Стабильный контур сг генератора своими руками: Генераторы колебаний. Основы. Часть 1

Содержание

Примочки для КВ аппаратуры - Сайт prograham!

Сужение полосы пропускания ФОС 

Микрофонный усилитель с АРУ

Схема резонансного усилителя на К174ПС1

Диапазон частот 0,2...200 мгц определяется выбором контура L. Коэффициент передачи не менее 

20 дБ. Глубина АРУ не менее 40 дБ.

S-метр на светодиодах

Подключают S-метр на вход УНЧ, до регулятора громкости. Настройка заключается в замене резисторов R9 и R10 одним подстроечным резистором, для уточнения номиналов этого делителя.


ФНЧ для транзисторного усилителя мощности КВ радиостанции

Предлагаемый ФНЧ работает совместно с транзисторным усилителем мощности в диапазоне частот от 1,8 до 30 мгц при выходной мощности не более 200 вт.



 Катушки индуктивности ФНЧ бескаркасные и намотаны виток к витку проводом ПЭВ-2 диаметром 1,2 мм на диапазоны 14; 18; 21; 24,5; 28 мгц и проводом ПЭВ-2 диаметром 1,0 мм – на остальные. Номиналы конденсаторов C1, C2, C3, не попадающие в стандартные ряды, необходимо подобрать из нескольких конденсаторов в параллельном или последовательном включении. 

Конструктивно ФНЧ выполнен на трехсекционном  керамическом галетном переключателе 1 типа 11П3Н в виде единого, заключенного в экранирующий корпус из немагнитного материала.  Медная шина 2 является общим проводом ФНЧ и соединяется

электрически с корпусом 3, шасси радиостанции и шиной заземления. Средняя галета переключателя – опорная – для монтажа элементов фильтра. На входе и выходе ФНЧ установлены коаксиальные разьемы типа СР-50.

И.Милованов  UY0YI 

Переключатель диапазонов

Эмитеры транзисторов нагружают на реле переключения диапазонов

Умножитель добротности для простого приемника

  Приставка, позволяющая повысить чувствительность и избирательность приемника за счет положительной обратной связи без его переделки.

  Умножитель добротности представляет собой недовозбужденный генератор электрических колебаний с положительной обратной связью, величину которой можно изменять. Если режим работы генератора подобрать таким, что компенсация активных потерь в колебательном контуре будет неполной, то самовозбуждение колебаний не возникнет, однако добротность контура окажется весьма большой. При включении такого контура в резонансный усилитель приемника избирательность и чувствительность может возрасти в  десятки раз. Наиболее часто Q-умножитель можно включить в усилитель промежуточной частоты. Сам Q-умножитель выполняется в виде отдельной конструкции, имеющей выводы для подключения ее к приемнику.

Ток эмиттера таранзистора, определяющий его усилительные свойства, можно плавно регулировать переменным резистором R2. Когда ток эмиттера мал, действие ПОС проявляются слабо. При постепенном увеличении тока эмиттера влияние ПОС усиливается из-за увеличения усилительных свойств транзистора и, наконец, при некотором значении обратной связи наступает возбуждение генератора. Если довести умножитель добротности до самовозбуждения, то он будет работать, как второй гетеродин; при этом полоса пропускания смесителя может доходить до 500 Гц и менее. В этом режиме на приемник возможен прием радиостанций, работающих телеграфом. Контуры LC и L1C1 должны быть настроены на промежуточную частоту.

Кварцевый генератор 500 кгц

В спортивной аппаратуре используются кварцевые генераторы на частоту 500 кгц. Но бывает так, что у радиолюбителя не оказывается нужного кварца. В этом случае выручает кварцевый генератор с последующим делением до нужной частоты. Вашему вниманию предлагается схема такого устройства на микросхеме IC 4060 (генератор и 14 разрядный счетчик)

 Генератор работает на частоте кварца (широкодоступного) 8 мгц.  Выходной сигнал имеет частоту 500 кГц. Фильтр нижних частот на выходе имеет частоту среза приблизительно 630 кГц и отделяет первую гармонику, в результате чего получается чистый синусоидальный сигнал. Буферный усилитель реализован на биполярном транзисторе по схеме "общий коллектор"

ГПД смесительного типа

ГПД смесительного типа разработан для трансивера с промежуточной частотой 9 мгц. Диапазон перестройки задающего генератора на транзисторе VT1-5,0…5,5 мгц. ВЧ напряжение на выходе истоковых повторителей около 2-х вольт. Равенства выходных напряжений на разных диапазонах добиваются подбором сопротивлений резисторов Rв включаемых последовательно с L2. Настройки фильтров L2-L3 производится на средину рабочего диапазона ГПД. Фильтра, как и Т1, мотаются на ферритовых кольцах ВЧ3 диаметром 10 мм.

Преобразователь частоты

Показанный на схеме смеситель обеспечивает более широкий динамический диапазон (по сравнению с активными смесителями) и очень низкий уровень шумов, который позволяет даже без предварительного УРЧ получить высокую чувствительность приемника. На выходе смесителя используется контур, настроенный на частоту ПЧ.


От предложенной в [Л.1] схемы отличается способом подачи на затворы транзисторов отрицательного, относительно истоков, напряжения смещения, необходимого для получения максимальной чувствительности. Затворы через обмотку Т1 соединены гальванически с общим минусом питания. А на истоки подается положительное напряжение смещения с подстроечного резистора R1. Таким образом затворы оказываются под отрицательным потенциалом по отношению к истокам. Такой способ подачи смещения выгоден для конструкций с общим минусом, так как не требует дополнительного отрицательного источника питания.

  ВЧ трансформатор намотан на ферритовом кольце диаметром 7 мм и проницаемостью 100НН или 50ВЧ. Намотка ведется в три провода, 12 витков. Одну обмотку используют как «3», а «1» и «2» соединяют последовательно (конец одной обмотки с началом другой). Для указанных на схеме транзисторов оптимальное напряжение смещения 2,5 V (выставляется по максимуму чувствительности) и уровень напряжения гетеродина 1,5V. Транзисторы применимы КП302,303,307 c наименьшим током отсечки. Несколько лучших параметров можно достичь с транзисторами КП305. 

  Смеситель является реверсивным и с успехом может применяться в трансивере. 

  Вариант схемы с применением ЭМФ показан на Рис 2.

Литература

1. В. Поляков Б. Степанов

Смеситель гетеродинного приемника

Радио №4 1983 г

Коммутатор режимов "прием/передача"

Смеситель гетеродинного приемника

В. Беседин UA9LAQ

Статья с таким заголовком была опубликована в [1]. В ней описывался смеситель на полевых транзисторах, используемых в качестве управляемых сопротивлений. Схема  смесителя,  приведенная  в  [1,  рис.   3],  выполнена  на  подобранной  паре

полевых  транзисторов  с  n-каналом  и  получает  смещение  от  источника отрицательного  напряжения  двухполярного  блока  питания.  Такое  питание довольно  громоздко для приёмника, особенно переносного. В настоящее время большое  распространение  получила  аппаратура  с  однополярным  источником питания с “заземленным минусом”.

  Чтобы  адаптировать  смеситель  к  современным  реалиям,  предлагаю  заменить транзисторы  V1  и  V2  [1,  рис.  3]  на  транзисторную  сборку  серии  К504.  В  этом случае мы имеем идентичную пару транзисторов с р-каналом, на затворы которых через подстроечный резистор R1 подается положительное напряжение. 

  Проведённые  автором  исследования  показали,  что  данная  сборка удовлетворительно работает даже на частотах 2-метрового диапазона  (144–146МГц), но приёмник с таким смесителем на УКВ несколько “туповат”. Тем не менее, автор  применил  данный  смеситель  в  варианте  УКВ  ЧМ  супергетеродинного приёмника  на  145,5 МГц  для  местной  УКВ  сети  TRAN  [2].   Частота  кварцевого гетеродина  —  67,4  МГц,  промежуточная  частота  приёмника  —  10,7  МГц. Усилитель  высокой  частоты  на  транзисторе  КТ399А  помог  добиться чувствительности приёмника в единицы микровольт.

 

  Поскольку полевые транзисторы сборки требуют смещения для их "закрывания”, то, воспользовавшись данными из [3, 4], можно подобрать экземпляр сборки под напряжение  питания  приёмника.  Кроме  того,  полевые  транзисторы  в  сборках К504НТЗ и К504НТ4 – довольно мощные, что может положительно сказаться на динамических характеристиках приёмника.

Литература:

1.  В.Т.  Поляков,  Б.Г.  Степанов.  Смеситель  гетеродинного  приёмника.  — Радио, 1983, №4.

2.  В. Беседин. Радиолюбительский “телефон". — Радио, 1990, №№10, 11.

3.  Справочник по интегральным микросхемам под ред. Б.В. Тарабрина. — М.: Энергия, 1980.

4.  Интегральные  микросхемы.  Справочник  под  ред.  Б. В.  Тарабрина. —  М.: Энергоатомиздат, 1985.

Малогабаритный перестраиваемый преселектор 1,75-30 мгц от US5MSQ

Стабильный гетеродин

Хорошие результаты по большому перекрытию показала вот такая схема
Эта схема имеет простую коммутацию диапазонов(переключением катушек), имеет усиленную стабилизацию режима генерации и показывает весьма приличную стабильность. Ее планировали в качестве ГПД при ПЧ=5МГц, так вот стабильность на 24МГц была очень приличной ( порядка 200Гц за час). А вообще при указанных номиналах она перекрывает непрерывно диапазон от 6,7 до35МГц при неравномерности амплитуды не более 6дБ

Если Вам понравилась страница - поделитесь с друзьями:

Схемы генераторов высокой частоты (ВЧ)


Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать.  В интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем все это.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

Классика жанра — генератор ВЧ

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Индуктивная трехточка

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора
R2 – задает смещение базы
C1, L1 – колебательный контур
C2 – конденсатор ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Этот диод ускоряет перезаряд C2, что приводит к увеличению мощности генерируемого сигнала. Однако, вместе с тем, это вносит в сигнал нелинейные искажения, так что на выходе придется ставить фильтры НЧ для подавления паразитных гармоник.

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовый ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Вот он

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков 🙂

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только

Все своими руками Генератор сигналов ГУК-1

Опубликовал admin | Дата 6 января, 2013

Схема, технические характеристики, работа генератора ГУК-1.

     Недавно мне принесли в ремонт генератор ГУК-1. Что бы потом не думалось, сразу заменил все электролиты. О чудо! Все заработало. Генератор еще советских времен, а отношение у коммунистов к радиолюбителям было такое Х… , что вспоминать не охота.

      Вот отсюда и генератор желал бы быть получше. Конечно самое главное неудобство, это установка частоты высокочастотного генератора. Хоть бы, какой ни будь простенький верньер поставили, поэтому пришлось добавить дополнительный подстроечный конденсатор с воздушным диэлектриком (Фото1). По правде сказать я очень не удачно выбрал для его место, надо было бы чуть-чуть сместить. Я думаю вы это учтете.

     Что бы поставить ручку, пришлось удлинить ось триммера, кусок медной проволоки диаметром 3мм. Конденсатор подключается параллельно основному КПЕ или непосредственно, или через «растягивающий» конденсатор, что еще больше увеличивает плавность настройки генератора ВЧ. Для кучи заменил и выходные разъемы – родные уже все раздрыгались. На этом ремонт закончился. От куда схема генератора я не узнал, но похоже, что все соответствует. Возможно она пригодится и вам.
      Схема генератора универсального комбинированного – ГУК-1 приведена на рисунке 1. В состав прибора входят два генератора, низкочастотный генератор и генератор ВЧ.


ТЕХНИЧЕСКИЕ ДАННЫЕ

1. Диапазон частот ВЧ генератора от 150 кГц до 28 мГц перекрывается пятью поддиапазонами со следующими частотами:
• 1 поддиапазон 150 — 340 кГц
• II 340 — 800 кГц
• III 800 — 1800 кГц
• IV 4,0 — 10,2 мГц
• V 10,2 — 28,0 мГц

2. Погрешность установки ВЧ не более ±5%.
3. Генератор ВЧ обеспечивает плавную регулировку выходного напряжения от 0,05 мВ до 0,1 В.
4. Генератор обеспечивает следующие виды работ:
а) непрерывная генерация;
б) внутренняя амплитудная модуляция синусоидальным напряжением с частотой 1кГц.
5. Глубина модуляции не менее 30%.
6. Выходное сопротивление ВЧ генератора не более 200 Ом.
7. НЧ генератор генерирует 5 фиксированных частот: 100 Гц, 500 Гц, 1кГц, 5кГц, 15кГц.
8. Допустимое отклонение частоты НЧ генератора не более ±10%.
9. Выходное сопротивление НЧ генератора не более 600 Ом.
10. Выходное напряжение НЧ плавно регулируется от 0 до 0.5 В.
11. Время самопрогрева прибора — 10 минут.
12. Питание прибора осуществляется от батареи «Крона» напряжением 9 В.

ГЕНЕРАТОР НИЗКОЙ ЧАСТОТЫ


     Генератор НЧ собран на транзисторах VT1 и VT3. Положительная обратная связь, необходимая для возникновения генерации снимается с резистора R10 и подается в цепь базы транзистора VT1 через конденсатор С1 и соответствующую фазосдвигающую цепочку, выбранную переключателем В1 (например С2,С3,С12. ). Один их резисторов в цепочке – подстроечный (R13), с помощью которого можно подстраивать частоту генерации низкочастотного сигнала. Резистором R6 устанавливается начальное смещение на базе транзистора VT1. На транзисторе VT2 собрана схема стабилизации амплитуды генерируемых колебаний. Выходное напряжение синусоидальной формы через С1 и R1 подается на переменный резистор R8, который является регуляторов выходного сигнала НЧ генератора и регулятором глубины амплитудной модуляции ВЧ генератора.

ГЕНЕРАТОР ВЫСОКОЙ ЧАСТОТЫ

      ВЧ генератор реализован на транзисторах VT5 и VT6. С выхода генератора через С26 сигнал подается на усилитель собранный на транзисторах VT7 и VT8. На транзисторах VT4 и VT9 собран модулятор ВЧ сигнала. Эти же транзисторы используются в схеме стабилизации амплитуды выходного сигнала. Не плохо бы для этого генератора изготовить аттенюатор, или Т, или П типа. Рассчитать такие аттенюаторы можно с помощью соответствующих калькуляторов для расчета Т-аттенюаторов и П-аттенюаторов. Вот вроде и все. До свидания. К.В.Ю.

Скачать схему.

Рисунок печатной платы генератора ВЧ

Рисунок в формате LAY любезно предоставил Игорь Рожков, за что я ему выражаю благодарность за себя и за тех, кому этот рисунок пригодится.

В приведенном архиве размещен файл Игоря Рожкова к промышленному радиолюбительском генератору, имеющему пять диапазонов ВЧ — ГУК-1. Плата приведена в формате *.lay и содержит доработку схемы (шестой переключатель на диапазон 1,8 — 4 МГц), ранее опубликованную в журнале Радио 1982, № 5, с.55
Скачать рисунок печатной платы.


Доработка генератора ГУК-1


FM модуляция в генераторе ГУК-1.

     Еще одна идея модернизации генератора ГУК-1, я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона. И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным. Для этих целей можно использовать однокристальные трехвыводные стабилизаторы на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона. Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить. Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:27 991


УНИВЕРСАЛЬНЫЙ L/C ГЕНЕРАТОР

Универсальный LC генератор своими руками на транзисторах.

Генератор, схема которого приведена на рисунке, предназначен для измерительной аппаратуры. Важным преимуществом этого генератора является возможность использовать резонансные контуры практически с любым отношением L/C. Так, он одинаково устойчиво работает, если индуктивность катушки L1 изменяется в пределах от 50 мкГн до 100 мГн, а емкость конденсатора C1 – от 50 пф до 5 мкФ. Например при индуктивность L1 = 50 мкГн и емкости С1 = 5 мкФ генерируемая частота будет около 10 кГц, а при той же индуктивности и С1 = 50 пф – 3.2 МГц. Кроме того к числу достоинств данного генератора следует отнести малое напряжение на LC-контуре- примерно 100 мв. В некоторых случаях это существенно, например, при измерении параметров варикапов.

Рис.1 — Универсальный LC генератор схема.

Генератор выполнен на транзисторах V1 и V2. Каскад на транзисторе V3 – предварительный усилитель, сигнал с которого поступает на выходной усилитель (транзистор V8) и на узел автоматической регулировки уровня выходного сигнала генератора. Поскольку на предварительный усилитель сигнал поступает непосредственно с колебательного контура генератора, то узел АРУ поддерживает постоянным напряжение и на этом контуре. Узел автоматической регулировки уровня состоит и з выпрямителя на диодах V4 и V5, выполненного по схеме удвоения, усилителя постоянного тока на транзисторе V7 и регулирующего транзистора V6. Как только по каким-нибудь причинам напряжение на выходе генератора изменится, например повысится, то возрастет смещение на баpе транзистора V7. Это в свою очередь, приведет к уменьшению тока через транзистор V6 (следовательно, и через транзисторы генератора V1 и V2), и напряжение на выходе генератора уменьшится до первоначального значения. Выходное напряжение практически остается постоянным при изменении напряжения питания от 3.5 до 15 В. Его удобно выбрать равным 5 В. В этом случае, уровень сигнала на выходе генератора будет совместим с устройствами ТТЛ (транзисторно-транзисторной логики).

В генераторе можно использовать любые кремниевые высокочастотные транзисторы, причем транзисторы V1-V3 должны иметь достаточно большой коэффициент передачи тока (не меньше 150). В том случае, если имеют место паразитные высокочастотные колебания, то следует несколько увеличить сопротивление резистора.

В генераторе можно применить транзисторы КТ 361Б,Г (V1, V2, V3) и КТ 315Б,Г (V6, V7, V8), диоды (V4, V5) могут быть типа КД503А.

«Funkshau» (ФРГ), 1978, №18.

Немного изменена схема на следующем рисунке. Однако следует заметить, что особых отличий нет. Описание и функциональные возможности сохранены. Я собирал генератор для проверки катушек , при изготовлении металлоискателя,  по следующей схеме:

Рис. 2  — Универсальный резонансный генератор для проверки частоты резонанса катушки металлоискателя.

[tip] Очень хорошо зарекомендовал себя генератор, как устройство для проверки резонансной частоты работы поисковых катушек металлоискателя. [/tip]

Печатная плата готового генератора:

Ну и как описывал в статье- » Как изготовить хороший корпус для плат своими руками» в этом корпусе он и сидит по сей день:

[tip]

Расположение элементов на печатной плате и сама печатка.

Обсудить статью на — ФОРУМЕ

Успехов вам!

С наилучшими пожеланиями!

[/tip]

РАДИО для ВСЕХ - ГЕНЕРАТОР КАЧАЮЩЕЙСЯ ЧАСТОТЫ и просто ГЕНЕРАТОР 1 Гц

Генератор синусоидальных сигналов частотой от 1 Гц до 40 МГц с регулировкой уровня выходного сигнала и встроенным измерителем уровня выходного сигнала (Up/p), а также с режимом генератора качающейся частоты (ГКЧ) с произвольным выбором границ в диапазоне от 1 Гц до 40 МГц 

Предлагаю наборы для сборки генератора (GEN) синусоидальных сигналов 1 Гц - 40 МГц с режимом генераторы качающейся частоты (ГКЧ/WOB), дополнительным выходом пилообразного напряжения для синхронизации осциллографа, а также выходом 0/5 В прямоугольных импульсов с частотой качания генератора. Данное устройство разработал польский радиолюбитель Adam Sobczyk (SQ5RWQ). Данная конструкция была опубликована в журнале ELEKTRONIKA PRAKTYCZNA.

Устройство собрано с применением готового модуля DDS синтезатора AD9850, что значительно упрощает монтаж. Причём использоваться могут оба существующих в продаже модуля DDS AD9850. Конструктивно устройство состоит из двух печатных плат - основной и контроллера. На основной плате установлены разъёмы для платы контроллера, разъёмы для модулей синтезаторов (одновременно может использоваться только одна плата синтезатора), контактные штыри для внешних подключений, винтовой клеммник подачи питания, собраны стабилизаторы питающих напряжений +5В и +9В, в также широкополосный усилитель ВЧ сигнала. На плате контроллера установлен двухстрочный ЖКИ дисплей, энкодер выбора режимов работы и настройки, переменный резистор регулировки уровня выходного сигнала.

Выбор режима работы GEN - генератор или WOB - Wobbulator/ГКЧ выбирается при включении прибора нажатием и удержанием кнопки энкодера. При появлении приветственного меню нужно нажать кнопку энкодера и дождаться появления меню в котором вращением энкодера нужно выбрать режим GEN или WOB и затем подтвержить выбор нажатием на кнопку энкодера. В следующем меню аналогично выбирается режим работы цифрового выхода прямоугольных импульсов 0-5 В, т.е. вращением энкодера выбирается режим ON или OFF и нажатием на кнопку энкодера подтверждается выбор. Выбранные режимы будут сохраняться в энергонезависимой памяти при последующих включениях. Чтобы выбрать другой режим работы нужно обесточить прибор и снова подать напряжение, войти в меню выбора режимов работы и выбрать нужный режим. В режиме генератора шаг перестройки изменяется по кругу нажатием на кнопку энкодера. В режиме ГКЧ нажатием на кнопку энкодера выбирается активный пункт меню - напротив активного (который можно изменять в данный момент) в данный момент параметра светится звёздочка "*". При вращении энкодера значение выбранного параметра будет изменяться. Переключение между параметрами подлежащим изменению происходит по кругу. Прибор находится в режиме генерации колебаний когда на экране нет звёздочки, т.е. все параметры выбраны. 

Схема принципиальная платы управления/индикации приведена ниже, а также здесь >>>

Принципиальная схема основной платы приведена ниже, а также здесь >>>

Прибор работает в двух режимах:
1) Генератор синусоидальных сигналов частотой 1 Гц  - 40 МГц
2) Генератор качающейся частоты с диапазоном качания синусоидального сигнала от 1 Гц - 40 МГц.

В первом режиме на дисплее отображается частота выходного сигнала с точностью до 1 Гц, выбранный шаг перестройки частоты (выбирается нажатием на кнопку встроенную в энкодер, т.е. нажатием на ручку энкодера) и уровень выходного напряжения в Вольтах от пика до пика - Up/p. Шаг перестройки выбирается по кругу из сетки частот 1 Гц, 10 Гц, 100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц нажатием на кнопку энкодера. Уровень выходного напряжения практически совпадает с показаниями осциллографа, частота выходного сигнала соответствует точно. Уровень выходного сигнала с повышением частоты уменьшается, это обусловлено особенностью работы самой AD9850. На низких частотах выходное напряжение для различных модулей DDS составляет порядка 4 Вольт и уменьшается до 1 Вольта на частоте 40 МГц. Точнее, с чистой синусоидой на выходе, у меня получилось так: 
40 МГц - Up/p=0,89 В
35 МГц - Up/p=1,18 В
30 МГц - Up/p=1,67 В
25 МГц - Up/p=2,09 В
20 МГц - Up/p=2,38 В
15 МГц - Up/p=2,62 В
10 МГц - Up/p=2,99 В
5 МГц - Up/p=3,37 В
1 МГц - Up/p=3,66 В
Затем практически без изменений до 30 Гц и потом с плавным снижением до Up/p=2,08 В на частоте 5 Гц и до Up/p=0,86 В на частоте 1 Гц.

Во втором режиме на дисплее отображается частота колебаний, шаг перестройки частоты, нижняя и верхняя границы колебания частоты генератора. Выбор и изменение параметров выполняется энкодером по аналогии с первым режимом работы - нажатием и вращением ручки энкодера. Частота колебаний выбирается от 1 Гц до 40 МГц с шагом 1 Гц, шаг перестройки по кругу из сетки частот 1 Гц, 10 Гц, 100 Гц, 1 кГц, 10 кГц, 100 кГц, 1 МГц, верхняя и нижняя частота колебаний от 1 Гц до 40 МГц, при этом сначала выставляется верхняя граница, а затем нижняя, поскольку есть программное ограничение - нижняя частота всегда меньше либо равна верхней.

Правильно собранное устройство из исправных 🙂 деталей начинает работать сразу. До установки платы индикации/контроллера и модуля AD9850, подайте питающее напряжение на основную плату и проверьте наличие питающих напряжений +9 В и +5 В после стабилизаторов 7809 и 7805 соответственно. Затем проверьте уровни напряжений на выводах транзисторов широкополосного усилителя мощности. Напряжения должны быть такими: Q1 (коллектор - 6,65 В; эмиттер - 1,4 В; база - 2,1 В), Q2 (эмиттер - 7,37 В; коллектор - 2,5 В), Q3 (коллектор - 5,47 В; эмиттер - 1,74 В). При необходимости, подстроечным резистором на плате модуля AD9850 необходимо выставить скважность прямоугольных импульсов на выходе генератора равной 2 (коэффициент заполнения 0,5), т. е. меандр. 

Платы разработаны для возможности установки в стандартный пластиковый корпус КМ-60, но в идеале, конечно же, применить металлический корпус 🙂 Схемы авторские без изменений, немного скорректировал распиновку разъёмов межплатных соединений, но схема остаётся прежней, перерисовывать её не вижу смысла 🙂

Стоимости печатных плат и наборов для сборки такие:

Стоимость комплекта из двух печатных плат (основная 140х90 мм и индикации 115х45 мм) с маской и маркировкой - 300 грн.

Если кому то нужен, отдельно запрограммированный микроконтроллер - 85 грн.

Стоимость набора для сборки генератора (запограммированный микроконтроллер с панелькой, печатные платы и все компоненты для них, включая стойки, винты, шайбы, гайки, радиаторы, энкодер, переменный резистор, ручки регуляторов, ЖКИ дисплей 16х2) без учёта модуля AD9850 - 830 грн.

Стоимость собранных и проверенных плат генератора (основная и плата контроллера/индикации) без учёта модуля AD9850 - 1200 грн.

Модуль генератора-синтезатора частоты AD9850 - 650 грн. (кладу в комплект такой, какой есть в наличии, если тип принципиален, то оговаривайте заранее, я разницы в работе плат разных типов не увидел). Данный генератор выполнен на базе микросхемы AD9850 фирмы Analog Devices, представляющей собой полный DDS (Direct Digital Synthesis) синтезатор частоты с встроенным компаратором. Такие синтезаторы уникальны своей точностью, практически не подвержены температурному дрейфу и старению .

Обнаружен небольшой "глюк", скорее всего программный - подтормаживает энкодер при вращении. Мне не мешает, но лучше от этого избавиться. Думаю, всё разрешится 🙂 Плюсы прибора перекрывают его минусы 🙂 Я сколько искал, не нашёл настолько простого и адекватного прибора...

Состав набора можно увидеть здесь >>>

Краткая инструкция и описание здесь >>>

Дисплей может быть с синей подсветкой и белыми знаками, либо с жёлто-зелёной подсветкой и серыми знаками.

 




Заказы можно оформлять через форму обратной связи или по телефону указанному в разделе контакты, доставка и оплата

Всем мирного неба, удачи, добра, 73!

 

 

Схема простого генератора синусоидальной волны

с использованием транзистора

Ранее мы построили простую схему генератора прямоугольной волны, сегодня в этом руководстве мы покажем вам , как сгенерировать синусоидальную волну , используя несколько основных компонентов, таких как транзистор, резистор и конденсатор. Синусоидальная волна чаще всего известна как форма волны переменного тока. В этой схеме мы также построим переменную форму волны, мы сможем регулировать частоту или уменьшить шум синусоидальной волны, просто изменяя номинал конденсаторов и резисторов.

Необходимые компоненты

  • 2N2222 NPN-транзистор
  • Осциллограф
  • Резистор (510, 1 кОм, 10 кОм и 2 кОм)
  • Конденсаторы (90 нФ, 100 нФ и 200 нФ)
  • Питание 12В
  • Соединительные провода

Принципиальная схема

Если вы видите изображение соединений на макетной плате ниже, вы найдете больше конденсаторов, чем показано на принципиальной схеме выше. Это потому, что мы подключили несколько конденсаторов последовательно и параллельно, чтобы получить требуемые номиналы конденсаторов, показанные на принципиальной схеме. Также можно использовать в схеме любой NPN-транзистор вместо указанного выше. Также вы можете изменить номинал резистора и конденсатора, чтобы изменить уровень частоты.

Работа цепи генератора синусоидальной волны:

Здесь мы подаем на схему 12 В, и мы не можем подавать его напрямую на транзистор.Итак, для этого мы используем резисторы R1 и R2, составляя схему делителя напряжения для смещения транзистора Q1. Мы использовали транзистор типа NPN, который проводит ток или смещается в прямом направлении только тогда, когда на его базовый вывод подается положительный сигнал, в противном случае он остается открытым или смещенным в обратном направлении.

Пара из трех резисторов (R3, R5 и R6) и конденсатора (C1, C2 и C3) образует в цепи RC-генератора . Это тип генератора обратной связи, который состоит из усилительного устройства, такого как транзистор, который используется в нашей схеме, или мы также можем использовать операционный усилитель.

Первоначально вход RC-цепи - постоянный ток, но после первого переключения он преобразуется в синусоидальную волну, а затем остается в синусоидальной волне.

Мы использовали три конденсатора, каждый конденсатор дает 60 градусов фазового сдвига. Итак, общий фазовый сдвиг, который мы получаем, составляет 180 градусов, что требуется для синусоидальной волны.

В RC-генераторе часть выходной энергии возвращается на его вход, для получения положительной обратной связи положительная обратная связь помогает амплитуде выходного сигнала оставаться стабильной.Следовательно, выход RC-цепи представляет собой синусоидальную волну с фазовым сдвигом 180 градусов, которая подается на транзистор, и здесь транзистор работает как усилитель, который усиливает синусоидальную волну, и мы получили ее на выходном контакте.

Конденсатор C5 действует как разделительный конденсатор, который блокирует постоянный ток и пропускает через него только синусоидальную волну, а резистор R4 ограничивает ток коллектора.

Генератор синусоидальной волны с использованием 4047 IC

Мы также можем использовать IC 4047 для генерации синусоидальной волны.Эта ИС обычно используется в схеме инвертора, и мы ранее сделали генератор прямоугольных импульсов с использованием этой ИС, добавив несколько резисторов и конденсаторов в предыдущую схему, мы можем получить синусоидальную волну с IC 4047, как показано на схеме ниже:

Ниже приведена небольшая схема, которую нам нужно добавить в наш генератор прямоугольной волны, чтобы преобразовать прямоугольную волну в синусоидальную.

Проект

Qucs: довольно универсальный симулятор схем


Последние новости


22 Январь 2017 Выпущено Qucs 0. 0,19, Новости
18 сентябрь 2015 Публикация «Qucs: введение в новые функции моделирования и моделирования компактных устройств, реализованные в версии 0.0.19 / 0.0.19Src2 популярного симулятора схем GPL». , г. 13-я мастерская МОС-АК, Грац (А).
Слайды презентации Майка Бринсона доступны онлайн.
19 Январь 2015 Включено автоматическое создание и развертывание документации исходного кода Doxygen.
Последняя документация по ветке master доступна для Графический интерфейс Qucs и Qucs Core
07 Январь 2015 Включено ОС Linux и OSX Трэвис К. И., включенное покрытие кода с Комбинезоны
17 сентябрь 2014 Выпущен установщик для Mac OSX 10.6 (Intel 64 бит) (включая ASCO).
02 сентябрь 2014 Обновленный пакет для Ubuntu 14.04 (Trusty) и 14.10 (Utopic), Ubuntu PPA
01 сентябрь 2014 Обновленный Doxygen код документации
01 сентябрь 2014 Выпущен установщик Mac OSX (10. С 7 по 10.9), включая ASCO. Для FreeHDL, Verilog-A пользователям лучше использовать менеджер пакетов для Mac OSX
31 август 2014 Выпущен Qucs 0.0.18, Новости
04 апрель 2014 Обновленная инструкция по сборке для Дарвин (Mac OSX), Linux, Windows
16 Март 2014 Обновленные руководства, разработчики и веб-страницы с часто задаваемыми вопросами
28 ноябрь 2013 Создано Репозиторий GitHub для сайта Qucs.
03 июль 2013 Новая реализация матричных вычислений с использованием Libeigen3. Файлы в ветке local_complex_20130624
03 июль 2013 Добавлена ​​возможность изменения домашнего каталога и другие пути с использованием QSettings (~ /.qucs / qucsrc теперь устарело)
23 июнь 2013 Выпущенные Qucs 0.0.17
14 июнь 2013 Добавлены модели BSIM 4. 30 nMOS и pMOS
20 май 2013 Добавлен BSIM 3.34 модели nMOS и pMOS
26 апрель 2013 Добавлены начала решателя переходных процессов m-кода интерфейс.

Предыдущие новости

Что такое Qucs?

Qucs - это аббревиатура от Quite Universal Circuit. Симулятор. Пока Qucs еще не закончен, но уже упакован с функциями.Взгляните на скриншоты, чтобы понять, что это сможет сделать.

Qucs - это симулятор интегральной схемы, который означает, что вы возможность настроить схему с графическим пользовательским интерфейсом (GUI) и имитировать поведение при большом, слабом и шумовом сигналах схемы. После завершения моделирования вы можете просмотреть результаты моделирования на странице или в окне презентации.

  • Qucs, кратко для Quite Universal Circuit Simulator, является симулятор схем с графическим интерфейсом пользователя (GUI).В Графический интерфейс пользователя основан на Qt® от Digia®. Программное обеспечение направлено на поддерживать все виды схем моделирования, например Постоянный ток, переменный ток, S-параметр, анализ гармонического баланса, анализ шума, пр.
  • Qucsator, бэкэнд моделирования, представляет собой командную строку схемотехнический симулятор. Требуется список сетей в определенном форматирует входные данные и выводит набор данных Qucs. Это было запрограммирован для использования в проекте Qucs, но может также использоваться другими приложениями.
Графический интерфейс Qucs хорошо развит и позволяет настраивать схемы и представление результатов моделирования в различных типах диаграмм. DC, AC, S-параметр, анализ шума и переходных процессов возможно, математические уравнения и использование подсхемы иерархия (с параметризованными подсхемами). Qucs также можно импортировать существующие модели SPICE для использования в вашем симуляции.

Несмотря на то, что Qucs хорошо развит, мы по-прежнему стремимся улучшить проект и всегда будем рады предложениям о помощи.Qucs не просто нужна помощь с программированием, еще нужна графика, высокая качественные примеры схем, обучающие программы для сайта и лотов Больше.

Qucs поставляется с множеством компонентов и моделей. Третье лицо модели, включая HICUM, BSIM2, BSIM3 и BSIM6, могут быть скомпилированы и загружается в симулятор. Он также предоставляет множество компоненты и модели на основе полупроводников, такие как операционные усилители, Диоды, полевые МОП-транзисторы, полевые МОП-транзисторы и многое другое. Некоторые примеры схемы можно найти здесь, которые демонстрируют некоторые из возможности Qucs, и многие другие примеры предоставляются вместе с программа.

Операционные системы

Qucs в настоящее время разрабатывается под ОС GNU / Linux с использованием стандартных автоинструментов без специальных усилия по поддержке других операционных систем. Однако Qucs говорят для успешной компиляции и запуска в Windows, Solaris, NetBSD, FreeBSD, macOS, Cygwin ... нужна помощь! Лицензия

Qucs выпускается под лицензией GPL, поэтому это бесплатно для свободных программистов и пользователей!

Ссылка

Qt® является зарегистрированным товарным знаком компании Digia.

посетителей с 27.04.2005


Онлайн-генераторы файлов для лазерной резки

Я создаю большинство своих проектов для лазерной резки в Inkscape или Fusion 360, но со временем я также собрал список полезных генераторов файлов для лазерной резки. В этом посте я хочу поделиться ими с вами.

Все генераторы в списке ниже основаны на браузере, поэтому вам не нужно загружать и устанавливать какое-либо программное обеспечение. Все они также бесплатны для использования в частных проектах без какой-либо регистрации.

Коробки

Коробки - отличный пример проектов, в которых генераторы могут оказаться очень кстати. Хотя спроектировать простую коробку несложно, это может быстро занять много времени, когда вы начнете добавлять суставы пальцев или внутренние разделители.

MakerCase

MakerCase - это бесплатный веб-инструмент для разработки индивидуальных проектов. Очень просто использовать. Когда вы вводите размеры и толщину материала коробки, MakerCase генерирует 3D-модель, которую можно вращать на экране. Мне очень нравится предварительный просмотр в 3D, потому что вы можете сразу увидеть, как будет выглядеть ваша коробка.

Существует три различных варианта шарниров: плоские, пальцевые и Т-образные. После того, как вы нажмете кнопку «Загрузить планы коробок», вы сможете настроить свой файл или пример, выбрав цвета и толщину линий.Также есть возможность указать компенсацию пропила.

Тип файла загрузки: SVG или DXF

Boxes.py

Boxes.py - генератор окон с открытым исходным кодом. Он поставляется с библиотекой всевозможных ящиков - не только прямоугольных, но и ящиков со скругленными углами, петлями и многим другим. Кроме того, вы также можете создавать другие объекты, такие как полки, вставки для ящиков или живые петли.

Возможности этого инструмента огромны. Если вы хотите погрузиться в более сложные настройки, вам придется немного научиться.Я считаю, что части описания настроек не интуитивно понятны. Требуется некоторое время, чтобы понять, что изменение определенной настройки будет означать для конечного результата.

Boxes․py - бесплатное программное обеспечение под лицензией GPL v3 +. Также существует подключаемый модуль Inkscape для Boxes. py, и вы можете использовать код Python для создания собственных генераторов.

Тип файла загрузки: AI, DXF, GCODE, PDF, PLT, PS или SVG

Сделать коробку

Сделать коробку делает именно то, что написано в ее названии. Он имеет очень интуитивно понятный пользовательский интерфейс и создает красивые коробки с симметричными суставами пальцев.

Скачать Тип файла: PDF

Laser Cutter Box

Хороший маленький генератор для создания файлов для лазерных коробок. Не самый красивый пользовательский интерфейс, если вы спросите меня, но он работает очень хорошо, и есть предварительный просмотр вашего рисунка, так что вы можете увидеть, что вы получите.

Вы можете выбирать между различными типами ящиков, например, открытый или закрытый ящик. Также возможно создавать коробки с уклоном и добавлять в коробку разделители.

Тип файла загрузки: DXF

Конструктор шаблонов - бумажные коробки

Все ранее упомянутые генераторы предназначены в основном для изготовления коробок из дерева, акрила или аналогичного материала. Этот другой. Template Maker - это набор настраиваемых шаблонов для бумажных коробок.

Существуют некоторые шаблоны премиум-класса, загрузка которых требует оплаты, но большинство из них можно использовать бесплатно по лицензии Creative Commons BY-SA 4.0.

Загрузить Тип файла: PDF, SVG и DXF

Зубчатые колеса

С помощью лазерного резака можно легко вырезать даже сложные профили эвольвентных зубчатых колес, если у вас есть векторный рисунок зубчатых колес, которые вы хотите создать. Сложность заключается в создании чертежа шестеренок.Создание чертежа функциональной шестерни вручную довольно сложно и требует много времени. Из-за этого в большинстве программ САПР для технических чертежей есть своего рода зубчатый генератор.
Если вы не хотите использовать программу САПР и вам просто нужны зубчатые передачи, следующие онлайн-генераторы для вас.

Involute Spur Gear Builder

Involute Spur Gear Builder - это программа с открытым исходным кодом и браузером для расчета и рисования шестерен. Инструмент также поддерживает внутренние шестерни и узлы реечной передачи.Можно настроить многие параметры, такие как круговой шаг или угол давления.

Тип файла загрузки: DXF

Gear Designer

Простой в использовании зубчатый генератор. Размер шестерен можно настроить, задав модуль и количество зубьев.

Тип файла загрузки: DXF

Лабиринты

Laser-Cut Maze Designer

Создайте файлы для создания вашего собственного деревянного лабиринта, вырезанного лазером.

Тип файла загрузки: SVG

Maze Generator

Выберите между прямоугольными, треугольными, круглыми и шестиугольными лабиринтами.Бесплатное использование для частных проектов, и вы можете купить лицензию для коммерческих проектов.

Тип файла загрузки: PDF, SVG, PNG

Другие генераторы файлов для лазерной резки

Некоторые другие генераторы файлов, не подходящие ни для одной из вышеперечисленных категорий.

Генератор векторных линейок для лазерной резки

Отлично подходит для создания собственных пользовательских линейок для лазерной резки.

Тип файла загрузки: SVG

Генератор головоломок

Создавайте свои собственные головоломки, не рисуя каждую деталь.

Тип файла загрузки: SVG

SVGnest

Бесплатный онлайн-инструмент с открытым исходным кодом для вложения, т. Е. Упорядочивания нескольких частей для использования как можно меньшего количества материала.
Существует также бесплатное приложение с расширенными функциями: Deepnest.io


Знаете ли вы о каких-либо других онлайн-генераторах для лазерной резки? Напишите в комментариях и я добавлю их в список!

Понравился этот пост?

Подпишитесь на рассылку новостей и будьте в курсе аналогичного контента!

Как собрать простую схему мигающего светодиода с конденсатором, транзистором и двумя резисторами

Вот как мигает светодиод, состоящий только из светодиода, конденсатора, транзистора и двух резисторов.Этот пост является дополнением к посту Дика Каппеля «Простейшая схема светодиодного мигалки». Я добавил диаграмму Фритцинга и несколько фотографий и видео в высоком разрешении, чтобы вы могли быстро построить схему. Большинство других видео в Интернете сняты очень давно и по большей части не в фокусе. В комментариях к этому видео вы увидите группу людей, которые просят сфокусированное видео. Я надеюсь, что этот подробный пост поможет.

Вот что вам понадобится:

  • Макет
  • 1 светодиод
  • 1 транзистор PN2222 - Я использовал резистор NPN, но вы можете использовать PNP, вам просто нужно повернуть его и использовать заземление вместо питания для его источника.Вот хорошее видео, которое описывает разницу между NPN и PNP.
  • 1 x Конденсатор - Размер конденсатора определяет скорость мигания. Я экспериментировал с 100 мкФ / 6,3 В и 1000 мкФ / 10 В, и оба работали.
  • 1 резистор 1 кОм
  • 1 резистор 100 Ом
  • Источник питания 12 В - я использовал 8 батареек AA, соединенных последовательно. Я также пробовал с источниками питания 6 и 9 В, но он работал только с 12 В.

Макетная плата

[

  • Подключите батареи последовательно (минус соединен с плюсом)

  • Подключите резистор 1 кОм от плюса к ряду в середине платы.>

  • Подключите положительный провод конденсатора к резистору 1 кОм, а отрицательный провод к земле>

  • Подключите эмиттер транзистора между резистором 1 кОм и положительным выводом конденсатора. Подключаем коллектор на пару дырок. Не подключайте базу. Держите транзистор плоской стороной к себе. Штифт слева - эмиттер, штифт справа - коллектор, штифт посередине - база. Хорошая диаграмма, объясняющая это.>

  • Подключите положительный вывод светодиода (длинный) к коллектору транзистора, а отрицательный провод подключите к резистору 100 Ом и подключите его к земле.>

Вот и все. Он должен начать мигать.

Вот видео, как это работает.

А вот фото схемы крупным планом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *