепень защитыРазмеры (ШхВхГ)Масса
FC-101PK37T4E3-380В3-380В0,37 кВт1,2 АIP20 стандартно/IP54 по запросу75х195х168 мм2,1 кг
FC-101PK75T4E3-380В3-380В0,75 кВт2,2 АIP20 стандартно/IP54 по запросу75х195х168 мм2,1 кг
FC-101P1K5T4E3-380В3-380В1,5 кВт3,7 АIP20 стандартно/IP54 по запросу75х195х168 мм2,1 кг
FC-101P2K2T4E3-380В3-380В2,2 кВт5,3 АIP20 стандартно/IP54 по запросу90х227х190 мм3,4 кг
FC-101P3K0T4E3-380В3-380В3 кВт7,2 АIP20 стандартно/IP54 по запросу90х227х190 мм3,4 кг
FC-101P4K0T4E3-380В3-380В4 кВт9,1 АIP20 стандартно/IP54 по запросу90х227х190 мм3,4 кг
FC-101P5K5T4E3-380В3-380В5,5 кВт12 АIP20 стандартно/IP54 по запросу100х255х206 мм4,5 кг
FC-101P7K5T4E3-380В3-380В7,5 кВт15,5 АIP20 стандартно/IP54 по запросу100х255х206 мм4,5 кг
FC-101P11KT4E3-380В3-380В11 кВт23 АIP20 стандартно/IP54 по запросу135х296х241 мм7,9 кг
FC-101P15KT4E3-380В3-380В15 кВт31 АIP20 стандартно/IP54 по запросу135х296х241 мм7,9 кг
FC-101P18KT4E3-380В3-380В18 кВт37 АIP20 стандартно/IP54 по запросу150х334х255 мм9,5 кг
FC-101P22KT4E3-380В3-380В22 кВт42,5 АIP20 стандартно/IP54 по запросу150х334х255 мм9,5 кг
FC-101P30KT43-380В3-380В30 кВт61 АIP20 стандартно/IP54 по запросу239х518х242 мм24,5 кг
FC-101P37KT43-380В3-380В37 кВт73 АIP20 стандартно/IP54 по запросу239х518х242 мм24,5 кг
FC-101P45KT43-380В3-380В45 кВт90 АIP20 стандартно/IP54 по запросу239х518х242 мм24,5 кг
FC-101P55KT43-380В3-380В55 кВт106 АIP20 стандартно/IP54 по запросу313х550х335 мм36 кг
FC-101P75KT43-380В3-380В75 кВт147 АIP20 стандартно/IP54 по запросу313х550х335 мм36 кг
FC-101P90KT43-380В3-380В90 кВт177 АIP20 стандартно/IP54 по запросу375х660х335 мм51 кг

Файлы для скачивания

Cпасибо!

Ваше письмо отправлено.

Cпасибо!

Ваше резюме отправлено в отдел кадров.

Регулятор скорости трёхфазный Вентс РСА5Д-3,5-Т

Основное использование трёхфазного регулятора скорости Вентс РСА5Д-3,5-Т

Регуляторы скорости Вентс РСА5Д-3,5-Т применяют для регулировки скорости электродвигателей, которые имеют напряжение 3 фазы — 380В. Ступенчатая регулировка имеет 5 скоростей, которая управляет скоростью оборотов двигателя с закрепленными на нём лопастями. На корпусе регулятора имеется специальный переключатель, с помощью которого и устанавливается необходимая скорость вращения вала двигателя. Возможно подключение к данному регулятору нескольких электродвигателей, при этом необходимо учесть суммарный ток всех устройств и проследить, что бы он не был больше заявленной номинальной мощности регулятора.

Материалы и конструктивные особенности регулятора скорости Вентс РСА5Д-3,5-Т

Трёхфазный регулятор скорости Вентс изготавливается из негорючего термопластика. Данный способ производства, способствует защите регулятора скорости от механических повреждений и появлению коррозии. Что бы управлять режимами работы данного регулятора на фронтальной стороне расположен 5-ступенчатый переключатель скоростей (Выходное напряжение скоростей 90В — 150В — 200В — 280В — 400В.), кнопка вкл/выкл, а также 2 сигнальных индикатора. Первый показывает, что регулятор исправно работает в штатном режиме (зелёный), а второй загорается при появлении неполадок с электродвигателем (красный).

Регулятор скорости Вентс РСА5Д-3,5-Т надёжно защищён от перегрузок электрических двигателей, при срабатывании зашиты регулятор останавливает передачу напряжения на двигатель. После того как температура двигателя нормализовалась, регулятор в автоматическом режиме запускает двигатель снова в работу.

Дополнительные клеммы, расположенные внутри корпуса регулятора позволяют подключить к нему дополнительные электрические устройства.

Монтажные особенности регулятора скорости Вентс РСА5Д-3,5-Т

При установке регулятора скорости необходимо учесть несколько важных деталей. Монтировать данное устройство:

  1. Внутри помещений.
  2. Подальше от нагревательного либо отопительного оборудования.
  3. Вертикально.

Характеристики Вентс РСА5Д-3,5-Т


Технические характеристики Регулятор скорости трёхфазный Вентс РСА5Д-3,5-Т

Производитель  VENTS
Гарантия 12 месяцев
Напряжение  3 фаз — 380 В
Защита IP 44

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Что такое асинхронный двигатель?

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании. Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются. Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами). Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой. Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Регулирование скорости вращения моторчика 12В/40Вт

Подскажите пожалуйста как можно регулировать скорость вращения моторчика 12В/40Вт. по моему от печки ЗИЛа.

Если нужно регулировать в широких пределах, то стандартно через регулировку напряжения питания. Правда на низких оборотах при увеличении нагрузки на вал, обороты будут проседать.

Как там сделана возбуждающая обмотка? Можно, в небольших пределах, регулировать обороты через изменение тока проходящего по ней.

Привет для чего двигатель бедет применятся если для полуавтоматато лучше шим с обратной связью так как обороты будут стабильны при любой нагрузке зависит от источника питания

Mortex написал : регулировать обороты через изменение тока проходящего по ней.

Это самый правильный способ. Нужно иметь свободные выводы этой обмотки. То есть отсоединить их от обмотки ротора.

Уточняю мою задачу. Я хочу установить этот моторчик на медогон. соответственно у меня должна быть возможность регулировать обороты. пробовал регулировать реостатом от подстветки панелей приборов семерки. но он очень слабый и не выдерживает. говорят что если даже найдешь подходящий реостат, моторчик будет греться. вот я и ищу решение проблемы. вот ссылка на сайт который торгует уже готовым оборудованием » > вот я хочу сделать точно такой же

qaz1 , по описанию на сайте не ясен нужный Вам диапазон оборотов. Можно пробовать использовать транзистор(включить по схеме ОК) на радиаторе, с принудительным обдувом, а реостатом управлять этим транзистором. Мотор рассчитан на ток 40Вт/12В=3.3А. Если этот ток, или напряжение 12В, превышать не будите, то и греться мотор, больше чем положено не будет.

Здесь возможна потенциальная опасность в том, что при низком питающем напряжении, его будет недостаточно для прокрутки мотора в густом мёде, и ток 3,3А будет превышен. Также на низких оборотах ухудшается охлаждение двигателя. Если будет сильно греться, лучше поставить вентилятор, например компьютерный.

В идеале нужно знать какое в двигателе возбуждение (последовательное, параллельное, смешанное), иже под этот конкретный тип искать оптимальную схему управления скоростью вращения.

Источник: www.mastergrad.com

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц, р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже),

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

2p = Z1 / y,

где 2p – число полюсов, Z1 – количество пазов в сердечнике статора, y – собственно, шаг укладки обмотки.

Стандартные значения оборотов:

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z1b / h или 2p = 0,5Di / h,

где 2p – число полюсов, Z1 – количество пазов в статоре, b – ширина зубца, см, h – высота спинки, см, Di – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Рекомендации по выбору

Есть несколько характеристик, на которые необходимо обращать внимание при выборе регулятора:

  • Тип управления — в коллекторных электродвигателях используются векторные и скалярные системы управления. Первый вид чаще применяется, но второй является более надежным.
  • Мощность — этот показатель должен соответствовать максимально допустимой мощности предохраняемого устройства. Если силовая установка является низковольтной, то стоит остановить выбор на регуляторе с более высоким показателем мощности в сравнении с допустимым.
  • Напряжение — подбирается в соответствии с характеристиками двигателя.
  • Частотный диапазон — должен полностью соответствовать поставленным задачам, например, для ручного фрезерного станка вполне достаточно 1000 Гц.

Все остальные характеристики (габариты, срок гарантии и т. д. ) можно смело считать второстепенными. На рынке достаточно много брендов, выпускающих качественные и сравнительно недорогие устройства.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором,
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

В цепи якоря

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убратькрутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Контроллер трехфазного двигателя переменного тока

Этот проект выполнен с использованием MC3PHAC от NXP Semiconductor. Проект генерирует 6 сигналов PWM для контроллера трехфазного двигателя переменного тока. Очень легко создать профессиональный частотно-регулируемый привод с интеллектуальным модулем питания (IPM) или 3-фазный IGBT / MOSFET с драйвером затвора. Плата обеспечивает 6 сигналов ШИМ для инвертора IPM или IGBT, а также сигнал торможения. Также эта плата работает в автономном режиме и не требует программирования / кодирования программного обеспечения.

MC3PHAC — это высокопроизводительный монолитный интеллектуальный контроллер двигателя, разработанный специально для удовлетворения требований к недорогим системам управления трехфазными двигателями переменного тока с регулируемой скоростью.Устройство можно адаптировать и настраивать в зависимости от окружающей среды. Он содержит все активные функции, необходимые для реализации части управления трехфазного электродвигателя переменного тока с разомкнутым контуром. Одним из уникальных аспектов этой платы является то, что, несмотря на то, что она адаптируется и настраивается в зависимости от среды, она не требует разработки программного обеспечения. Это делает MC3PHAC идеальным решением для приложений клиентов, требующих управления двигателем переменного тока, но с ограниченными или отсутствующими программными ресурсами.

В MC3PHAC включены защитные функции, состоящие из контроля напряжения на шине постоянного тока и входа неисправности системы, который немедленно отключает модуль ШИМ при обнаружении неисправности системы.

Все выходы являются сигналами TTL, входное питание 5-15 В постоянного тока, напряжение на шине постоянного тока должно быть в пределах 1,75-4,75 В, Dip-переключатель предназначен для установки частоты двигателя 60 или 50 Гц, перемычки также помогают установить полярность выходного ШИМ Активный низкий или активный высокий, и это помогает использовать эту плату с любыми модулями IPM, так как выход может быть установлен активным низким или высоким. Потенциометр PR2 помогает регулировать скорость двигателя. Обратитесь к таблице данных IC, чтобы изменить базовую частоту, мертвое время ШИМ и другие возможные параметры.

Управление скоростью — частота синхронного двигателя может быть задана в реальном времени как любое значение от 1 Гц до 128 Гц, регулируя потенциометр PR2. Коэффициент масштабирования составляет 25,6 Гц на вольт. Вывод SPEED обрабатывается 24-битным цифровым фильтром для повышения стабильности скорости в шумной среде.

Управление ускорением — Ускорение двигателя можно задать в реальном времени в диапазоне от 0,5 Гц / секунду до 128 Гц / секунду, регулируя потенциометр PR1.Коэффициент масштабирования составляет 25,6 Гц / секунду на вольт.

Защита от сбоев : MC3PHAC поддерживает широкий спектр функций защиты и предотвращения сбоев. Если неисправность все же возникает, MC3PHAC немедленно отключает ШИМ и ждет, пока состояние неисправности не будет устранено, прежде чем запускать таймер для повторного включения ШИМ. На графике на Рисунке 10 показано значение сопротивления в зависимости от времени повторной попытки из таблицы данных ИС. На рисунке 10 предполагается наличие подтягивающего резистора 6,8 кОм. В автономном режиме этот интервал тайм-аута задается на этапе инициализации путем подачи напряжения на вывод MUX_IN, когда на вывод RETRY_TxD устанавливается низкий уровень.Таким образом, время повтора может быть указано от 1 до 60 секунд с коэффициентом масштабирования 12 секунд на вольт

Внешний мониторинг неисправностей : Контакт FAULTIN принимает цифровой сигнал, указывающий на то, что неисправность была обнаружена через схему внешнего контроля. Высокий уровень на этом входе приводит к немедленному отключению ШИМ. Типичными условиями отказа могут быть перенапряжение на шине постоянного тока, перегрузка шины по току или перегрев. Как только этот вход возвращается на низкий логический уровень, запускается таймер повторной попытки отказа, и ШИМ повторно включаются после достижения запрограммированного значения тайм-аута.Входной контакт 9 FLTIN соединителя CN3 должен иметь высокий уровень, чтобы на контакте неисправности был низкий уровень для нормальной работы.

Контроль целостности напряжения на шине (входной вывод 10 CN3) Вывод DC_BUS контролируется на частоте 5,3 кГц (4,0 кГц, когда частота ШИМ установлена ​​на 15,9 кГц), и любое значение напряжения за пределами допустимого окна составляет состояние неисправности. В автономном режиме пороги окна фиксируются на уровне 4,47 В (128 процентов от номинала) и 1,75 В (50 процентов от номинала), где номинальное значение равно 3.5 вольт. Как только уровень сигнала DC_BUS возвращается к значению в пределах допустимого окна, таймер повторной попытки отказа начинает работать, и ШИМ снова включаются после достижения запрограммированного значения тайм-аута. При включении питания возможно, что VDD может достичь рабочего напряжения до того, как конденсатор шины постоянного тока зарядится до своего номинального значения. Когда проверяется целостность шины постоянного тока, пониженное напряжение будет обнаружено и обработано как неисправность с соответствующим периодом тайм-аута. Чтобы предотвратить это, MC3PHAC контролирует напряжение на шине постоянного тока во время включения питания в автономном режиме и ожидает, пока оно не превысит пороговое значение пониженного напряжения, прежде чем продолжить.В это время все функции MC3PHAC приостановлены. Как только этот порог будет достигнут, MC3PHAC продолжит работу в обычном режиме, а любое дальнейшее под напряжением будет считаться неисправностью.

Примечание: Если мониторинг напряжения на шине постоянного тока не требуется, на вывод DC_BUS должно подаваться напряжение 3,5 В ± 5 процентов. Для этого используйте следующие компоненты: R2 должно быть 3,3 кОм, R4 4 К7 Ом, C6 0,1 мкФ и замкнуть перемычку между контактом 1 и 2.

Контроль регенерации — Регенерация — это процесс, при котором механическая энергия, накопленная в двигателе и нагрузке, передается обратно в приводную электронику, обычно в результате агрессивной операции замедления.В особых случаях, когда этот процесс происходит часто (например, в системах управления двигателями лифтов), экономично включить в моторный привод специальные функции, позволяющие подавать эту энергию обратно в сеть переменного тока. Однако в большинстве недорогих приводов переменного тока эта энергия накапливается в конденсаторе шины постоянного тока за счет увеличения его напряжения. Если этот процесс не контролировать, напряжение на шине постоянного тока может вырасти до опасного уровня, что может привести к выходу из строя конденсатора шины или транзисторов в силовом инверторе. MC3PHAC включает в себя два метода восстановления до того, как это станет проблемой.

Резистивное торможение: Вывод DC_BUS контролируется на частоте 5,3 кГц (4,0 кГц, когда частота ШИМ установлена ​​на 15,9 кГц), и когда напряжение достигает определенного порога, на выводе RBRAKE устанавливается высокий уровень. Этот сигнал можно использовать для управления резистивным тормозом, установленным на конденсаторе шины постоянного тока, так что механическая энергия двигателя будет рассеиваться в виде тепла в резисторе, а не накапливаться в виде напряжения на конденсаторе. В автономном режиме порог DC_BUS, необходимый для подтверждения сигнала RBRAKE, фиксирован на 3.85 вольт (110 процентов от номинала), где номинал определен как 3,5 вольт.

Выбираемая частота ШИМ: MC3PHAC поддерживает четыре дискретных частоты ШИМ и может динамически изменяться во время работы двигателя. Этот резистор может быть потенциометром или постоянным резистором в диапазоне, показанном в таблице. В автономном режиме частота ШИМ задается путем подачи напряжения на вывод MUX_IN, в то время как вывод PWM FREQ_RxD переводится в низкий уровень. В таблице 4 из таблицы данных показаны требуемые уровни напряжения на выводе MUX_IN и соответствующая частота ШИМ для каждого диапазона напряжений.

  • PR1: Потенциометр для установки ускорения
  • PR2: Потенциометр регулировки скорости
  • SW1: Переключатель DIPX4 для установки частоты 60 Гц / 50 Гц, а также активного низкого / активного высокого выходного сигнала
  • SW2: Переключатель сброса
  • SW3: Пуск / остановка двигателя
  • SW4: Изменение направления двигателя по часовой / против часовой стрелки
  • CN1: Вход питания постоянного тока 7-15 В постоянного тока
  • CN2: Подача напряжения на шину от модуля IPM / IGBT для защиты от повышенного / пониженного напряжения
  • CN3: Интерфейс между модулем IPM / платой IGBT обеспечивает выход 6PWM, торможение и вход неисправности
  • Печатная плата
  • имеет область прототипа, которую можно использовать для разработки.

Характеристики

  • Питание 7-15 В постоянного тока
  • Потенциометр для управления скоростью двигателя
  • Частота ШИМ по умолчанию 10,582 кГц, можно регулировать в диапазоне (5,291 кГц — 164 кГц)
  • Потенциометр для регулировки ускорения
  • Ползунковый переключатель для управления направлением
  • Ползунковый переключатель Пуск / Стоп
  • 6 выходных сигналов ШИМ
  • Мертвое время по умолчанию 4,5 мкс
  • Время повтора ошибки 32,8 секунды
  • Вход VBS (обратная связь по напряжению шины) под контролем напряжения
  • Неисправность (вход перегрузки по току или короткого замыкания)
  • Регулировка скорости вольт на герц
  • Фильтрация цифровой обработки сигналов (DSP) для повышения стабильности скорости
  • 32-битные вычисления для высокоточной работы
  • Доступен Интернет
  • Для работы не требуется разработка пользовательского программного обеспечения
  • Широтно-импульсный модулятор (ШИМ) с 6 выходами
  • Генерация трехфазных сигналов
  • 4-канальный аналого-цифровой преобразователь (АЦП)
  • Настраивается пользователем для автономной работы
  • Динамическое подавление пульсации шины
  • Выбор полярности и частоты ШИМ
  • Выбираемая базовая частота 50/60 Гц
  • Системный генератор на основе петли фазовой автоподстройки частоты (ФАПЧ)
  • Схема обнаружения низкого напряжения питания
  • В состав MC3PHAC входят защитные функции, состоящие из контроля напряжения на шине постоянного тока и системы
  • Вход неисправности, который немедленно отключает модуль ШИМ при обнаружении системной ошибки.

Некоторые целевые приложения для MC3PHAC включают

  • Двигатели HVAC малой мощности
  • Бытовая техника
  • Коммерческие прачечные и посудомоечные машины
  • Управление процессами
  • Насосы и вентиляторы

Схема

Список деталей

Подключения

Настройки DIP-переключателя

Блок-схема

Фото

Видео

MC3PHAC Лист данных

MC3PHAC

Контроллер двигателя переменного тока мощностью 200 кВт для электромобиля: 18 ступеней (с изображениями)

Во-первых, давайте немного поговорим о том, что такое плата управления / драйвера.В нем есть все схемы безопасности, а также мозги для управления двигателем. Есть микроконтроллер dsPIC30F4011, который одновременно измеряет 2 из 3 фазных токов, положение дроссельной заслонки и температуру базовой пластины, а затем на основе этой информации устанавливает 6 режимов широтно-импульсной модуляции, которые управляют 6 IGBT. Эти 6 IGBT питают 3 фазы двигателя. На плате также есть несколько компараторов и несколько вентилей И-НЕ и И. Таким образом, если какой-либо ток, измеренный с датчиков тока, выходит за допустимые пределы, или если напряжение источника питания 24 В или 5 В выходит за допустимые пределы, контроллер отключает IGBT примерно за 2 миллионные доли секунды.

Каждый IGBT имеет собственный выделенный источник питания 24 В, а также собственный драйвер для его БЫСТРОГО включения и выключения. Это помогает поддерживать IGBT в холодном состоянии.

Приступим к пайке! Сначала припаяйте конденсаторы и резисторы для поверхностного монтажа. Самый простой способ сделать это — взять паяльную пасту:

http: //www.amazon.com/MG-Chemicals-4860P-35G-Solde …

и нанести ее на каждую площадку для поверхностного монтажа конденсатора и резистора. Контактные площадки для поверхностного монтажа не имеют отверстий в плате.И они помечены как Cxxx и Rxxx, где xxx — это число. Например, C21 или R15. Как только на контактных площадках будет нанесена небольшая ложка паяльной пасты, поместите компоненты на контактные площадки. Паста должна удерживать их на месте. Если у вас есть паяльная станция для пайки горячим воздухом, просто ударьте их всех горячим воздухом, и все они аккуратно припаяются на свои места. В противном случае удерживайте каждую часть зубочисткой и касайтесь каждой контактной площадки паяльником, пока она не станет подходящей. Эти детали для поверхностного монтажа очень большие, что касается деталей для поверхностного монтажа (корпуса 1206 и 1210), так что это не должно быть так уж плохо.

Затем припаиваем все сквозные резисторы и конденсаторы. На YouTube есть множество руководств по пайке, если это для вас ново. У резисторов нет полярности. На плате только 2 конденсатора с полярностью — электролитического типа «консервная банка».

Далее добавляем все диоды. Эти части на доске начинаются с буквы D. Например, D5. Обратите особое внимание на полосу на диоде! Убедитесь, что он вставлен в той же ориентации, что и изображение на доске (так называемая «шелкография»).

Теперь приступайте к работе с деталями SOIC (номер детали FOD8316). На YouTube есть хорошие видео, в которых объясняется, как паять детали SOIC. Это не так уж и плохо.

Теперь припаяйте все остальные компоненты. Убедитесь, что вы заземлились, прежде чем прикасаться ко всем вещам, находящимся в пакетах для защиты от статического электричества. В принципе, не ходите, волоча ноги по ковру, прежде чем коснуться этих компонентов. У моей паяльной станции есть кусок листового металла. Листовой металл снаружи соединен проводом с землей.Я касаюсь листового металла, прежде чем касаюсь компонентов, чувствительных к статическому электричеству. Таким образом, любой потенциальный удар, который я совершу, улетучится на землю. Обязательно запрограммируйте ATTiny25 перед тем, как паять его! Его можно найти здесь:

https://github.com/MPaulHolmes/ATTiny25DC-DC

Кроме того, шестнадцатеричный файл называется DC-DC-Converter.hex и прилагается к этому шагу. Вам понадобится AVRISP MK2, чтобы запрограммировать его, или какой-нибудь программатор AVR. Кроме того, вам понадобится что-то вроде AVR Studio, которое предоставляется бесплатно.

Перед продолжением отладите плату управления !! Если у вас есть настольный источник питания, попробуйте подать ему 23,5–24,0 В на источник питания 24 В (см. Рисунок выше). Запрограммируйте микроконтроллер с помощью этого отладочного кода и измерьте напряжение между каждой парой быстроразъемных соединителей 0,11 дюйма. Примечания по этому поводу см. На рисунке выше:

https: //github.com/MPaulHolmes/ACControlBoardDebug …

380v speed control — купить 380v speed control с бесплатной доставкой на AliExpress

Отличные новости !!! Вы находитесь в нужном месте для управления скоростью 380 В.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший регулятор скорости на 380 В скоро станет одним из самых востребованных бестселлеров. Подумайте, как вы, друзья, будете завидовать, когда скажете им, что приобрели регулятор скорости на 380 В на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в контроле скорости на 380 В и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести регулятор скорости 380v по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Купить дешевый V70-3.7T4 Преобразователь двигателя с частотно-регулируемым приводом для управления скоростью двигателя шпинделя ЧПУ VFD 3.7KW 5HP 8.5A 380V онлайн по лучшей цене

Технические характеристики:
  • Номер детали производителя: V70-3.7Т4
  • Входное напряжение: 380 В (трехфазное)
  • Входная частота: 50/60 Гц
  • Мощность: 3,7 кВт
  • Мощность драйвера: 6,8 кВА
  • Выходной ток: 8,5 А
  • Применимый двигатель: 3,7 кВт
  • Режим управления: V / F, векторное управление
  • Управление связью: RS-485
  • Рабочая температура: -10-40 ℃
  • Влажность: 0-95% (без конденсации)
  • Вибрация: менее 0.5G
  • Защита от перегрузки: электрическая релейная защита привода двигателя (постоянный крутящий момент: 150% в минуту, вентиляторы: 120% в минуту)
  • ПРЕДОХРАНИТЕЛЬНАЯ защита: при сгорании предохранителя двигатель останавливается.
  • Защита от перенапряжения: постоянное напряжение> 800 В
  • Защита от низкого напряжения: постоянное напряжение <400 В

Контроль частоты:
  • Диапазон частот: 0,1 — 1000 Гц
  • Точность: 0,1% (- 10-40 ℃) для цифрового; 0.1% (25 ± 10 ℃) для аналога
  • Разрешение настройки: 0,1 Гц для цифрового; 1% от макс. рабочая частота для аналога
  • Выходное разрешение: 0,1 Гц
  • Режим настройки клавиатуры: установить как ← ▲ ▼ напрямую
  • Режим аналоговой настройки: внешнее напряжение 0-5 В, 0-10 В, 4-20 мА, 0-20 мА
  • Другие функции: можно установить три скачкообразных частоты (нижний предел частоты, начальная частота и конечная частота) соответственно.

Ресурсы

Оптовые шаговые двигатели и оптовые драйверы шаговых двигателей в Интернете с гарантированным качеством и конкурентоспособной ценой в Oyostepper.ком!

Предыдущая: Инвертор двигателя с частотным преобразователем для управления скоростью двигателя шпинделя ЧРП 2.2KW 3HP 5A 380V
Следующая: Инвертор двигателя с частотным преобразователем для управления скоростью двигателя шпинделя ЧПУ VFD 7.5KW 10HP 17.5A 380V

Управление скоростью двигателя, 380 В 0,75 кВт VFD Преобразователь частоты для управления скоростью двигателя 3-фазный входной выход

Управление скоростью двигателя, 380 В, 0,75 кВт VFD Преобразователь частоты для управления скоростью двигателя, 3-фазный входной выход
  • Home
  • Регулятор скорости двигателя, 380 В 0.Инвертор с частотно-регулируемым приводом мощностью 75 кВт для управления скоростью двигателя. Трехфазный входной выход.

Управление скоростью двигателя, 380 В, 0,75 кВт. Преобразователь частоты VFD для управления скоростью двигателя. Трехфазный входной выход: улучшение дома. ▶ [ПРОСТОТА ИСПОЛЬЗОВАНИЯ] Простота в эксплуатации и подключении. Быстрый запуск и остановка, высокий крутящий момент на низкой скорости。 ▶ [ЗАЩИТА] Полная схема защиты от перегрузки по току, перенапряжения, перегрева, перегрузки, пониженного напряжения. 。 ▶ [ПРОФЕССИОНАЛ] Обладает хорошими характеристиками защиты от срабатывания и способностью адаптироваться к резким колебаниям мощности, температуры, влажности и пыли, что значительно повышает стабильность.。 ▶ [УДОБНЫЙ ДИЗАЙН] За счет оптимизации технологии управления ШИМ и электромагнитной совместимости он удовлетворяет требования пользователей к низкому уровню шума и электромагнитным помехам. 。 ▶ [ВЫСОКОЕ КАЧЕСТВО] В этом инверторе VFD используется уникальный метод управления, обеспечивающий высокую точность и широкий диапазон регулирования скорости с высокой производительностью. 。。。。。 Технические характеристики: Мощность: 0,7 кВт。 Входное напряжение: -фазный 0 В。 Входной ток: 4 А。 Выходное напряжение: -фазное 0 В。 Выходной ток: 0,0 А。。 Список пакетов:。 * Инвертор с частотно-регулируемым приводом。。。。







### FLAGCSS0 ###

JavaScript отключен.Пожалуйста, разрешите просмотр всего сайта.

Управление скоростью двигателя, 380 В 0,75 кВт Инвертор с частотно-регулируемым приводом VFD для управления скоростью двигателя, 3-фазный входной выход

Управление скоростью двигателя, 380 В 0,75 кВт Инвертор с частотным преобразователем VFD для управления скоростью двигателя 3-фазный входной выход, управление 3-фазным Вход-выход Управление скоростью двигателя, 380 В 0,75 кВт Инвертор с частотно-регулируемым приводом VFD для скорости двигателя, Управление скоростью двигателя, 380 В 0,75 кВт Инвертор с частотным преобразователем VFD для управления скоростью двигателя 3-фазный входной выход: Товары для дома, Послепродажное обслуживание Без забот Купить последние тенденции Быстрая доставка до дверей Отличные цены, огромный выбор ежедневных предложений со скидками до 90%.Управление скоростью двигателя, 380 В, 0,75 кВт VFD Преобразователь частоты для регулирования скорости двигателя, трехфазный входной выход.



Управление скоростью двигателя, 380 В 0,75 кВт Инвертор частотно-регулируемого привода с ЧРП для управления скоростью двигателя Трехфазный входной выход


Управление скоростью двигателя, 380 В, 0,75 кВт Инвертор с частотно-регулируемым приводом VFD для управления скоростью двигателя, 3-фазный входной выход


Управление скоростью двигателя, 380 В, 0,75 кВт Инвертор с частотно-регулируемым приводом VFD для управления скоростью двигателя Aftermarket Без беспокойства Покупайте последние тенденции Быстрая доставка до дверей Отличные цены, огромный выбор ежедневных предложений со скидками до 90%.Приводы постоянного тока

Вход: 115 В переменного тока, 230 В переменного тока или 460 В переменного тока. Выход: 90 В постоянного тока, 200 В постоянного тока или 400 В постоянного тока Якорь. Безрегенеративные приводы Регенеративные приводы, аналоговые приводы, цифровые приводы

Характеристики привода постоянного тока

Применение с постоянным крутящим моментом

Приводы постоянного тока с управлением напряжением якоря обеспечивают постоянный крутящий момент. Они могут обеспечивать номинальный крутящий момент двигателя при любой скорости от нуля до базовой скорости двигателя.Мощность в лошадиных силах прямо пропорциональна скорости. Полная номинальная мощность в лошадиных силах развивается только при базовой скорости. Полный крутящий момент двигателя доступен от нуля до 100 процентов базовой скорости

Приложения с постоянной мощностью

ПРИВОДЫ ПОСТОЯННОГО ТОКА С УПРАВЛЕНИЕМ АРМАТУРОЙ

Для некоторых приложений требуется постоянная мощность в лошадиных силах в указанном диапазоне скоростей. Поскольку привод постоянного тока, управляемый напряжением якоря, имеет характеристики постоянного крутящего момента, размер привода должен быть увеличен для работы с этими приложениями.

Например, привод, необходимый для обеспечения постоянной мощности в диапазоне скоростей 2: 1, должен иметь мощность, вдвое превышающую требуемую. Это потому, что он развивает только 50 процентов своей номинальной мощности при половинной скорости.

Номинальная мощность двигателя, необходимая для любого привода с постоянным крутящим моментом, работающего в системе с постоянной мощностью, может быть легко рассчитана путем умножения требуемой мощности на коэффициент диапазона скоростей, в котором мощность в лошадиных силах должна оставаться постоянной.Если в диапазоне 3: 1 требуется 5 л.с., потребуется привод с управлением только якоря, рассчитанный на 15 лошадиных сил (5 x 3).

ПРИВОД ПОСТОЯННОГО ТОКА С УПРАВЛЕНИЕМ ПОЛЕВА

В двигателе постоянного тока с параллельной обмоткой снижение напряжения возбуждения до значения, меньшего, чем расчетное, приводит к увеличению скорости для данного напряжения якоря. Это также приводит к более высокому току якоря для данной нагрузки двигателя. Простым способом выполнения этого типа управления является включение резистора последовательно с источником напряжения возбуждения.Это может быть полезно для достижения идеальной скорости двигателя для приложения.

Более сложный метод использует регулятор поля переменного напряжения. Регулируемый регулятор обеспечивает согласованное автоматическое регулирование якоря и напряжения возбуждения для расширенного диапазона скоростей в приложениях с постоянной мощностью. Двигатель управляется напряжением якоря для обеспечения постоянного крутящего момента, работы с переменной мощностью до базовой скорости. Затем двигатель переключается на управление по месту для работы с постоянным крутящим моментом и переменным крутящим моментом до максимальной скорости.

Приводы постоянного тока, приводы двигателей постоянного тока, частотно-регулируемые приводы

Общепринятая терминология для приводов постоянного тока до сих пор — привод с регулируемой скоростью. Некоторые называют это приводом с регулируемой скоростью или просто приводом постоянного тока.

Подавляющее большинство приводов двигателей постоянного тока с регулируемой скоростью вращения всех типов потребляют энергию от сети постоянного напряжения 60 Гц, и почти во всех приводах двигателей первая ступень состоит из выпрямителя, который преобразует мощность переменного тока в грубую форму мощности постоянного тока.Когда требуется постоянное выходное напряжение постоянного тока, достаточно простого диодного выпрямителя, однако, если выходное напряжение необходимо изменять, используется полностью управляемый выпрямитель.

Выпрямитель на основе тиристоров и диодов обеспечивает регулируемое напряжение постоянного тока с низким сопротивлением для якоря двигателя, тем самым обеспечивая управление скоростью.

Для двигателей мощностью до нескольких лошадиных сил управление якорем может осуществляться как от однофазной, так и от трехфазной сети. Для более мощных двигателей всегда используется трехфазная сеть.Приводы постоянного тока отличаются способностью вращать двигатель в двух направлениях.

Безрегенеративные (одноквадрантные) приводы

Подача энергии от сети переменного тока к двигателю постоянного тока, работающему в одном направлении, известна как одноквадрантный безрегенеративный привод.

Регенеративные (четырехквадрантные) приводы

Подача энергии от сети переменного тока к двигателю постоянного тока, работающему в двух направлениях, известна как четырехквадрантный рекуперативный привод.Двигатель постоянного тока по своей природе двунаправлен, если мы подаем положительное напряжение V больше, чем E, ток течет в якорь, и двигатель вращается в одном направлении. Если мы уменьшим V так, чтобы оно было меньше E, ток и крутящий момент автоматически меняют направление, и двигатель действует как генератор, преобразовывая механическую (кинетическую) энергию в электрическую.

Чтобы сделать двигатель постоянного тока двунаправленным, все, что нам нужно сделать, это изменить полярность якоря. Нам нужен источник питания, который может обеспечивать положительное или отрицательное напряжение и одновременно обрабатывать как положительный, так и отрицательный ток.

Регенеративный аналоговый привод


Износ контактора может быть хроническим. Он будет многократно отключать регулятор скорости SCR, когда реверсивные контакторы используются для быстрого переключения вперед-назад.

С Polyspede PRD12B вы можете запускать, останавливать, реверсировать и тормозить без износа контактора, поскольку контакторы отсутствуют. Все переключения производятся электронным способом.

PRD12B — ваш лучший выбор там, где требуется контролируемое удержание, например, при торможении высокоинерционных нагрузок, подъеме и размотке.А дополнительный подключаемый интерфейс PRD12B идеально подходит для позиционирования с высоким разрешением в сервосистемах.

Торможение рекуперативное. Двигатель становится генератором, который отправляет энергию торможения обратно в линии питания переменного тока, устраняя дорогостоящие резисторы, расходующие энергию.

Стандартные функции


• Бесконтактное торможение и реверсирование

• Кнопка или селекторный переключатель 115 В переменного тока

• Предохранители вспомогательного цикла защищают силовой полупроводник от коротких замыканий в проводке и двигателе.Все три ветви линии переменного тока плюс петля якоря постоянного тока представляют собой демпферные RC-цепи с предохранителями, а подавители MOV защищают от скачков напряжения.

• Все сигнальные входы и выходы изолированы от входных линий переменного тока, а также от напряжения якоря. Эта функция не только делает привод более безопасным в использовании, но также обеспечивает прямое размещение нескольких вариантов привода и входных сигналов для измерительных приборов.

• Контрольные терминалы предназначены для считывания как нагрузки двигателя, так и скорости двигателя с помощью общедоступных измерительных приборов.

2 В = 100% от номинальной нагрузки

5 В = 100% от номинальной скорости.

• Уникальная конструкция позволяет без сбоев запускать вращающийся двигатель.

• Обратная связь с тахометра. Вмещает тахометр 50 В / 1000 об / мин на двигателе со скоростью 1750 об / мин (стандартная схема)

• Несколько приводов PRD12B могут работать параллельно от главного эталонного источника или от входного сигнала, генерируемого компьютером, без необходимости использования входных изолирующих трансформаторов или развязки сигналов .

• Нулевая зона нечувствительности к ползучести.Регулируется от 0 до 1% от полной шкалы входного сигнала без снижения производительности. Никакие двигательные или генерирующие крутящие моменты не развиваются, пока входной сигнал не превысит зону нечувствительности.

• Пределы положительного и отрицательного крутящего момента предварительно установлены на 150% от номинального крутящего момента двигателя при полной нагрузке. Клеммы предназначены для внешнего потенциометра ограничения крутящего момента.

• Возможность установки дополнительной карты ускорения / замедления. Для заводской установки или простой установки в полевых условиях. Доступен с линейной или S-образной кривой.

• Двойной вход напряжения 230/460 В переменного тока. Легко модифицируется в полевых условиях. Номинальная мощность привода пропорциональна входному напряжению.

• Принимает входной сигнал 4 ~ 20 мА вместо потенциометра скорости. Выбранная перемычкой схема позволяет выбрать однонаправленную или двунаправленную работу.

• Отключение привода происходит при наличии потенциально опасных условий. Неисправность, вызвавшая отключение, отображается светодиодом. Также отображается режим работы до выключения.Светодиоды устанавливаются на печатных платах в блоки открытого шасси. В закрытом блоке установлена ​​панель индикации неисправности и режима, установленная на двери.

• PRD12B запускается нормально после аварийного отключения; индикаторы неисправностей не требуют ручного сброса. Доступны варианты автоматического перезапуска.

Стандартные опции


• Контактор контура постоянного тока

• Электропитание 240 В (только вход 230 В перем. Тока) Возможность преобразования на месте.

• Вход 50 Гц, полевое или заводское преобразование с 60 Гц.

• Толчковый режим с отдельной настройкой скорости.

• Автоматический реверс. Кнопочное реверсирование без обязательной остановки на нулевой скорости.

• Обратная связь тахометра для использования с тахометрами и двигателями, кроме комбинации тахометра 50 в / 1000 об / мин и двигателя 1750 об / мин, упомянутой в разделе «Стандартные функции».

• Контур экономии поля.

• Полевой регулятор. Для повышения стабильности скорости (в пределах 1%) или для постоянного диапазона мощности (управление полем).

• Автоматический перезапуск после аварийного отключения.Включает энергонезависимую память направления.

• Автономное динамическое торможение.

• Линейное управление ускорением / замедлением. Независимо регулируется, от 0,12 до 27 секунд в двух диапазонах.

• S-образная кривая ускорения / замедления. Независимо регулируется, от 0,12 до 18 секунд в двух диапазонах.

• Расширенные диапазоны ускорения и замедления, линейная опция до 84 секунд или S-образная кривая до 35 секунд.

• Привод с программированием крутящего момента. Управляет крутящим моментом вместо скорости.Полевой кабриолет. Применимо к намотчикам, распаковщикам и веб-обработчикам.

• Печатная плата с предустановленными скоростями. Семь каналов. Перемычка программирования и потенциометр для каждой скорости.

• Управление внешним сигналом. Диапазоны значений: 1 ~ 5 мА, 4 ~ 20 мА, 10 ~ 50 мА, 0 ~ 10 В постоянного тока и 0 ~ 6 В постоянного тока.

• Повторитель тахометра постоянного тока. От 6 до 100 В постоянного тока в трех диапазонах.

• Повторитель напряжения якоря. Диапазоны от 50 до 500 В постоянного тока. Позволяет PRD12B отслеживать скорость другого двигателя без использования тахометра.

• Интерфейс положения. Адаптирует PRD12B для управления положением, а не скоростью. Для использования с позиционерами клапана и связанными с ними приложениями.

• Корпус с прокладками и герметизацией. Наружный воздух циркулирует только через радиатор, а не через электронный отсек. Включает панель индикации неисправности и режима, установленную на двери.

• Разъединитель и выключатель на двери. Заказывается с дополнительным корпусом.

• Панель индикаторов неисправностей и режимов. Стандарт на прилагаемые элементы управления.Поставляется отдельно с открытыми элементами управления шасси. Устанавливается в стандартный вырез аналогового счетчика.

• Стандартная или настраиваемая удаленная операторская станция.

Информационный центр изготовителя ножей своими руками: направляющая для двигателя ленточно-шлифовального станка

У меня в блоге много вопросов о том, какие моторы работают на болгарки. Правда в том, что многие моторы будут работать, но одни лучше других. Еще есть двигатели, у которых есть свои проблемы. Вооружившись небольшой информацией, вы можете решить, подойдет ли двигатель для вашей ленточно-шлифовальной машины.
В центре внимания этого эссе будут асинхронные двигатели переменного тока (AC), подобные тем, которые вы найдете на настольной пиле старой школы. (В качестве другой темы у меня будет двигатель для беговой дорожки постоянного тока.)

Асинхронные двигатели переменного тока

Когда мы разбираемся в двигателях, первое, на что мы обращаем внимание, — это разные части и то, что они собой представляют. На рисунке ниже показан двигатель и его важные детали.

Хотя все эти детали важны, для нас нет ничего важнее, чем заводская табличка.

Заводская табличка

Когда дело доходит до определения двигателя, большинство важных вещей можно найти на паспортной табличке двигателя.Паспортная табличка — это этикетка или металлическая табличка, на которой указано название производителя, номер модели, напряжение, сила тока, скорость и мощность, а также другие данные, которые будут полезны при принятии решения о том, будет ли двигатель работать с вашим ленточно-шлифовальным станком.


Это наш пример паспортной таблички двигателя: На паспортной табличке много информации. Давайте переварим некоторые важные части. Я нарисую красный прямоугольник на параметре, чтобы вы могли увидеть, как он может выглядеть на вашем двигателе.

Фазы


Когда речь заходит об асинхронных двигателях переменного тока, прежде всего следует обращать внимание на количество фаз.Если ваш двигатель однофазный, PH 1 или аналогичный, вы должны использовать однофазное (бытовое) напряжение для запуска двигателя. Это также означает, что об управлении скоростью двигателя практически не может быть и речи. Это не означает, что двигатель бесполезен, только то, что скорость ремня шлифовального станка будет фиксированной, если вы не добавите промежуточный вал со шкивом и ремень для регулировки скорости ремня.

Если параметр фаз — 3 или PH 3, то вам понадобится трехфазный (промышленный) источник напряжения, частотно-регулируемый привод или фазовый преобразователь для запуска двигателя.Мы обсудим это позже. В нашем примере у нас однофазный двигатель, так что давайте продолжим этот путь.

Напряжение


Изготовители двигателей указывают номинальные значения напряжения (В, В, U) на паспортной табличке, чтобы вы знали, к какому источнику питания подключать двигатель. Кроме того, американские производители двигателей используют стандарты NEMA и устанавливают напряжение 115, 230 или 460 вольт. Просто помните, что для наших целей ссылки на 110 вольт, 115 вольт или 120 вольт относятся к одному и тому же.Это все равно низко и высоко, но погоди! Что делать, если мотор 230/460? Что ж, high по-прежнему является более высоким из двух напряжений.

Номенклатура Примечание: Я использую 120 В или 240 В при описании напряжения питания. Почему? Я использую эти числа, поскольку они основаны на 12/24/48/120/240/480/600 и 208 (квадратный корень 3 умноженный на 120). Это признано стандартом поставки. Однако … некоторые люди (например, мой папа) все еще используют 110 В. Другие используют 115 В. И это нормально. Важно помнить, что 120 означает одно и то же, 110 или 115.

Национальная ассоциация производителей электрооборудования (NEMA) предполагает, что диапазон напряжения двигателя составляет плюс-минус 10% от напряжения, указанного на паспортной табличке. Таким образом, на паспортной табличке двигателя указано, что 115 В может подаваться с напряжением от 104 до 126 В. На двигатель 230 В может подаваться напряжение от 207 В до 253 В. Вы можете видеть, что значения напряжения питания довольно нечеткие. при измерении в диапазоне 10% плюс или минус.

Двойное напряжение: Когда номинальное напряжение двигателя имеет косую черту, это означает, что двигатель можно настроить для работы при разных напряжениях, довольно часто 115/230 В.ПРИМЕЧАНИЕ. Двигатель не знает автоматически, при каком напряжении он будет работать. Вы должны изменить проводку в клеммной коробке, чтобы изменить напряжение, при котором двигатель должен работать.

Будьте осторожны при оценке номинального напряжения двигателя. Некоторые двигатели не будут работать с имеющимся запасом энергии. Как правило, однофазные двигатели имеют либо одно напряжение 115 В, либо два напряжения 115/230 В.

Трехфазные двигатели могут иметь различные напряжения, например 208 В, 230 В, 460 В или 575 В в Северной Америке. и 220 В или 380 В в Европе / Азии.Если вы хотите запустить трехфазный двигатель с частотно-регулируемым приводом, убедитесь, что на паспортной табличке двигателя указано 230/460 В. Это обычное явление для двигателей NEMA. Однако некоторые двигатели имеют напряжение только 575 В! Трехфазный двигатель 575 В потребует частотно-регулируемого привода, которым нелегко управлять из дома без специального оборудования.

Амперы (ток)


Число в амперах — это сила тока, необходимая для работы двигателя. Он указывается в амперах (А, амперы, амперы, I, FLA, амперы полной нагрузки и т. Д.). Ток на паспортной табличке двигателя очень важен, поскольку он позволяет нам рассчитать, какой калибр (толщину) провода использовать, а также какую силу тока. автоматического выключателя необходимо для работы двигателя.

Двигатели подвержены динамическим нагрузкам; то есть они не всегда потребляют одинаковое количество тока. Когда двигатель запускается, он может потреблять ток, в пять раз превышающий нормальный рабочий ток. Вот почему кажется, что индикаторы мигают, когда включается старый двигатель компрессора холодильника.

Ток на паспортной табличке — это рабочий ток двигателя при номинальной мощности.

Двойной ток? Если в номинальном значении тока есть косая черта, например, 7,6 / 15,2 , это означает, что номинальные значения тока указаны для двух разных напряжений, в этом примере 230/115.Ага, когда напряжение повышается, усилители падают.

Л.с. (Мощность)


Мощность асинхронного двигателя выражается в лошадиных силах (л.с.) или киловаттах (кВт). Лошадиная сила — это обычно используемая единица измерения в Северной Америке, тогда как в остальном мире используется киловаттная единица Международной системы единиц (СИ).

Одна лошадиная сила равна 0,746 киловатт, если вам нужно выполнить преобразование.

Асинхронные двигатели производятся от дробных значений мощности от 1/3 до нескольких тысяч лошадиных сил.Для приличной ленточно-шлифовальной машины 2 x 72 дюйма мы ищем в идеале от 1 до 3 лошадиных сил, а предпочтение отдается от 1,5 до 3 лошадиных сил. Мотор должен обладать достаточной мощностью для эффективного заточки ножей и общих задач по формовке металла.

Техническая публикация, которую я прочитал несколько лет назад от немецкого производителя абразивов Klingspor, рекомендует от 1 до 5 л.с. на дюйм ширины ленты. Поскольку мы работаем с ремнями шириной 2 дюйма, этот диапазон составляет от 2 до 10 л.с.! К счастью, эмпирические данные показывают, что ленточные шлифовальные машины 2 x 72 дюйма весьма полезны (хотя и немного неэффективны) при 1 л.с. чрезвычайно способный на 1.5 л.с. и офигенно на 2 или 3 л.с.!


Об / мин (скорость)


Скорость асинхронного двигателя зависит от количества полюсов (или обмоток), встроенных в него производителем. Чем больше у двигателя полюсов, тем медленнее он будет вращаться с заданной частотой. Двухполюсные двигатели работают быстро, а четырехполюсные — вдвое меньше. В Северной Америке на паспортной табличке двигателя скорость вращения двигателя составляет приблизительно 1725 об / мин или 3450 об / мин при номинальной нагрузке.

Иногда мы находим даже более медленные шестиполюсные двигатели, которые вращаются со скоростью чуть менее 1200 об / мин, и восьмиполюсные двигатели, которые вращаются со скоростью около 900 об / мин.

Шестиполюсные и восьмиполюсные двигатели не очень полезны для шлифовального станка с прямым приводом, поскольку они работают слишком медленно и требуют очень больших приводных колес, чтобы поддерживать скорость ремня в приемлемом диапазоне. Они могут лучше подходить для других применений, таких как хонингование, заточка или полировка, где более низкие скорости полезны для уменьшения тепла от трения.

Синхронная скорость двигателя часто указывается производителем. Пример 1800 об / мин или 3600 об / мин. Это последовательный способ описания скорости двигателя без учета нагрузки или скольжения.

Вот синхронные скорости при 60 Гц для обычных асинхронных двигателей.

Для источника питания 50 Гц в приведенной выше таблице будет указано 3000, 1500 и 1000 об / мин.

Не беспокойтесь, если на паспортной табличке вашего двигателя указано немного меньше 3600 или меньше 1800. На паспортных табличках указано число оборотов в минуту, когда двигатель находится в условиях нагрузки. Каждый асинхронный двигатель должен проскальзывать, то есть быть «не синхронизированным» с напряжением питания. Когда двигатель вращается свободно без нагрузки, скольжение невелико.По мере увеличения давления на ремень двигатель замедляется и увеличивается проскальзывание. только под нагрузкой частота вращения будет 3450 или 1740.

Есть несколько менее распространенных однофазных двигателей, которые являются двух- и четырехполюсными двигателями в одной раме. Эти двигатели могут работать со скоростью около 3600 или 1800 об / мин и обычно встречаются в водяных насосах для горячей ванны. Если вы можете решить проблему с валом насоса, вы можете легко получить однофазную низко / высокоскоростную шлифовальную машину с щелчком переключателя.

Число оборотов двигателя имеет большое влияние на скорость движения ленты.Для установки с прямым приводом, то есть приводного колеса, прикрепленного к валу двигателя, это очень важно.

На схемах ниже показаны колеса с прямым приводом трех разных размеров, 4 дюйма (100 мм), 5 дюймов (125 мм) и 6 дюймов (150 мм), а также их соответствующие скорости ремней в футах в минуту при движении от четырех полюсный двигатель при 60 Гц.

И те же варианты ведущего колеса с приводом от двухполюсного двигателя с частотой 60 Гц.

SF (коэффициент обслуживания)


Фактор обслуживания, иногда обозначаемый как SF, является множителем, который показывает, насколько двигатель может превышать номинальный ток в течение короткого периода времени.Например, коэффициент обслуживания 1,4 будет означать, что двигатель может временно работать при 140% от своего номинального тока. Это не должно быть непрерывным, скорее SF полезен для расчета тока, чтобы довести нагрузку, такую ​​как маховик или конвейерная система, до скорости, так как это может потребовать большего обслуживания, кабелей, переключателей и так далее. В случае нашей паспортной таблички SF A (коэффициент обслуживания в амперах) указан как 7,6 / 15,2, что означает, что этот двигатель может потреблять 7,6 А при 230 В или 15,2 при 115 В в течение коротких периодов времени.

SF не представляет большого беспокойства для ленточно-шлифовальных машин, поскольку шлифовальные машины обычно запускаются при небольших нагрузках и быстро набирают обороты.

Время (Дежурный)

Параметр времени или режима на паспортной табличке указывает, должен ли двигатель работать непрерывно или с перерывами. Некоторые двигатели предназначены для постоянной работы, в то время как другие двигатели специального назначения предназначены для периодов отдыха, когда двигатель может охлаждаться. Непрерывная работа Двигатели имеют код S1 или CONT. Двигатели, которые не предназначены для постоянной работы, будут иметь коды, такие как S2, или указывать время работы в минутах, например, 30 или 60. В идеале вам нужен двигатель, который может непрерывно работать без проблем с перегревом.

Температура


Номинальная температура двигателя обозначается как «температура» или «Окружающая среда» и обычно указывается в градусах Цельсия. Температура обычно не является проблемой для гаражей или мастерских. Не помещайте двигатель в закрытое пространство, где может накапливаться тепло. Если вы живете в безумно жарком месте, возможно, вам придется снизить мощность двигателя. Примером снижения мощности может быть двигатель мощностью 2 л.с. при 40 ° C, который следует рассматривать как двигатель мощностью 1,5 л.с. при температуре окружающей среды 50 ° C. Держите двигатель в свободном движущемся воздухе, чтобы избежать перегрева.

При работе двигателей на более низких, чем предполагалось, скоростях это становится более серьезной проблемой. См. Больше в разделе Герц ниже.

Класс изоляции


Электропроводка внутри двигателя изолирована и может выдерживать довольно высокие температуры. Чем выше температура изоляции, тем лучше выдержит проводка при перегрузке. Класс A подходит для температуры чуть выше кипения, но класс H на 75 ° C (167 ° F) лучше, чем класс A. Опять же, по большей части изоляция не является проблемой для ленточно-шлифовальных машин, если вы не загружаете двигатель. сильно в течение некоторого периода времени и выделяет достаточно тепла, чтобы превысить класс изоляции.

Это таблица классов изоляции от A до H и их номинальных температур в ° C и ° F.

Герц (Гц)



Рейтинг в Герцах говорит нам, для какой частоты питания производитель спроектировал двигатель. Обычно это 60 Гц для Северной Америки и 50 Гц для Европы / Азии. Герц или номинальная частота напрямую связаны с номинальной частотой вращения или скоростью; то есть тот же двигатель будет работать быстрее при частоте 60 Гц, чем 50 Гц. Разница в скорости между Северной Америкой и Европой составляет 50, деленное на 60, или 5/6, или 0.833.

Синхронные скорости на двигателях 50 Гц будут чуть ниже 3000 и 1500 об / мин. Примечание. Это может повлиять на выбранную вами конфигурацию ведущего колеса или шкива.

Значение в герцах также становится более важным для охлаждения двигателя. Работа двигателей с меньшей частотой, чем их номинальная частота, очевидно, приводит к более медленной работе вентилятора двигателя. Это влияет на общее охлаждение и может вызвать перегрев двигателя. Небольшое замедление вентилятора может вызвать сильное падение воздушного потока. См. Законы сродства.

Рама


Код корпуса сообщает нам о физических свойствах двигателя, включая размер, размеры монтажных отверстий и диаметр вала. Код рамы не передает никакой информации о мощности, однако, как правило, чем больше номер рамы, тем мощнее может быть двигатель.

56
Двигатель с рамой 56 будет иметь отверстия для крепления лап на валу диаметром 3 дюйма x 4-7 / 8 дюйма и 5/8 дюйма (0,625 дюйма).

143T
Двигатель с рамой 143T больше, чем с рамой 56, и имеет монтажные отверстия для лап размером 4 дюйма x 5-1 / 2 дюйма и вал диаметром 7/8 дюйма.

145T
Двигатель с рамой 145T больше, чем с рамой 143T, и имеет отверстия для крепления на лапах размером 5 дюймов на 5-1 / 2 дюйма и вал диаметром 7/8 дюйма.

Есть некоторые особые варианты, например 56J с валом 5/8 дюйма, но на конце с резьбой 7/16 дюйма NF. Они используются для крепления рабочих колес насоса. Вам нужен двигатель с рамой 56, 143 или 145 зуб. хорошо подходят для ленточно-шлифовального станка.

Корпуса двигателей

Двигатели полностью закрытого типа с вентиляторным охлаждением

Некоторые моторы защищены от пыли и влаги, а другие нет.Герметичные двигатели называются двигателями « Totally Enclosed Fan Cooled » или сокращенно TEFC. В среде, где плавает металлическая пыль, двигатель TEFC — лучший выбор.

В двигателе TEFC вентилятор находится вне герметичного двигателя и обдувает корпус двигателя воздухом, чтобы двигатель оставался холодным. Решетка из перфорированной крышки защищает вентилятор и не дает возможности засунуть в него руку.


Двигатели

TEFC более дорогие, чем их открытые аналоги, потому что они требуют большей массы, в некоторых случаях внешних ребер и т. Д.чтобы мотор оставался прохладным. Есть и другие варианты герметичного двигателя с немного другими акронимами. Есть полностью закрытые двигатели с естественной вентиляцией (TENV), у которых нет внешних вентиляторов. Двигатели TENV обычно имеют меньшую мощность в тех случаях, когда нагрев не является существенным фактором.

Открытые моторы

Незапечатанные двигатели обычно маркируются как « Open» или « Open Drip Proof ». Открытые двигатели, двигатели с защитой от капель или с ODP охлаждаются внутренним вентилятором, втягивающим воздух внутрь корпуса двигателя и удаляющим воздух вместе с теплом.К сожалению, открытые двигатели также допускают попадание пыли и влаги внутрь двигателя, поэтому они не лучший выбор для ленточно-шлифовальных машин. Попадание металлической пыли в электрические цепи двигателя — это плохо. Неофициальные данные свидетельствуют о том, что некоторые средства защиты, такие как пылезащитный кожух и периодическое обслуживание, например продувка двигателя сжатым воздухом, продлевают срок службы открытых двигателей в довольно суровых условиях. Помните, что у вас работают мощные электромагниты, и стальная пыль рано или поздно попадет в магнетизм.

На некоторых паспортных табличках ODP может быть написано «Защита от капель только в вертикальном положении», что означает, что двигатель предназначен для использования в вертикальном положении, например, в сверлильном станке, где капающая вода не будет проблемой для электрических частей мотор.

Инвертор номинальный

Двигатель с инверторным номиналом предназначен для работы с инвертором или частотно-регулируемым приводом. ЧРП не создают идеального напряжения. На выходе частотно-регулируемого привода возникают всплески шума, которые могут вызвать повреждение или прокол изоляции внутри двигателя.Эти проблемы более выражены при подключении к двигателю длинных кабелей.

Всегда лучше иметь двигатель с инверторным номиналом для использования с частотно-регулируемым приводом, но так ли это необходимо? Для большинства из нас … нет. Типичные трехфазные двигатели имеют изоляцию на 460 В, и мы обычно эксплуатируем эти двигатели с частотно-регулируемым приводом на 230 В и используем короткие кабели двигателя.

Валы двигателя

Двигатели изготавливаются с несколькими различными конфигурациями валов и соответствуют стандартам NEMA. В двигателях с меньшей рамой будет использоваться вал 3/8 дюйма с плоским местом для установки установочного винта.Двигатели рамы 56 имеют вал диаметром 5/8 дюйма, который может иметь шпонку (или резьбу в случае двигателя 56J). Более крупные рамы 143T и 145T имеют валы со шпонкой 7/8 дюйма. Даже более крупные двигатели серии 180 могут поставляться с валом 1–1 / 8 дюйма. Обязательно посмотрите размер рамы и вала в таблице размеров NEMA.

У наиболее распространенных двигателей, с которыми вы встретитесь, будут валы, как показано на рисунке ниже.

Производители шлифовальных кругов обычно предлагают в ведущих колесах три или четыре диаметра отверстий. Опрос продавцов на eBay показывает, что это обычно доступные отверстия для ведущих колес.5/8 «, 3/4», 7/8 «и некоторые предлагают 24 мм для двигателей IEC. Если вы планируете использовать колесо с прямым приводом, а не систему передачи шкив / ремень / вал, вам понадобится двигатель, вал которого совместим с общедоступными ведущими колесами. См. таблицу ниже.


См. Таблицу двигателей NEMA для размера «U».

Длина
Длина вала важна для ленточно-шлифовальных машин. Длина вала 2 дюйма или более предпочтительна, так как нам потребуется установить ведущее колесо шириной 2 дюйма.У NEMA 56, 143T и 145T валы «выступают» более чем на 2 дюйма. Двигатели с валом менее 2 дюймов можно использовать с подходящими удлинителями.

Диаметр
Как правило, более мощные двигатели имеют больший диаметр вала. Стандарт NEMA для двигателей определяет это. Валы меньшего размера 3/8 дюйма и 1/2 дюйма предназначены для применения с дробной мощностью, в то время как 5/8 дюйма, 7/8 дюйма и 1-1 / 8 дюйма можно найти на двигателях с большей рамой.

Есть ключи?

Требуется способ крепления колеса к валу двигателя.В двигателях меньшего размера вал может иметь D-образную форму, а установочный винт на колесе или шкиве будет контактировать с плоским местом и обеспечивать безопасность колеса.

Двигатели с более крупной рамой обычно имеют паз, называемый шпоночным пазом.


Для валов со шпонкой 5/8 дюйма и 7/8 дюйма используется шпоночный пруток 3/16 дюйма. На валах меньшего размера 1/2 дюйма обычно имеется плоское место на валу для установочного винта.
Шкив / шкив будет иметь паз под шпонку, как и вал двигателя.
Шпоночные пазы в валу и колесе или шкиве механически фиксируются куском квадратной стали, да, это называется ключом.Блестяще! Большинство хозяйственных магазинов продают ключницы.

Странности

Многие двигатели не имеют простых в использовании валов. В двигателях для специальных применений, таких как насосы, не предусмотрены установочные винты или ключи. Скорее, конец вала с резьбой должен использоваться для крепления рабочего колеса или другого типа колеса.
На этой фотографии показан открытый двигатель с валом, предназначенным для винта на маховике.

Читатель (спасибо Дэн Харгроув) прислал мне эту фотографию его милого маленького Marathon 56 frame TEFC мощностью 1 л.с.Но … что это, черт возьми, за вал?

Эти специально изготовленные валы потребуют некоторой адаптации; возможно, прокладки или, возможно, шлифовка и протяжка шпоночных пазов самостоятельно. Читайте: много работы, но если вы получаете этот странный мотор по дешевке, это может стоить вашего времени. Я хотел бы услышать ваши истории о необычных валах двигателей и о том, как вы заставили их работать.

Крепление двигателя

Двигатели обычно крепятся болтами через монтажную лапку или через лицевую часть (где выходит вал) двигателя.Для некоторых двигателей возможна установка как на лапах, так и на торце.

C Лицевая

Двигатели с торцевым креплением называются « C Face» . Обычно вокруг торца имеется четыре точки крепления с резьбой.
Преимущество торцевого монтажа C состоит в том, что двигатель закреплен на раме шлифовальной машины, и проблемы центровки могут быть сведены к минимуму. Для рам NEMA 56, 143T и 145T отверстия для торцевого монтажа имеют диаметр 5,875 дюйма или радиус 2,94 дюйма при измерении от центра вала.Я поместил это в AutoCAD и сделал рисунок ниже, показывающий размеры от центра к центру, который может лучше работать для некоторых людей, проектирующих раму для крепления двигателя с C-образной гранью.
Болты для торцевого монтажа NEMA C обычно имеют размер 3/8 «NC x 0,75». Конечно, всегда проверяйте монтажную конфигурацию двигателя перед покупкой крепежа.

Крепление на лапах Крепление на лапах — это место, где на пластине или литой раме под двигателем есть отверстия для крепления. прикрутив опору двигателя к поверхности.

Предполагается, что ножка прикручена к стальной пластине, к которой прямо прикреплена рама шлифовального станка, но это также может быть рабочий стол или плита из толстой фанеры. Двигатель может слегка наклоняться в опорах для ног, поэтому необходимо следить за тем, чтобы вал двигателя был перпендикулярен (90 °) пути движения ремня в двух измерениях.

Однофазные двигатели

Однофазные двигатели не имеют внутри вращающегося магнитного поля, скорее вы можете подумать, что это переменное. Поскольку однофазное напряжение разнесено на 180 °, двигатель просто будет вибрировать при подаче питания, поскольку он не знает, в какую сторону повернуться.Чтобы «подтолкнуть» двигатель в нужном направлении, часто используется конденсатор.


«Удар» конденсатора — контрольный признак однофазного двигателя.

Конденсатор используется для ослабления одного или нескольких магнитных полей, чтобы двигатель начал вращаться в предсказуемом направлении.

Оставление конденсатора запитанным во время работы двигателя делает двигатель неэффективным, поэтому используется переключатель для отключения конденсатора из цепи, когда двигатель набирает скорость.Слышимый щелчок при запуске и остановке двигателя — это центробежный выключатель, который включает конденсатор в цепь или из нее.

В зависимости от конструкции некоторых однофазных двигателей вы увидите два выпуклых конденсатора. Один конденсатор является пусковым, а другой — рабочим. В отличие от пускового конденсатора, рабочий конденсатор остается подключенным после запуска во время работы двигателя.

Рекомендации по тестированию и обслуживанию конденсатора и переключателя однофазного двигателя см. В отличном видео Grizzly Industrial по этой теме.https://www.youtube.com/watch?v=M-j6PhthXJY

Одним из недостатков использования однофазного двигателя на кофемолке является то, что вы не можете контролировать скорость двигателя, поскольку она задается частотой напряжение питания, скажем, 60 Гц или 50 Гц в зависимости от того, где вы живете.

Конечно, изменение скорости ремня может быть выполнено с помощью различных соотношений шкивов (шкивов), но сам двигатель имеет только одну скорость. Еще одно распространенное исключение — двухскоростной насосный двигатель, используемый в гидромассажных ваннах.Этот тип двигателя будет двухполюсным и четырехполюсным с проводами, идущими к клеммной коробке для изменения скорости. Скорость будет, например, 1800 или 3600 об / мин.

Реверсивный?

Однофазные двигатели не всегда реверсивны. Говорят, что двигатели вращаются вперед, когда вал вращается против часовой стрелки (CCW), если смотреть с лица. То есть смотреть на вал, на котором будет крепиться колесо.

Некоторые конструкции однофазных двигателей нереверсивны. Это установлено способом изготовления двигателя.Поскольку нет ничего невозможного, некоторые люди вытаскивают ротор из двигателя и устанавливают его в обратном порядке. Как там реверсивный и нереверсивный мотор. Всегда есть способ, если у вас есть время.

Многие однофазные двигатели можно реверсировать, заменив два провода в клеммной коробке. См. Схему подключения на паспортной табличке или внутри клеммной коробки. Это будет означать что-то вроде «для обратного вращения поменяйте местами красный и черный провода».

Если ваш двигатель нереверсивный, его можно использовать, переставив двигатель относительно ремня.


Однофазное питание

Практически каждый будет иметь однофазное напряжение 120 В в мастерской или гараже. Однофазная энергия — это энергия, которую мы получаем в наших домах. Общие цепи могут позволить нам без проблем запускать асинхронный двигатель мощностью 1 л.с., если мы «выделяем» цепь для работы этого одного двигателя; то есть не использовать эту цепь совместно с осветительными приборами и другим оборудованием в магазине.

На каждой паспортной табличке двигателя будет указан ток в амперах, потребляемый при полной нагрузке двигателя.Для запуска двигателя требуется гораздо больший ток. В некоторых случаях в пять раз превышает ток, указанный на паспортной табличке.

Для некоторых двигателей мощностью 1 л.с. при 120 В может потребоваться автоматический выключатель на 20 А, даже если на заводской табличке указано 14,4 А.

Однофазный также представлен двумя линиями на 120 В. При совместном использовании они увеличивают вдвое напряжение до 240 В. Удвоив напряжение, мы можем использовать провода и автоматические выключатели меньшего размера и при этом выполнять ту же работу. Использование двигателя мощностью более 1,5 лошадиных сил означает, что вам действительно нужно иметь доступное напряжение 240 В.


Определение объема поставок

Понимание того, что у вас есть на поставку, — хорошее начало при поиске двигателя, который будет работать с вашим ленточно-шлифовальным станком.

Только для питания 120 В Одна цепь на 120 В в Северной Америке способна обеспечить как минимум 15 Ампер.
Новые правила делают электрические цепи на 20 ампер более распространенными, особенно на кухнях.
  • Обычно 1,5 л.с. максимум
  • Требуется цепь на 20 А, предпочтительно предназначенная только для питания вашего двигателя.
  • Малые частотно-регулируемые приводы
  • доступны с входами 120 В, обычно мощностью 1 л.с. или меньше.
  • Использует розетку и вилку NEMA 5.

Примеры цепей двигателя на 120 В


Для питания 240 В Источник питания 240 В использует две линии по 120 В и предлагает гораздо большую мощность и более широкий выбор вариантов подключения. Могут быть доступны цепи от 15 до 50 ампер. Цепи на 240 В могут выполнять вдвое большую работу, чем цепь на 120 В, и именно поэтому они используются для питания более тяжелых нагрузок, таких как плита или сварочный аппарат.Цепи 240 В могут использоваться в шлифовальных машинах на:
  • однофазных двигателях от 1 до 5 лошадиных сил
  • VFD с трехфазными двигателями от 1 до 5 л.с.

Использование источника питания 240 В также означает:

  • Более низкий ток означает меньшую проводку и автоматические выключатели, выполняющие ту же работу.
  • Требуются розетки и вилки NEMA 6.

Примеры цепей двигателя на 240 В




Выключатели с номинальным двигателем

Для безопасного включения и выключения двигателя вам необходимо использовать переключатель, способный управлять напряжением и током двигателя.Для двигателей требуются более надежные переключатели, чем для освещения или других простых нагрузок. Когда вы отключаете питание двигателя, он сопротивляется и производит дугу (искру), которая может повредить или даже сварить контакты переключателя вместе. На переключателях с номинальным двигателем

указана мощность в лошадиных силах. Что-то вроде 3/4 HP при 125/250 В переменного тока.

Однополюсные переключатели размыкают / замыкают один контакт. Это ваш основной выключатель света. Их можно использовать до 1 лошадиных сил.

Двухполюсные переключатели размыкают / замыкают два контакта.Они подходят для переключения однофазных двигателей на 240 В.

Трехполюсные переключатели размыкают / замыкают три контакта. Они предназначены для переключения трехфазных двигателей. Однако, если переключатель является только механическим (например, внутри нет электромагнитной удерживающей цепи), вы можете использовать один или два из трех полюсов для однофазных приложений.


По мере того, как двигатели становятся крупнее, для тяжелых переключений используется контактор. Контактор — это, по сути, реле, поскольку у него есть катушка и контакты, которые перемещаются электромагнитом.

Термовыключатели

Некоторые двигатели имеют встроенные термовыключатели, иногда называемые выключателями перегрузки. Эти переключатели размыкаются, как автоматический выключатель, когда они становятся слишком горячими. Тепло исходит от тока, протекающего через переключатель и двигатель. Когда двигатель работает с большей нагрузкой, он потребляет больше тока, и нагрев термовыключателя увеличивается. Если двигатель (и термовыключатель) не охлаждается, термовыключатель неизбежно размыкается и останавливает двигатель, защищая его от перегрева.По соображениям безопасности, эти термовыключатели должны быть сброшены вручную, чтобы избежать запуска двигателя, когда это не ожидается.

Кабель

Хотя это руководство не предназначалось для использования в качестве руководства по электромонтажу, важно знать, какой тип провода подходит для электромонтажа оборудования, такого как ленточно-шлифовальные станки.
Самый популярный кабель для электромонтажа — SJOOW. Считается портативным шнуром питания. Он имеет эластичную резиновую оболочку, устойчивую к погодным условиям и маслу. SJOOW рассчитан на 300 вольт. Отдельные провода внутри многожильные, что делает его более гибким.Вы можете найти его в широком диапазоне размеров и купить пешком во многих строительных магазинах. Аналогичный кабель SOOW рассчитан на 600 Вольт и также может быть использован.

Более прочным кабелем является армированный кабель, известный в торговле как BX. Это та знакомая спиральная броня, которую мы все видели. С внутренней стороны сплошные медные провода в термопластической изоляции, очень похожие на обычные провода домашней электропроводки NMD.

Проводники
Проводник — это другое название провода. Кабель, обозначенный как 3 / C, означает, что он имеет 3 проводника.В Северной Америке это обычно один черный, один белый и один зеленый. Кабель, обозначенный как 4 / C, может иметь внутри красный, черный, белый и зеленый провода.

Трехфазные двигатели

Трехфазные двигатели, хотя и аналогичны по конструкции однофазным двигателям, имеют разнесенные обмотки на 120 °. Двигатель всегда начинает двигаться в том же направлении, в котором источник определяет вращение. У трехфазных двигателей нет необходимости в конденсаторах . Следует отметить, что любой трехфазный двигатель можно реверсировать, поменяв местами любые два провода, питающие двигатель.

Для ленточно-шлифовальных машин можно использовать многие трехфазные двигатели. Самым большим препятствием для трехфазных двигателей является то, что у большинства из нас нет трехфазного напряжения в наших магазинах, у нас однофазное. Простым решением проблемы отсутствия трех фаз является использование частотно-регулируемого привода (VFD).

Частотно-регулируемые приводы

Частотно-регулируемый привод или ЧРП, иногда называемый в преобразователе , привод с регулируемой скоростью (VSD), привод с регулируемой скоростью (ASD) и т. Д., Представляет собой электронное устройство, которое создает три фазы с по привод трехфазный двигатель .Этот тип частотно-регулируемого привода НЕ РАБОТАЕТ С ОДНОФАЗНЫМИ ДВИГАТЕЛЯМИ!

Концепция частотно-регулируемого привода в качестве преобразователя фазы отлично подходит для использования дома и в гараже. Мы даем ему однофазный, а ЧРП выдает три фазы для работы трехфазного двигателя.

ЧРП должен приводить в действие трехфазный двигатель. Однофазные двигатели, как мы знаем, имеют другую конструкцию и не должны питаться от частотно-регулируемого привода.

Конечно, ЧРП не так дешев, как выключатель питания, однако преимуществ много. Использование частотно-регулируемого привода означает, что у нас есть возможность электронного управления скоростью, направлением, ускорением, замедлением и многими другими эксплуатационными аспектами трехфазного двигателя, что делает его действительно гибкой системой подачи энергии.Для производителя ножей это означает холодную полировку на медленной скорости и высокую скорость для агрессивного удаления материала в одном пакете.

Типоразмер
Для однофазных приводов 120 В ожидается максимальная мощность 1,5 л.с.

Для однофазного двигателя 240 В рассчитана максимальная мощность 5 л.с., однако некоторые модели будут развивать мощность только около 3 л.с. Этот диапазон частотно-регулируемых приводов 240 В очень полезен в качестве преобразователя однофазного в трехфазный, что идеально подходит для шлифовальной машины с регулируемой скоростью, построенной в магазине.


Для однофазных двигателей необходимо учитывать требуемый ток. Может показаться удобным иметь двигатель мощностью 1,5 лошадиных силы на частотно-регулируемом приводе с входным напряжением 120 В, не так ли? Нет необходимости в 240 В! Имейте в виду, что входной ток для этой машины может составлять 24 А. Это немного больше, чем в средней цепи. Высокий входной ток является результатом более низкого входного напряжения (120) и того факта, что частотно-регулируемый привод должен сделать три фазы из одной фазы. Использование частотно-регулируемого привода аналогичной мощности, рассчитанного на 240 В, снизит входной ток вдвое до 12 А.Это означает, что можно использовать меньшую проводку и автоматический выключатель.

Крутящий момент

Крутящий момент — это сила вращения. Некоторые нагрузки требуют большего крутящего момента двигателя, чем другие. В асинхронных двигателях крутящий момент обратно пропорционален скорости, но мощность в лошадиных силах не зависит от скорости. Имея это в виду, мы можем думать о четырехполюсном (1800 об / мин) двигателе, который имеет в два раза больший крутящий момент, чем двухполюсный (3600 об / мин) с той же номинальной мощностью. Или, когда скорость увеличивается, крутящий момент уменьшается на заданную мощность. Имеет ли это значение для ленточно-шлифовальных машин? Не совсем.Ленточно-шлифовальные машины, как правило, относятся к малоинерционным. Когда ремень движется со скоростью, требование большого крутящего момента падает. Проблемы возникают у шлифовальных машин с контршинами, жесткими подшипниками и колесами большого диаметра. Все они нагружают двигатель, и в двухполюсных двигателях меньшей мощности (3/4 или меньше) крутящего момента двигателя может быть недостаточно для преодоления сопротивления, и двигатель будет в состоянии остановки. (Это очень плохо для двигателя.)

Один из примеров двигателя мощностью 2 л.с. при 1800 об / мин предложит 5.8 фунт-фут крутящего момента.
В то время как двигатель мощностью 2 л.с. и 3600 об / мин обеспечивает крутящий момент 2,9 фунт-фут.

Формула для крутящего момента в фунт-футах:

Крутящий момент = мощность x 5252 / об / мин

VFD могут управлять крутящим моментом двигателя и могут запускаться при очень больших нагрузках или поддерживать тот же крутящий момент в широком диапазоне. скоростей. Такие функции, как «повышение крутящего момента» и «постоянный крутящий момент», программируются в большинстве современных частотно-регулируемых приводов. Однако, как всегда, есть компромисс. Когда мы увеличиваем скорость вращения выше нормальной, крутящий момент начинает падать.К счастью, это обычно не проблема, так как к тому времени ваш ремень уже поднят и свистит. Кривая ниже синего цвета показывает, как падает крутящий момент в двигателе, когда частотно-регулируемый привод превышает нормальную рабочую частоту двигателя.

Скорость ленты

Последнее соображение — убедиться, что вы получаете подходящую скорость ленты (количество футов в минуту или метров в секунду), необходимую для шлифования, которое вы хотите сделать. Ремни по-разному ведут себя на разных скоростях. Многие производители абразивов публикуют рекомендуемые скорости ленты для шлифования материалов с их продуктами, а некоторые из них удивительно быстрые.Производитель ремня нередко предлагает 5000 SFM (25 м / сек). Это может быть немного пугающим, когда ремень движется в вашей руке со скоростью 55 миль в час.

В качестве практического диапазона для изготовления ножей я бы посоветовал от 2500 до 4000 SFM в минуту. Несколько примеров прямого привода позволят нам попасть в этот диапазон.

1). 2-полюсный (3600 об / мин) двигатель с 4-дюймовым ведущим колесом будет развивать наземную скорость около 3700 sfm.

2). 4-полюсный (1800 об / мин) двигатель с 6-дюймовым ведущим колесом будет развивать наземную скорость около 2800 SFM.

Вот почему 6- и 8-полюсные двигатели не очень полезны без некоторого передаточного числа промежуточного вала для увеличения скорости.

Вам понадобится ведущее колесо большего размера, чтобы компенсировать более медленный двигатель. Колеса стоят денег, а колеса большего размера стоят больших денег, поэтому имеет смысл поискать двухполюсный двигатель или двигатель с частотно-регулируемым приводом, в котором вы можете создать необходимую скорость, используя меньшее колесо.

Идеал Моторс

До сих пор мы изучили множество параметров двигателей, и стало ясно, что некоторые двигатели лучше других подходят для сборки кофемолки.

Ultimate
Трехфазный
230 В переменного тока
TEFC
От 1,5 до 3 лошадиных сил
2 полюса (3600 об / мин)
Колесо с прямым приводом 4 дюйма
Частотно-регулируемый привод

Выбор # 2
TEFC
115/230 1 до 2 лошадиных сил
4 полюса (1800 об / мин)
Контрвал с 4-дюймовым ведущим колесом

Выбор № 3
TEFC
230 В переменного тока
От 1,5 до 3 лошадиных сил
2 полюса (3600 об / мин)
4-дюймовое колесо с прямым приводом

Выбор # 4
TEFC
115/230 В переменного тока
1.От 5 до 3 лошадиных сил
4 полюса (1800 об / мин)
6 «колесо с прямым приводом

выбор # 5
ODP
от 1,5 до 3 лошадиных сил
2 полюса (3600 об / мин)
4″ колесо с прямым приводом

выбор # 6
ODP
От 1,5 до 3 лошадиных сил
4 полюса (1800 об / мин)
Колесо с прямым приводом 6 дюймов


Предлагаемые пакеты
Этот пакет двигателя и частотно-регулируемого привода можно приобрести у Oregon Blade Maker.
Подходит для кофемолки, если у вас есть только напряжение 120 В.Также может быть подключено к сети 240 В.
Обратитесь к дилерам, специализирующимся на производстве двигателей, частотно-регулируемых приводов и комбинированных пакетов.

Часто задаваемые вопросы

Q: Могу ли я изменить скорость двигателя, изменив напряжение?
A: Нет. Скорость асинхронного двигателя зависит от частоты источника питания 50 или 60 Гц и количества полюсов двигателя.

Q: Может ли однофазный двигатель работать с частотно-регулируемым приводом?
A: № Промышленные частотно-регулируемые приводы переменного тока предназначены для привода трехфазных двигателей.

Q: Можно ли получить 230 В от частотно-регулируемого привода, который питается от 115 В на его входе?
A: Да. Некоторые частотно-регулируемые приводы с дробной мощностью повышают напряжение с 115 В до 230 В. Однако они обычно не доступны для мощности более 1,5 лошадиных сил.

Q: Будет ли мой двигатель работать более эффективно при 240 В?
A: Нет. Мощность двигателя остается постоянной, независимо от того, подключен ли двигатель к напряжению 120 В или 240 В.

Q: Могу ли я получить удвоенную мощность, подключив двигатель 115 В к 230 В?
A: Возможно на короткое время, прежде чем двигатель перегорит.Не делайте этого. Если проводку двигателя можно поменять на 230 В, то ничего страшного. Однако мощность в лошадиных силах в этом случае увеличиваться не будет.

Q: Ведущее колесо какого размера мне следует использовать с двигателем?
A: Это зависит от числа оборотов вашего двигателя. Четырехполюсный двигатель с частотой вращения ~ 1800 об / мин должен иметь ведущее колесо диаметром 6 или 7 дюймов (или больше), тогда как двухполюсный двигатель отлично работает с ведущим колесом 4 дюйма.

Q: У меня есть домкрат со ступенчатыми шкивами Как я могу предсказать, какой будет скорость ленты?
A: Есть инструмент, который поможет вам в расчетах.Калькулятор скорости ремня

Q: У меня открытый двигатель. Что я могу сделать, чтобы стальная пыль не попала внутрь?
A: Вы мало что можете сделать. Воздух всегда будет всасываться через двигатель, чтобы охладить его. Вы можете сделать кожух или кожух, если через двигатель проходит воздух, чтобы он не перегревался. Также можно периодически продувать двигатель сжатым воздухом.

Q: Мой мотор очень быстро останавливается и иногда не заводится.
A: Проверьте правильность настройки напряжения на самом двигателе.Провод двигателя на 230 В, к которому приложено 115 В, может вращаться, но он не будет работать.

Q: Могу ли я использовать обычный выключатель света для включения и выключения однофазного двигателя?
A: Да, примерно до 1 лошадиных сил. Всегда рекомендуется использовать переключатель, на котором указана соответствующая мощность в лошадиных силах.

Q: У меня однофазный двигатель, мощность которого не указана. Как вы в этом разобрались?
A: Умножьте напряжение и ток, затем умножьте на 0.85, затем разделите на 746. Это примерно соответствует мощности в лошадиных силах. Пример: 115 В x 9,5 А x 0,85 = 928,928/746 = 1,24 л.с.

Q: Может ли мотор стиральной машины работать на ленточно-шлифовальный станок?
A: Нет. Это открытый двигатель и, как правило, его мощность слишком мала для использования в ленточно-шлифовальном станке.

Q: У меня есть мотор от джакузи. Можно ли это использовать для приличной ленточно-шлифовальной машины?
A: Да, но вал двигателя, скорее всего, не будет иметь шпоночной канавки и будет иметь конец с резьбой для рабочего колеса насоса.Потребуется немного повозиться, но это можно использовать.

Q: Стоит ли покупать двигатель с инверторным номиналом?
A: Конечно, было бы лучше, но не обязательно для коротких кабелей.

Q: Мой двигатель 115/230 Вольт, но у меня в гараже нет 230 В. Могу ли я получить максимальную отдачу от двигателя при 115 В?
A: Да. Двигатель будет производить ту же мощность при 115 В. Однако он будет потреблять вдвое больший ток. Убедитесь, что ваша проводка, выключатель и прерыватель исправны.

Q: Двигатель, который у меня есть, имеет на паспортной табличке «нереверсивный». Могу ли я еще использовать это?
A: Да. Скорее всего, вам придется физически переставить двигатель, чтобы он работал вокруг фиксированного вращения.

Q: У меня есть однофазный двигатель, который просто сидит и гудит. Что с этим не так?
A: Это может быть неисправный пусковой конденсатор или центробежный выключатель. Попросите кого-нибудь проверить это с помощью мультиметра. Или ознакомьтесь с процедурами обслуживания здесь: https: // www.youtube.com/watch?v=M-j6PhthXJY

Q: Правда ли, что медленная работа двигателя может вызвать его перегрев?
A: Да, это возможно. Однако производители двигателей часто используют один и тот же вентилятор для 2-полюсного (3600 об / мин) и 4-полюсного (1800 об / мин) в данной линейке двигателей. Запуск 2-полюсной медленнее менее вреден, чем 4-полюсная медленная. Запуск 2-полюсного двигателя на 1/2 скорости аналогичен запуску 4-полюсного двигателя на полной скорости.

Для справки ознакомьтесь с таблицей выбора двигателя:

Комментарии

Я надеюсь, что вы узнали кое-что об асинхронных двигателях переменного тока и о том, как они связаны со сборкой самодельной шлифовальной машины.Присоединяйтесь к беседе ниже и задайте вопрос, если он у вас есть.

Всего наилучшего и счастливого гринда,

Дан

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *