Термогенератор своими руками: Термогенератор своими руками — МозгоЧины

Содержание

Термогенератор своими руками — МозгоЧины

Специально 92 для mozgochiny.ru

В мире постоянно происходят различные катаклизмы. Мы не может от них защититься, но мы можем подготовиться к их последствиям. Землетрясение, наводнение, пожары вызывают перебои или отключение электричества. Чтобы себя защитить от его отсутствия предлагаю вашему вниманию статью о добыче электроэнергии с помощью тепла.

Шаг 1:

Отключения электроэнергии одна из главных проблем в современном мире. Многие люди беспокоятся о  последствиях молнии, сильного дождя и т.д., но забывают о более серьезных проблемах. Перебои с электричеством могут длиться от нескольких часов до нескольких недель. Попрощайтесь с телефоном, светом, обогревателем и со всеми электронными приборами и устройствами.

В качестве основы самоделки был выбран теплогенератор, который использует тепло для производства электроэнергии. Кроме самого зарядного устройства вы получаете:

  • Обогреватель;
  • Возможность приготовить пищу;
  • Освещение.

Альтернативным источником электроэнергии может быть солнце. Но солнечные панели всё ещё довольно дорогие, несмотря на то, что цены значительно снизились в последние годы. Кроме того, солнце светить не всё время. Что делать, если вы захотите подзарядить батарею после наступления темноты или когда небо затянуто тучами?

Динамо-машинка – это здорово, но для многих людей будет трудно всё время крутить рукоятку во время зарядки аккумуляторов.

Ветровой генератор – ветер дует не всегда и не везде. 😉

Шаг 2: Введение/материалы

Для изготовления поделки необходимо  использовать минимальный набор электронных компонентов ведь цель проекта – изготовление генератора в кратчайшие сроки в отсутствии доступа к благам цивилизации.

Ключевым компонентом всего проекта был модуль Пельтье. Этот небольшой 40×40 мм белый керамический квадрат творит волшебство. 🙂

Модуль напоминает структуру бутерброда: керамическая пластина, тонкая металлическая плёнка, полупроводник, тонкая металлическая плёнка, керамическая пластина. К двум проводам, которые выступают из модуля, подводится постоянное напряжение. В результате чего одна сторона становится более прохладной, а другая теплее, создавая при этом разность температур.

Однако если приложить разность температур к сторонам модуля то получим обратный результат, который известен, как эффект Зеебека. Этот принцип мы и будем использовать для получения электроэнергии.

Список деталей, которые необходимы для того, чтобы построить проект:

  • Элемент Пельтье;

  • Пружинные клеммы;

  • Батарейные блоки;
  • Аккумуляторы;
  • Большой радиатор охлаждения;
  • Медный провод;
  • Маленький пластиковый корпус;
  • Другие дополнительные материалы.

Шаг 3: Изготовление

Необходимо собрать цепь. При желании, вы можете создавать прототип схемы на макетной плате, прежде чем окончательно спаять все компоненты.

Чтобы прикрепить модуль к радиатору вырежем 25 мм отверстие в крышке банки. Затем отцентрируем его над отверстием и зажмём между радиатором и крышкой. Воспользуемся винтами и проволокой для надёжного крепления частей вместе. Оденем на провода термоусадку, чтобы оградить их от температурного воздействия. Для удобной переноски закрепим пружинные зажимы на коробке. После припаяем соответствующие провода и компоненты. Приклеим этикетки к пружинным клеммам в качестве инструкции  по подключению.

Модуль Пельтье вырабатывает электричество за счёт разности температур. Радиатор рассеивает тепло за счёт увеличения площади поверхности.

Далее, ток проходит диод Шоттки. Если диода не будет, то батарея будет отдавать всю накопленную энергию на модуль Пельтье.

Шаг 4: Воспользуемся печкой

Чтобы начать пользоваться самоделкой подключим красный провод к пружинному зажиму входного напряжения (отмеченного VIN), а чёрный провод в первый терминал (GND). Вставьте положительный провод аккумулятора в терминал напряжение (VOUT), а отрицательный провод в другую клемму заземления. Очень важно отметить полярность при подключении проводов. Поместите элемент Пельтье и радиатор над источником тепла крышкой вниз. Чтобы убедиться, что устройство работает правильно, перед зарядкой проверьте напряжение аккумуляторной батареи. Через некоторое время снова повторите измерения.

В качестве источника тепла используем печку, которая сделана своими руками. Она напоминает контейнер с вырезанным отверстием для подачи воздуха.

После испытаний были получены различные показания.

  • Источник тепла: печка с прямым пламенем.
  • Нагрузка: 1.2 вольт «D-образной» аккумуляторной батареи.
  • Температура воздуха (это влияет на перепад температур): — 10 градусов Цельсия.
  • Производительность: 2,2-3,2 В;
  • Сила тока: 350-400 мА;
  • Вт: 0.77-1.28 Вт.

Спасибо за внимание.

( Специально для МозгоЧинов #Fire-Power-Electricity-from-heat» target=»_blank»>)

Сборка термогенератора своими руками для получения электричества: особенности процесса

В современном мире большое количество бытовой техники и других устройств работает от электроэнергии. При этом, находясь в путешествии, приходится возить с собой химические источники тока, способные вырабатывать электроэнергию. Но также можно изготовить термогенератор своими руками. Для этого потребуются некоторые материалы, приспособления и определенные знания.

Разновидности устройств

В цепи разнородных проводников при переменной температуре может возникать термо-ЭДС в местах контакта. На основании этого был разработан и создан так называемый модуль «Пельтье». Он представляет собой 2 пластины из керамики, между которыми установлен биметалл. При поступлении электрического тока одна из пластин постепенно начинает нагреваться, а другая одновременно охлаждается. Эта способность позволяет делать из таких элементов холодильники.

Но можно наблюдать и обратный процесс, когда в местах контакта будет поддерживаться перепад температур. В этом случае пластины начнут вырабатывать электрический ток. Такой модуль можно использовать для получения небольшого количества электрической энергии.

Работа модуля

Термогенераторы электричества работают по определенному принципу. Так, в зависимости от направления тока, в контакте разнопроводных проводников наблюдается поглощение или выделение тепла. Это зависит от направления электричества. При этом плотность тока является одинаковой, а энергии — различной.

Разогревание кристаллической решетки наблюдается, если вытекающая энергия меньше той, что входит в контакт. При перемене направленности тока происходит обратный процесс. Энергия в кристаллической решетке снижается, поэтому происходит охлаждение устройства.

Наибольшей популярностью пользуется термоэлектрический модуль, состоящий из проводников типов р и n, которые между собой соединены через медные аналоги. В каждом из элементов существует по 4 перехода, которые охлаждаются и нагреваются. Из-за температурного перепада возможно создание термоэлектрогенератора.

Достоинства и недостатки

Независимо от того, куплен он или изготовлен своими руками, термоэлектрогенератор имеет ряд достоинств. Так, к наиболее весомым из них относятся:

  1. Малогабаритные размеры.
  2. Возможность работы как нагревательных, так и в охладительных приборах.
  3. При смене полярности наблюдается обратимость процесса.
  4. Отсутствие подвижных элементов, которые изнашиваются достаточно быстро.

Несмотря на имеющиеся существенные преимущества, такое устройство имеет некоторые недостатки:

  1. Незначительный КПД (всего 2−3%).
  2. Необходимость создания источника, отвечающего за температурный перепад.
  3. Существенное потребление энергии.
  4. Большая себестоимость.

Исходя из вышеперечисленных отрицательных и положительных качеств, можно сказать о том, что такое устройство целесообразно применять в случае необходимости подзарядки мобильного телефона, планшетного компьютера или зажигания светодиодной лампочки.

Изготовление своими руками

Можно изготовить термоэлектрический генератор своими руками. Для этой цели потребуются некоторые элементы:

  • Модуль, способный выдерживать нагрев до 300−400 °C.
  • Повышающий преобразователь, цель которого заключается в приеме беспрерывного напряжения 5 В.
  • Нагреватель в виде костра, свечки или какой-либо миниатюрной печи.
  • Охладитель. Вода или снег — наиболее популярные подручные варианты.
  • Соединительные элементы. Для этой цели можно использовать кружки или кастрюли разного размера.

Провода, проходящие между преобразователем и модулем, необходимо изолировать термостойким составом или обычным герметиком. Собирать устройство необходимо в такой последовательности:

  1. От блока питания оставить только корпус.
  2. Холодной стороной к радиатору нужно приклеить модуль «Пельтье».
  3. Предварительно зачистив и отполировав поверхность, нужно приклеить элемент другой стороной.
  4. От входа преобразователя напряжения необходимо припаять провода к выходам пластины.

При этом термогенератор для корректной работы должен быть наделен такими характеристиками: выходное напряжение — 5 вольт, тип выхода для подключения устройства — USB (или любой другой в зависимости от предпочтений), минимальная мощность нагрузки должна составлять 0,5 А. При этом можно использовать любой вид топлива.

Проверить механизм достаточно просто. Внутрь можно положить несколько сухих и тонких веточек. Поджечь их, а через несколько минут подключить какое-либо устройство, например, телефон для подзарядки. Собрать термогенератор несложно. Если все сделать правильно, то он прослужит не один год в поездках и походах.

Самодельный термогенератор с нагревом с помощью пара

Этим вопросом я задался, когда готовился пойти в поход на байдарках на две недели. Электроэнергия требовалась, прежде всего, для восполнения заряда аккумуляторов в фотоаппаратах, а также аккумуляторов в фонарях.

Дамы и Господа, знакома ли Вам такая замечательная вещь, как термоэлектрические модули Пельтье? Это достаточно распространенные в наше время устройства, широко используемые любителями компьютерного «разгона» для экстремального охлаждения деталей своих компьютеров.

Суть идеи заключается в том, что это по форме плоский полупроводниковый прибор, имеющий два провода «+» и «-«, а также две поверхности – «горячую» и «холодную». Если пропускать через него постоянный ток, то «холодная» сторона будет охлаждаться, а «горячая» нагреваться – прибор работает как тепловой насос. По паспорту, разность температур может достигать 60 градусов. Это значит, что например, если «горячую» сторону охлаждать до температуры 20 градусов (комнатная температура), то «холодная» сторона остынет до минус 40 градусов. Если поменять местами «+» и «-«, «горячая» и «холодная» стороны также меняются местами и тепловой поток меняет направление.

Но оказывается, у этих модулей имеется еще одна интересная особенность: если приложить к ним разность температур, то они начинают давать электрический ток! Именно на этом эффекте и предполагалось создать портативный источник электроэнергии для похода.

Так как в походе обязательно есть костер и кипящая вода, предполагалось в качестве «горячего» источника тепла использовать пар, а в качестве «холодного» – холодную воду.

Итак, пар по трубкам (в одну входит, из другой выходит)

попадает в специальный теплообменник, изготовленный из алюминиевой пластины толщиной 10мм

Все отверстия в этом теплообменнике соединяются только одним каналом, а в сборе с трубками, которые ввернуты и вклеены в него с помощью эпоксидного компаунда, это выглядит так:

Теплообменник имеет размеры в точности по размеру модулей Пельтье. Модули прижимаются к теплообменнику с двух сторон четырьмя винтами (изначально винтов предполагалось восемь, но в результате моей недальновидности и конструкторской бездарности двум из них помешали паровые трубки, а другие два с противоположной стороны решено было не устанавливать, чтобы избежать перекоса),

поэтому отверстия в теплообменнике и канальцы между ними образуют систему сообщающихся паровых камер. Войдя в одну трубку, пар проходит по единственно возможному пути последовательно через каждую паровую камеру, образованную объемами отверстий в теплообменнике, и выходит через вторую трубку. Тепло от пара передается модулю при непосредственном контакте с его поверхностью (на площади, равной суммарной площади отверстий в теплообменнике) и через материал теплообменника.

Для прижатия модулей Пельтье к теплообменнику и для отвода тепла к «холодному» источнику тепла используются алюминиевые пластины толщиной 5мм

Для предотвращения попадания охлаждающей воды внутрь модулей Пельтье, вся сборка герметизирована полупрозрачным силиконовым затекающим герметиком

Теперь осталось только пустить пар по трубкам, а саму сборку опустить в емкость с холодной водой. Однако, в результате экспериментов на кухонной плите выяснилось, что напряжения, которое выдает эта система, недостаточно для полноценного заряда аккумуляторов. «Холодная» вода в охлаждающей емкости быстро нагревается, разница температур уменьшается и напряжение еще более снижается. Кроме того, для полноценной зарядки аккумуляторов требуется достаточно продолжительное время, исчисляемое часами (от слова «час», а не «часы»), как показала практика, в походных условиях при дождливой погоде не всегда удается развести хороший огонь и вскипятить воду, не говоря уже о паропроизводстве в течение нескольких часов.

Поэтому данная система так и осталась не задействована, а вместо нее была собрана другая – на солнечных батареях. В ее состав входит сборка солнечных элементов, которую можно свернуть в «трубочку»

и блок-стабилизатор для обеспечения необходимого напряжения для заряда Li-ION аккумулятора

Как затем показала практика эксплуатации – это решение вполне пригодно для исполнения своих функций.

Как сделать термогенератор Пельтье своими руками

Можно приобрести элементы и у соотечественников, но уж совсем по баснословной цене, а это не наш путь.

Итак мой термогенератор нагревается масляной (на обычном, самом дешевом, подсолнечном масле) горелкой.

Которая помещена вот в такой разборный корпус, состоящий из консервной банки, регулятора высоты горелки и самого элемента Пельтье.

Сама горелка тоже состоит из банки и угольного фитиля.

Изготовить такой фитиль можно по этой видеоинструкции.

Лично я делаю такие фитили из углей от костра, продвинутые жители больших городов могут просто купить древесный уголь в магазине. Подобная горелка и сама по себе хороша, можно использовать как источник освещения, вместо свечек. Масло на её работу уходит мало, особо не чадит, может гореть сутками.

Вот это элемент Пельтье, сверху на него помещен радиатор от охлаждения компьютерного процессора, с вентилятором.

Это регулятор уровня огня горелки. Я его изготовил от убитого CD-rom_а. Его можно изготовить из чего угодно, лишь бы фантазия работала.

Элемент Пельтье (в данном варианте два-три элемента, друг на друге, всё смазано термопастой) у меня зажат между охлаждающим радиатором и нагревающим радиатором.

Пространство вокруг элемента я заполнил резиной (от каблуков ненужной обуви) и склеил всё это автомобильным термогерметиком.

Вентилятор для охлаждения изготовил из 3–х вольтового двигателя от того же неисправного CD-rom_а и лопастей штатного вентилятора от компьютерного кулера. Двигатель и вентилятор состыковал при помощи китайского суперклея и дискодержателя от всё того же CD-rom_а. В результате получился вентилятор охлаждения, который начинает работать от полутора вольт и жрёт совсем небольшой ток.

Для радиатора нагревания взял радиатор от кулера старого процессора.

Напряжение, порядка 6-8 вольт, у меня выходит на преобразователь, где уменьшается до нужных для девайсов пяти вольт.

Про этот преобразователь я уже писал. http://tutankanara.livejournal.com/410005.html

Вот и сам генератор в сборе. Кат только (в пределах минуты-две) вырабатываемое напряжение достигает полутора вольт, начинает крутиться вентилятор охлаждения, и холодная сторона элемента начинает охлаждаться. В рабочий режим генерации термогенератор выходит через несколько минут. От него можно питать светодиодные гирлянды и заряжать электронные девайсы. Мой генератор даёт порядка 400 миллиампер тока при 5 вольтах напряжения. Сила тока зависит от применяемого элемента. Если будет возможность, поставлю элементы получше.

Также данное устройство, если снять генераторную часть, можно использовать в качестве обычной горелки, для кипячения воды. Обычно я заполняю наполовину банку и она закипает через 10-15 минут.   

О термоэлектрическом генераторе: изготовление термоэлектрогенератора своими руками

Современное пользовательское электрооборудование нуждается в постоянной подкачке электричества, источники которого не всегда имеются «под рукой» (в длительном пешем путешествии, например). С этой точки зрения, традиционные автомобильные аккумуляторы (АКБ) очень тяжелы для переноски и не годятся для классических походных условий. Их может заменить такое удобное в эксплуатации и транспортировке устройство, как термоэлектрический генератор своими руками изготовленный из подсобных элементов (общий вид ТЭГ приведён на фото ниже).

Общий вид ТЭГ

Несмотря на свои внушительные размеры, этот агрегат имеет малый вес и может быть разборным, то есть вполне подходит для транспортировки во время похода. Ознакомимся с принципом работы термоэлектрического генератора более детально.

Эффект Пельтье, его обратимость

Изготовление автономных термических генераторов электричества стало возможным благодаря открытию известного из курса физики эффекта Пельтье, состоящего в следующем. Оказывается, что разнородные по структуре проводники при протекании через зону их спайки электрического тока обнаруживают интересное свойство, состоящее в появлении разницы температур между их пограничными точками.

На основании этого открытия был разработан специальный элемент «Пельтье», состоящий их двух разнесённых на некоторое расстояние пластин из керамики с помещённой между ними биметаллической прокладкой. При пропускании через такие системы электрических зарядов одна из этих обкладок нагревается, а другая, напротив, – охлаждается, что в принципе позволяет делать на их основе холодильные установки.

Важно! При изменении направления тока через стык проводников (при прямом эффекте) меняется вектор градации температуры на стыках.

На размещённом ниже рисунке изображены модули различного типа и размера, чаще всего применяемые в технических изделиях этого класса.

Разнообразие модулей «Пельтье»

Как и многие другие электродинамические явления, этот эффект является полностью обратимым. Последнее означает, что при нагревании одной стороны пластин Пельтье и охлаждении другой на стыке между ними появится ЭДС, а через контактную зону и подключённую нагрузку потечёт небольшой ток (эффект Зеебека).

По этому принципу и функционирует рассматриваемый в этом обзоре генератор на элементах Пельтье, который вполне может работать на открытом воздухе (на рыбалке или в походе, например).

При проявлении эффекта Зеебека наблюдается та же зависимость от полярности происходящих изменений, а именно: если менять охлаждаемый и нагреваемый стыки местами, будет меняться и направление тока во всей системе. Таким образом, обратный элемент Пельтье как генератор электроэнергии представляет собой достаточно универсальное устройство, имеющее возможность регулировки величины и направления получаемой ЭДС.

Физическое объяснение

Причина возникновения разницы температур (в случае эффекта Пельтье) заключается в энергетике контактных зон, образующихся в местах стыка двух разнородных веществ (висмута и сурьмы, например). Особенности этих образований могут быть представлены следующим образом:

  • Из-за различной концентрации положительных и отрицательных зарядов в границах полярных зон (в центре размещается одно вещество, по краям – другое) между ними образуются собственные разнонаправленные электрические поля;
  • При протекании тока через контакт, в котором направление внешней и внутренней ЭДС совпадают, на поддержание перемещения электронов (на совершение работы в поле той же полярности) будет расходоваться внутренняя энергия вещества. Из основ физики известно, что такое явление соответствует остыванию материала в этом месте;
  • Соответственно этому, во второй контактной зоне, где направление приложенной ЭДС противоположно внутреннему полю, электроны будут тормозиться, и внешнему источнику придётся затрачивать дополнительную энергию по их перемещению. Согласно тем же физическим законам, указанный эффект соответствует забору энергии или нагреву материала в точке стыковки (смотрите фото ниже).

Пограничные явления в зонах Пельтье

Обратите внимание! Напряжённости таких полевых образований максимальны на пограничных участках двух неоднородных сред (полупроводников разной проводимости, например), вследствие чего здесь этот эффект проявляется с особой силой.

Среди работающих по этому принципу устройств наиболее известны термические модули (ТЭМ), состоящие из разных типов полупроводников с размещённой между ними медной токопроводящей прокладкой.

Особенности функционирования ТЭМ

Принцип действия и конструкция

При рассмотрении особенностей функционирования ТЭМ, работающих по тому же принципу, что генератор Пельтье, необходимо обратить внимание на следующие моменты:

  • В одном таком элементе имеется четыре перехода, которые образуются в пограничных зонах между краями металлической прокладки и двумя разнородными полупроводниковыми пластинами;
  • При образовании замкнутой цепочки поток электронов перемещается по направлению от минуса источника питания к его плюсу, проходя через каждый переход;
  • На границе первого по порядку барьера (полупроводник p-типа – медь) разогнанные во внешнем поле электроны переходят в состояние с меньшими энергиями разгона, вследствие чего происходит тепловыделение;
  • На следующем переходе наблюдается поглощение энергии (то есть охлаждение материала), что объясняется её расходом на работу по перемещению из зоны проводимости типа «p»;
  • На третьем пограничном переходе они попадают в зону полупроводника «n» со значительно большей, чем в прокладке из металла энергией, из-за чего здесь наблюдается её поглощение. Это приводит к охлаждению материала полупроводника на границе данного стыкового образования;
  • В последнем переходе вследствие попадания электронов в зону с меньшими энергиями наблюдается обратный процесс, связанный с тепловыделением.

Поскольку каждый из рассмотренных барьеров в границах ТЭМ располагается в разных плоскостях, такая конструкция с одной из сторон будет иметь более низкую температуру, а с другой – более высокую. На их основе создаются недорогие и лёгкие термогенераторы.

Дополнительная информация. В большинстве промышленных образцов ТЭМ функцию полупроводников выполняют соединения кремния и висмута.

В готовом к практическому использованию элементе содержится большое количество рассмотренных ранее переходов, что позволяет получать вполне ощутимые по величине температурные перепады. Используя обратный эффект (охлаждая одну из его сторон и нагревая другую) удаётся получить электрогенератор, энергии от которого будет хватать для зарядки мобильного телефона, например.

Достоинства и недостатки

К преимуществам модулей типа ТЭМ, используемых в режимах охлаждения и нагрева, можно отнести их универсальность, небольшие габариты и лёгкость, что особо важно в походных условиях.

Их существенным недостатком является высокая стоимость, сравнительно низкий КПД (всего 2-3%), а также необходимость в стороннем источнике, позволяющем получить требуемый перепад температур.

Обратите внимание! Все перечисленные достоинства и недостатки относятся и к элементам ТЭМ, используемым как термоэлектрогенератор (смотрите рисунок ниже).

Модуль ТЭМ

Несмотря на присущие им недостатки, все эти изделия довольно часто применяются в различных сферах, где уровень энергозатрат не имеет решающего значения.

Самостоятельное изготовление

Комплект необходимых деталей

Перед тем, как собрать ТЭГ Пельтье своими руками, обязательно нужно учесть следующие важные моменты:

  • Для получения электричества за счёт разницы температур подходят далеко не все представленные ранее модули ТЭМ, а лишь те из них, что рассчитаны на нагрев до 300-4000 градусов;
  • Определенный запас по температуре гарантирует, что преобразовательные пластины не выйдут из строя при случайном перегреве рабочих контактов;
  • Из всего многообразия представленных изделий предпочтение следует отдать элементам типа ТЕС1-12712, изготавливаемых в виде квадратов с разными размерами сторон: от 40 до 60 мм (смотрите рисунок ниже).

Термоэлементы типа TEC

Дополнительная информация. Для сборки устройства, рассчитанного на минимум потребляемой мощности, вполне может хватить одного элемента с максимальным размером.

Помимо этого, для изготовления генератора потребуется электронный преобразователь, позволяющий поддерживать выходное напряжение на уровне 5 Вольт. Необходимость в этой схеме объясняется тем, что генерируемая системой ЭДС непостоянна, так как разность температур всё время меняет своё значение при нагреве и охлаждении отдельных зон.

Стабилизатор напряжения придётся использовать фирменный (самостоятельно изготовить его могут только профессионалы). Для заявленных целей подойдёт устройство от зарубежного производителя марки «MAX 756» или отечественные изделия (3.3В/5В ЕК-1674), оснащённые USB разъёмом.

В качестве нагревателя могут использоваться как костёр (мини-печка), так и свеча, сухой спирт или самодельная лампа. Роль охладителя на природе чаще всего играет холодная вода, а в зимнее время – снег.

Сборка

Для формирования сред с разной температурой потребуются небольшие металлические ёмкости типа кружек или кастрюль из дюралюминия с отпиленными ручками. По своему размеру посуда подбирается так, чтобы одну ёмкость можно было вставить в другую, и чтобы между стенками оставался зазор, достаточный для размещения элементов TEC (они крепятся с двух сторон на термическую пасту).

Затем к каждой из сторон надёжно закреплённого модуля припаиваются хорошо изолированные провода, ведущие к преобразователю (стабилизатору). Для повышения отдачи системы (её КПД) днища металлических ёмкостей, непосредственно контактирующих с элементами ТЭГ, предварительно полируются, а на их донные части наносится тонкий слой термостойкого герметика (фото ниже).

Самодельный термогенератор

Последняя операция обеспечит концентрацию тепла в зоне расположения модуля и не позволит ему рассеиваться на близко расположенных охлаждаемых деталях. Для проверки работоспособности получившейся конструкции во внутреннюю (меньшую по объёму) ёмкость наливается вода, или закладывается снег, после чего она ставится на огонь. По истечении некоторого времени можно будет проверить наличие выходного напряжения 5 Вольт посредством мультиметра.

В заключение отметим, что из-за не очень высокого КПД этого устройства применять его в походе целесообразно только с целью зарядки телефона или для энергоснабжения не очень мощного фонарика с подсевшей батарейкой. Благо, что на природе имеются все условия, необходимые для создания нужной разности температур (холодная вода из реки и тепло от костра).

Видео

инструкция по изготовлению преобразователя тепловой энергии в электрическую

Количество цифровых гаджетов постоянно увеличивается. К сотовому телефону добавились мобильная радиостанция, GPS-навигатор и фотоаппарат.

Таскать с собой полный котелок запасных аккумуляторов для всей этой электронной братии тяжело, а в холодное время года еще и бессмысленно их емкость и мощность при низких температурах сильно сокращаются.

Поэтому каждый путешественник хотел бы обзавестись устройством, преобразующим в электричество доступную в походе энергию.

Весьма практичными оказались термогенераторы – источники, для работы которых необходимо тепло. На чем основан принцип их работы и как можно сделать термогенераторы электричества своими руками – об этом пойдет речь в этой статье.

Как определить термоЭДС металла?

Термоэлектродвижущая сила возникает в замкнутом контуре при соблюдении двух условий:

  1. Если он состоит хотя бы из двух проводников, изготовленных из различных материалов.
  2. Если все входящие в состав контура разнородные участки имеют различную температуру (хотя бы в области соединения).

В физике данное явление называют эффектом Зеебека.

Величина термоЭДС зависит от вида материалов и разности их температур.

Определяют ее по формуле:

Е = к (Т1 – Т2),

  • Где Т1 и Т2 – температура проводников,
  • К – коэффициент Зеебека.

Наибольшей производительностью обладают контуры, состоящие из разнородных полупроводников (обладающих р- и n-проводимостью). В металлах эффект Зеебека проявляется незначительно, за исключением некоторых переходных металлов и их сплавов, например, палладия (Pd) и серебра (Ag).

Теплообменники широко применяются в быту. Довольно легко можно сделать теплообменник своими руками инструкция по сборке представлена в статье.

Пошаговая инструкция по облицовке камина своими руками представлена тут.

Знаете ли вы, что напряжение всего в 12 Вольт может служить источником тепла? По ссылке https://4air.ru/otopitelnoe-oborudovanie/obogrevateli/12-volt-svoimi-rukami.html инструкция по изготовления обогревателя 12 Вольт своими руками.

Принцип работы

Решать задачу по производству электричества из тепловой энергии приходится, как принято говорить в науке, от обратного. Противоположным эффекту Зеебека является эффект Пельтье, который состоит в изменении температур двух объединенных в замкнутый контур разнородных полупроводников при пропускании через них постоянного тока: один из них нагревается, второй – остывает.

Если направление тока изменить, изменится и направление теплового потока: первый полупроводник будет остывать, а второй – нагреваться. В качестве полупроводников чаще всего применяют твердую смесь кремния с германием и теллурид висмута.

Эффект Пельтье

Эффект, открытый Жаном Пельтье, получил широкое применение в различных сферах человеческой жизнедеятельности, где требуются холодильные машины, но нет возможности применить компрессорный тепловой насос на фреоне. Поэтому именно его именем назвали выпускаемые для этой цели устройства – элементы Пельтье.

Но если на такой элемент или, как его еще называют, термоэлектрический охладитель оказать воздействие с противоположной стороны, то есть создать на его полупроводниках разность температур, то мы получим эффект Зеебека: элемент Пельтье превратится в источник постоянного тока.

Конструкция термогенератора

Итак, идея термогенератора довольно проста: необходимо взять элемент Пельтье и сильно нагреть одну из его поверхностей. В генераторах заводского изготовления для этого применяются газовые горелки. Но создать такой прибор в домашних условиях довольно сложно – трудно обеспечить стабильное горение пламени в течение длительного времени.

Поэтому народные умельцы отдают предпочтение более простой версии термогенератора, о которой мы сейчас и расскажем.

Изготовление своими руками

Схематично устройство самодельной термоэлектростанции можно представить так:

  1. Элемент Пельтье положим на дно глубокой посудины – миски или кружки.
  2. Далее в эту посудину вставим еще одну: если используются миски, то понадобится такая же, если ваш выбор пал на кружки, то вторая должна быть чуть меньше первой.
  3. К выведенным от элемента Пельтье проводам присоединим преобразователь напряжения.
  4. Внутреннюю посудину заполним снегом или холодной водой, после чего всю конструкцию поставим на огонь.

Через какое-то время снег растает, превратится в воду и закипит. Производительность генератора при этом понизится, но зато турист получит возможность выпить горячего чайку. После чаепития можно будет заправить генератор новой порцией снега.

Чем больше термоэлементов (их еще называют ветвями) будет у приобретенного вами элемента Пельтье, тем лучше. Можно применить прибор марки TEC1-127120-50 их у него 127. Данный элемент рассчитан на токи до 12А.

Порядок работ

Теперь рассмотрим процесс создания самодельного термогенератора в деталях:

  1. Поверхность каждой посудины в месте контакта с элементом Пельтье следует выровнять и зачистить, что обеспечит максимальный теплообмен. Для идеального прилегания можно отполировать донышки смазанным пастой ГОИ куском войлока, закрепленным в шпинделе электродрели.
  2. Присоединяем к контактам элемента Пельтье провода от электроплиты, снабженные термостойкой изоляцией. За неимением таковых можно применить, к примеру, провод МГТФЭ-0,35, обернув его термостойкой тканью.
  3. Смазав дно одной из посудин термопроводящей пастой, например, КПТ-8, укладываем на него элемент Пельтье. Подсоединенные к нему провода следует расположить так, чтобы их концы оказались вне емкости.
  4. Сверху элемент Пельтье снова смазываем термопастой и вставляем в нашу кружку или миску вторую емкость подходящего размера (у кружки нужно будет отрезать ручку).
  5. Пространство между емкостями необходимо заполнить термоустойчивым герметиком (можно купить в автомагазине состав для ремонта выхлопных труб). Он послужит теплоизоляцией между горячей и холодной сторонами генератора и дополнительной защитой для проводов.

Походный генератор электричества

Выступающие концы проводов можно приклеить к бортику кружки матерчатой изолентой.

Изготовление преобразователя

В ходе эксперимента установленный на электроплитку термогенератор при наличии снега во внутренней емкости обеспечил ЭДС в 3В и ток в 1,5А. После превращения снега в воду и ее закипания мощность генератора упала в три раза (напряжение составило 1,2В).

Чтобы использовать такой прибор в качестве зарядного устройства для телефона или другого гаджета, которому требуется стабильное напряжение в 5 В или 6,5 В, его необходимо оснастить преобразователем напряжения.

Рассмотрим два варианта.

Вариант 1

Проще всего применить в качестве преобразователя микросхему КР1446ПН1, снабженную DIP-корпусом.

Производится она в России и ее легко можно найти в магазине радиодеталей или на радиорынке.

Воспользоваться не возбраняется и более мощными аналогами, но все они выпускаются в миниатюрных корпусах для поверхностного монтажа, так что придется помучиться с распайкой.

На вход микросхемы подается напряжение с элемента Пельтье, а сама она включается в режиме «5 Вольт» (штатный). Параллельно с элементом Пельтье на вход преобразователя напряжения следует припаять достаточно мощный шунтирующий диод. Он предотвратит движение тока в обратном направлении, если на генератор будет оказано противоположное температурное воздействие.

К примеру, будучи заполненным горячей водой он может быть по неосторожности установлен на какую-нибудь холодную поверхность.

К выходу преобразователя нужно припаять кабель от старого зарядного устройства, подходящего для нашей модели телефона или фотоаппарата, а также светодиодный индикатор на 5 В.

Недостаток этого варианта: предложенная в качестве преобразователя микросхема ограничивает мощность генератора, поскольку ток на ее выходе не превышает 100 мА. Таким образом, элемент Пельтье используется приблизительно на 20%, чего будет достаточно только для телефонов устаревших моделей.

Чтобы иметь возможность заряжать более мощные устройства, необходимо применить усложненную версию преобразователя напряжения.

Вариант 2

Более мощный преобразователь можно собрать по двухкаскадной схеме с применением пары микросхем MAX 756. Чтобы при отключении потребителя генерируемый ток не пропадал зря, оснастим преобразователь встроенными аккумуляторами. Соединенные последовательно, они включены в нагрузку первого каскада через выключатель, диод и токоограничивающий резистор. Сам каскад настроен на режим выхода «3,3 Вольт».

К выходу каскада №1 подключаем каскад №2, настроенный на режим выхода «5 Вольт». Оба каскада реализованы согласно схеме, приведенной в документации на микросхему MAX 756 (опубликована в Сети). Единственное отличие – цепь обратной связи каскада №2 (между выходом каскада и ногой №6 его микросхемы) дополняется последовательностью из 3-х кремниевых диодов, расположенных анодом к выходу.

Простейший походный термогенератор

Такое усовершенствование позволит получать на холостом ходу напряжение величиной 6,5 В (требуется для зарядки некоторых электронных устройств).

Чтобы упростить схему, можно применить микросхему MAX 757, которая снабжена отдельным выходом обратной связи.

Интерфейс этого преобразователя соответствует типу USB Type A. Но если к нему предполагается подключать USB-устройство, то последовательность диодов из цепи обратной связи 2-го каскада лучше убрать, чтобы выходное напряжение вернулось на уровень 5 В.

Эту версию преобразователя нельзя подключать к портам типа USB-Host.

Вариация на тему…

Элемент Пельтье можно просто прикрепить к колышку, втыкаемому в землю поблизости от костра.

Чтобы создать достаточный температурный градиент, обе его поверхности нужно оснастить ребристыми радиаторами.

На поверхности со стороны пламени радиатор должен иметь увеличенную площадь, а его ребра устанавливаются горизонтально.

На противоположной стороне элемента установлен меньший радиатор, а его оребрение – вертикальное.

Батареи отопления могут устанавливаться по-разному в зависимости от типа отопительной системы однотрубной или двухтрубной. Схемы подключения радиаторов отопления и советы по месту их установке  читайте внимательно.

Как отремонтировать циркуляционный насос своими руками? Основные типы поломок и методы их устранения представлены в этой статье.

Портативный термогенератор превратит любую печь в источник чистой энергии

Термоэлектрический генератор FireBee Power Tower преобразует тепло из любой переносной печи в электричество для зарядки смартфонов, планшетов и других электронных гаджетов.

Возможность выработки электричества портативными устройствами может серьезно улучшить качество жизни в отдаленных от сети регионах, а также стать спасительным источником энергии во время катаклизмов и стихийных бедствий. На сегодняшний день известно много различных вариантов, успешно использующих ветер, солнце и воду для питания портативной электроники. Однако есть и другой способ выработки электричества – термоэлектрический генератор, собирающий энергию, которая в обычных случаях просто улетучивается через дымоход.

Портативная печь FireBee Power Tower способна использовать часть тепла, выделяемого при приготовлении пищи или обогрева дома (палатки или другого временного жилища), чтобы получить дополнительное электричество для подзарядки гаджетов, освещения и прочих домашних нужд. Новое устройство австралийской компании является универсальным – электроэнергию можно получать от тепла различных походных печей типа «буржуйка», пропановых печей, каминов и даже от небольших спиртовых горелок.

Производитель утверждает, что переносной тепловой генератор может производить до 7 ватт электроэнергии, которая распределяется на два выхода: порт USB 5V 2A для портативной электроники и 12-ти вольтовый терминал на 125mA, который можно использовать, соответственно, для подзарядки аккумуляторов 12V.

Читайте также: Карманный генератор HandEnergy — переносная зарядка на все случаи жизни

Тепло от печи или огня поглощается ребрами радиатора, расположенными внутри устройства, которое затем проходит через пару термоэлектрических модулей, соединенных с резервуаром с хододной водой. Термоэлектрические модули генерируют электричество от разности температур между горячими ребрами и охлаждающим резервуаром. Затем это электричество преобразуется в общий формат USB 5V 2A, который используется большинством портативных устройств.

У Power Tower есть еще одно достоинство: так как для его работы требуется охлаждающий резервуар с водой, которая в конечном итоге доводится до кипения, специальный патрубок на устройстве позволяет легко сливать горячую воду, например, для стирки или других нужд. По сути, пользователи могут готовить горячую пищу, заряжать свое устройство и одновременно нагревать воду для мытья посуды. Поскольку выработка электроэнергии происходит из-за разницы температур, наибольшая эффективность достигается с максимально горячим источником тепла и максимально холодной водой, а последующий слив кипящей воды и замена ее на более холодную будет служить своеобразной «зарядкой» устройства.

«Устройство PowerBee Power Tower является самым мощным термоэлектрическим генератором подобного рода, в котором даже небольшое количество тепла производит достаточное количество энергии. Его можно приспособить для использования в паре с небольшой спиртовой или пропановой горелкой, а также любой печью с дымоходом», — сообщает компания.

Хотя производитель прямо не указывает на это, но в теплых и солнечных регионах, где использование печей не всегда является необходимостью, задействовать устройство можно с помощью солнечного концентратора.

Стоимость портативного термогенератора составляет 159 долларов. В настоящее время компания учувствует в конкурсе National Geographic Chasing Genius, а более подробная информация о продукте доступна на FireBeeCharger.

Читайте также: Разработана новая портативная печь-зарядка для электронных устройств

Источник: treehugger.com

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

Понравилась статья? Поделитесь ею и будет вам счастье!

Термоэлектрический генератор

: как построить один

Термоэлектрический генератор

— это полупроводниковое устройство, которое преобразует разницу тепла между двумя слоями в электричество.

Он принадлежит к классу материалов, называемых «термоэлектриками», и является одной из самых больших надежд автомобильной промышленности в отношении экономии, получаемой от двигателя внутреннего сгорания. Его также называют «генератором Пельтье».

С генератором Пельтье автомобиль может эффективно снизить расход топлива за счет рекуперации части энергии, которую двигатель теряет в виде тепла, и передачи ее аккумулятору, тем самым помогая питать электронику автомобиля и даже кондиционер.В случае гибридных автомобилей термоэлектрический генератор также может преобразовывать тепло в движение.

Вот как вы можете самостоятельно разработать термоэлектрический генератор Пельтье в домашних условиях:

1. Берем два радиатора

Они должны быть достаточно большими для ваших нужд и смочить их термопастой в том месте, где застревает блок Пельтье (вы можете найти его в любом IT-магазине / RadioShack).

2. Изготовить теплоизолятор

Это для разделения двух радиаторов.Это может быть что угодно, если только оно соответствует максимальной температуре вашего приложения (не плавится). Изолятор не должен быть толще блока Пельтье, который вы устанавливаете между радиаторами. Вырежьте отверстие по размеру и форме элемента Пельтье, чтобы оно идеально входило в изолятор. Также освободите место для двух проводов.

3. Собрать генератор

Соедините два радиатора, изолятор с блоком Пельтье и установите источник тепла на один из радиаторов.Чем дольше вы ждете, тем выше напряжение и ток (мощность), которые вы получаете от устройства Пельтье.

Конечно, у всего есть свои ограничения, но с блоком размером с тот, который показан в следующем видео, вы легко сможете управлять небольшими гаджетами, которые есть у вас дома. Более крупный термоэлектрический генератор послужит более высоким целям.

Посмотрите видео и сделайте то же самое! Удачи!

(Посещений 17381 раз, сегодня 1 посещений)

Постройте термоэлектрический генератор, подобный тем, которые используются для миссий в глубоком космосе

Как вы можете видеть по вольтметру, я получаю 1.2 милливольт. Это немного, но кое-что. (Если вам интересно, масса на горячей пластине прижимает соединение медь-сталь вниз для обеспечения хорошего контакта.)

То, что вы видите, — это эффект Зеебека (названный в честь Томаса Зеебека). Два разных металла вместе при двух разных температурах могут создавать электрический ток. Эффект более выражен при большей разнице температур, и некоторые комбинации металлов работают лучше, чем другие, но вот он, ваш термоэлектрический генератор.

На самом деле, вы можете сделать генератор лучше, используя полупроводник вместо двух разных металлов, но двухметаллический вариант построить намного проще. Вот демонстрация полупроводника. Устройство зажато между двумя алюминиевыми ножками, одна ножка находится в горячей воде, а другая — в холодной. Выход из устройства идет в небольшой электродвигатель сверху.

Итак, как это работает? Почему из-за разницы температур (для разных металлов) возникает электрический ток? Я не буду вдаваться в подробности , так как это займет слишком много времени.Но вот мой суперкороткий ответ: у электрического проводника есть свободные заряды, которые могут перемещаться (в некоторой степени). Когда вы прикладываете электрическое поле, эти заряды перемещаются и создают электрический ток. Обычно мы думаем об этих зарядах как об электронах, но это может быть что-то еще. Если вы возьмете металл и сделаете один конец горячим, а другой — холодным, электроны на горячей стороне будут иметь больше энергии и двигаться дальше. Эти более горячие электроны распространяются, и на холодном конце электроны имеют меньше энергии. Степень разделения заряда зависит от конкретного металла.

Теперь возьмем другой металл с двумя концами при разных температурах. Но поскольку этот металл отличается от первого, у него будет другое разделение заряда на горячем и холодном концах. Когда эти разные металлы соединяются вместе, они образуют батарею — не очень хорошую батарею, но все же это как батарея. И бум — вот и твой термоэлектрический генератор.

Если вы думаете о создании термоэлектрического генератора для питания вашего дома, у меня плохие новости.Эти вещи очень неэффективны. Чтобы извлечь из них что-то полезное, нужны довольно большие перепады температур. Однако есть и хорошие новости. Эти термоэлектрические генераторы не имеют движущихся частей. Отсутствие движущихся частей означает, что они маленькие и довольно надежные. И поэтому они используются в некоторых космических кораблях (например, «Вояджер», «Кассини» и др.). Чтобы изменить температуру, космический корабль будет использовать радиоактивный источник, который остается очень горячим — вот и все. Так работает ваш радиоизотопный термоэлектрический генератор (РИТЭГ).Это похоже на скрепку и генератор из медной проволоки, только лучше.

Создание схемы термоэлектрического генератора (ТЭГ)

Термоэлектрический генератор (ТЭГ) — это своего рода «устройство свободной энергии», которое имеет свойство преобразовывать температуру в электричество. В этом посте мы немного узнаем об этой концепции и узнаем, как мы можем использовать ее для выработки электроэнергии из тепла и холода.

Что такое ТЭГ

В одной из своих предыдущих статей я уже объяснял аналогичную концепцию относительно того, как сделать небольшой холодильник с использованием устройства Пельтье

Устройство Пельтье также в основном является ТЭГ, предназначенным для выработки электричества из разницы температур.Термоэлектрическое устройство очень похоже на термопару, единственная разница заключается в составе двух аналогов.

В ТЭГ для эффекта используются два разных полупроводниковых материала (p-n), тогда как термопара работает с двумя разнородными металлами для одного и того же, хотя для термопары может потребоваться значительно большая разница температур по сравнению с меньшей версией ТЭГ.

Также широко известный как эффект Зеебека, он позволяет устройству ТЭГ инициировать выработку электричества при воздействии разницы температур на его оборотных сторонах.Это происходит из-за специально сконфигурированной внутренней структуры устройства, в которой для процесса используется пара легированных полупроводников p и n.

Эффект Зеебека

Согласно принципу Зеебека, когда два полупроводниковых материала подвергаются воздействию двух экстремальных температурных уровней, инициируется движение электронов через p-n-переход, что приводит к развитию разности потенциалов на внешних выводах материалов.

Несмотря на то, что концепция кажется удивительной, все хорошие вещи имеют свойственный недостаток, и в этом смысле они также являются тем, что делает ее относительно неэффективной.

Необходимость экстремальной разницы температур на двух сторонах становится самой сложной частью системы, потому что нагрев одной из сторон также означает, что другая сторона также нагреется, что в конечном итоге приведет к нулевому электричеству и повреждению ТЭГ. устройство.

Чтобы обеспечить оптимальный отклик и инициировать поток электронов, один полупроводниковый материал внутри ТЭГ должен быть горячим, и одновременно другой полупроводник необходимо держать в стороне от этого тепла, обеспечивая надлежащее охлаждение со стороны противодействия.Эта критичность делает концепцию немного неуклюжей и неэффективной.

Тем не менее, концепция ТЭГ является чем-то эксклюзивным и неосуществимым до сих пор с использованием какой-либо другой системы, и эта уникальность этой концепции делает ее очень интересной и заслуживающей экспериментов.

Схема ТЭГ с использованием выпрямительных диодов

Я пытался спроектировать схему ТЭГ с использованием обычных диодов, хотя я не уверен, будет ли она работать или нет, я надеюсь, что с этой установкой можно будет достичь некоторых положительных результатов, и она имеет область для улучшения.

На рисунках мы видим простую диодную сборку, зажатую радиаторами. Это диоды типа 6A4, я выбрал эти более крупные диоды, чтобы получить большую площадь поверхности и лучшую проводимость.

Диод 6A4

Простая схема термоэлектрического генератора, показанная выше, может быть использована для выработки электричества из отходящего тепла путем соответствующего применения необходимой степени разницы тепла между указанными теплопроводными пластинами.

На рисунке справа показано множество диодов, соединенных последовательно и параллельно для достижения более высокого КПД и пропорционально большего накопления разности потенциалов на выходе.

Зачем использовать диод для изготовления ТЭГ

Я предположил, что диоды подойдут для этого приложения, поскольку диоды — это фундаментальные полупроводниковые блоки, состоящие из легированного p-n материала, встроенного в их два оконечных вывода.

Это также означает, что два конца специально состоят из различных материалов, что облегчает применение температуры отдельно от двух противоположных концов.

Многие такие модули могут быть построены и соединены последовательно и параллельно для достижения более высоких коэффициентов преобразования, и это приложение может быть реализовано также с использованием солнечного тепла. Сторона, которую необходимо охладить, может быть достигнута за счет воздушного охлаждения или за счет улучшенного испарительного воздушного охлаждения из атмосферы для увеличения коэффициента полезного действия.

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Термоэлектрический генератор DIY (TEC) — Hackster.io

Всем привет! Это руководство поможет вам создать свой собственный термоэлектрический генератор с использованием термоэлектрических охладителей (также известный как TEC). Если вы будете следовать каждому шагу этого урока, вы сможете генерировать энергию только с помощью огня и воды!

Что вы узнаете из этого руководства:

  • Как работает TEC
  • Используйте TEC для выработки энергии
  • Как построить термоэлектрический генератор
  • Как воспользоваться эффектом Зеебека
  • Проведите забавные эксперименты с TEC (создание ДВС и питание ДВИГАТЕЛЯ)

Обязательно посмотрите видео, потому что оно более наглядное.Подпишитесь на мой канал Youtube, чтобы не пропустить новый проект и помочь мне расти!

Термоэлектрические охладители работают на эффекте Пельтье. Этот эффект создает разницу температур за счет передачи тепла между двумя электрическими соединениями. Приложение напряжения к соединенным проводникам создает электрический ток. Когда ток протекает через соединения двух проводников, тепло отводится с одной стороны и происходит охлаждение. На другой стороне отводится тепло.

Шаг 1: ВЕСЕЛЫЕ ЭКСПЕРИМЕНТЫ

ПРИГОТОВЛЕНИЕ ЛЬДА

Если вы подключаете ТЕС к источнику питания, одна сторона пластины нагревается, а другая остывает, что называется эффектом Пельтье.Горячая сторона может сильно нагреться, поэтому установите радиатор и поместите его в воду, чтобы обеспечить хорошее охлаждение. Холодная сторона этого устройства может достигать температуры, достаточной для замораживания воды!

БЕСПЛАТНАЯ ЭНЕРГИЯ

Это устройство также можно использовать для выработки электроэнергии другим способом. Нагревая одну сторону пластины и охлаждая другую, мы можем создать разность напряжений на термоэлектрическом охлаждающем устройстве. Это называется эффектом Зеебека, и именно этим мы воспользуемся в этом уроке.

Шаг 2: Соберите все материалы

Вот список материалов, которые нам нужны

для завершения этого проекта:

от 8 до 10 x TEC

1 x регулятор напряжения

10 x свечей

1 x термоэлектрическая паста

1 x алюминиевый поддон

1 x Алюминиевая пластина

1 x Loctite

1 x Изоляционная лента

Необходимые инструменты:

1 x X-acto нож

1 x Паяльник

1 x припоя

Шаг 3: Установите и припаяйте термоэлектрический Кулеры

Начнем с вычислений.Вы можете обратиться к Техническому описанию термоэлектрического охладителя (TDS), чтобы проверить размеры, или просто измерить его линейкой. Размеры должны быть 40х40 мм. Перед тем как начать, вам нужно решить, хотите ли вы использовать 8 или 10 TEC. Разница в том, что 10 будут обеспечивать больше напряжения и тока, чем 8. Я использовал 8 TEC, поэтому мой алюминиевый поддон должен иметь основание 160×80 мм. БУДЬТЕ ОСТОРОЖНЫ , основание должно быть плоским, чтобы можно было приклеить ТЭО, полностью соприкасаясь с ним. Сначала я купил лоток с небольшим уклоном и понял, что он не будет работать, потому что нам нужно воспользоваться температурным градиентом, а наклон не позволит этого.

Как только вы узнаете, где будет установлен ТЕС, вы должны изолировать это место изоляционной лентой, как показано на втором рисунке. Затем нанесите термопасту на чистую сторону и приклейте ее буквами вверх. Вы заметите, что красный и черный провода образуют пары. Мы собираемся спаять их вместе, за исключением красного провода TEC № 8 и черного провода TEC № 4, которые останутся незакрепленными. Чтобы замкнуть шлейф, черный провод ТЭО № 5 следует припаять к красному проводу ТЭО № 1.

После выполнения этого шага мы закончили пайку. Советую наклеить на места пайки больше изоляционной ленты, чтобы избежать контакта с другими поверхностями.

Шаг 4: Изготовление подставки, опоры регулятора напряжения и НЕБОЛЬШОЙ УДОВОЛЬСТВИЕ 🙂

СОЗДАНИЕ СТЕНДА

Начнем с проектирования стенда. Для этого нужно учитывать размеры нашего лотка. Мой алюминиевый поднос 230x230x50 мм. Сконцентрируемся на высоте (50 мм).Нам нужно добавить 5 мм из-за толщины ТЭО. Я считаю 15 мм подходящим расстоянием между ТЕС и пламенем свечи. Предположим, что свеча + пламя 30 мм.

Подведение итогов:

  • Высота лотка + толщина TEC = 50 + 5 = 55 мм
  • Расстояние между TEC и пламенем = 15 мм
  • Свеча + пламя = 30 мм
  • Общая высота стойки = 100 мм

Естественно, вы должны примите во внимание высоту подноса, а затем сложите остальные факторы.

Для изготовления подставки я использовал алюминиевую пластину. Вам понадобится пластина 430 (100 + 230 + 100) x100 мм, как показано на рисунке выше. Вы должны согнуть каждую линию на 90º, образуя C .

ОПОРА РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Вы можете легко построить опору для регулятора напряжения, отрезав алюминиевую полосу 30×250 мм. Когда это будет сделано, вы должны подогнать края так, чтобы они соответствовали боковым сторонам алюминиевого лотка. Затем я вырезал 3 куска пробки и приклеил их к опоре.Регулятор напряжения был приклеен к пробке, чтобы убедиться, что она также изолирована. Результат показан на рисунке 2.

ПОДКЛЮЧЕНИЕ ПРОВОДОВ TEC К РЕГУЛЯТОРУ НАПРЯЖЕНИЯ

Обычно в электричестве красный является положительным (+) , а черный — отрицательным (-) . Если вы используете мультиметр для измерения напряжения между свободными красным и черным проводами, вы увидите отрицательное напряжение. Это означает, что из-за того, как мы припаяли контактные площадки ТЕС, полярность была обратной.Следовательно, нам также необходимо изменить способ подключения контактных площадок TEC к регулятору напряжения. Если у вас есть сомнения по поводу этой связи, пожалуйста, проверьте картинку вверху.

LITTLE TRICK 🙂

Чтобы TEC улавливал больше тепла от свечей, я использовал алюминиевую пластину (160×120 мм) и загнул края. Этот кусок алюминия покрывает большую площадь, чем пластины TEC, поэтому он способен собирать больше тепла. Этот шаг очень важен, потому что, как вы знаете, TEC работает с разницей температур, поэтому чем больше тепла мы собираем (с тем же количеством свечей), тем лучше результат.Теперь все, что вам нужно сделать, это нанести термопасту на ТЭО, а затем приклеить кусок алюминия прямо поверх него. Я использовал зажимы, чтобы убедиться, что он хорошо приклеен, и дал ему высохнуть в течение 12 часов.

На рисунке 5 показано, как это должно выглядеть. Довольно устойчивая подставка!

Шаг 5: Подготовьте все для ЗАРЯДКИ ТЕЛЕФОНА

Самая сложная часть — наброски, изготовление и электроника. Это самая простая и лучшая часть! Мы почти готовы начать производить электричество с помощью этих удивительных электронных устройств.

Давайте начнем с того, что поставим как можно больше свечей на базу поддержки. Зажгите их, а затем установите лоток. После этого в поддон следует налить воду. В своем эксперименте я добавил несколько кубиков льда, чтобы вода стала прохладнее и, следовательно, вырабатывала больше энергии. Вы заметите, что вскоре на регуляторе напряжения загорится небольшой светодиод, а затем напряжение на дисплее начнет расти. Хорошие новости: ЕГО РАБОТАЕТ! Подождите минуту или две, чтобы он стабилизировался, а затем нажмите кнопку на регуляторе напряжения.Это установит фильтр, который пропускает через регулятор только 5 В, которые обычно принимают телефоны. Если вам интересно, вы также можете измерить ток с помощью мультиметра. Чем больше ток, тем быстрее он будет заряжаться. Вам следует менять воду каждые 15 минут, чтобы держать прохладную поверхность достаточно холодной для выработки достаточного количества энергии.

Это все для этого урока, надеюсь, вам понравился проект, и убедитесь, что вы подписались на мой канал Youtube, чтобы помочь мне расти и продолжать делать проекты DIY!

Термоэлектрический генератор своими руками — CARAVAN GENERATORS

    термоэлектрический генератор

  • Термоэлектрические генераторы (также называемые термогенераторами) — это устройства, которые преобразуют тепло (разницу температур) непосредственно в электрическую энергию, используя явление, называемое «эффектом Зеебека» (или «термоэлектрическим эффектом»).Их типичный КПД составляет около 5-10%.
    сделай сам

  • Сделай сам (или сделай сам) — это термин, используемый для описания строительства, модификации или ремонта чего-либо без помощи экспертов или профессионалов.
  • (DIYed) Простое прошлое DIY
  • Сделай сам; Выполнение задачи обычно возлагается на специалиста
  • Сделай сам
термоэлектрический генератор diy — термоэлектрическое устройство

Термоэлектрическое устройство

Этот увлекательный аксессуар демонстрирует эффект Пельтье — поглощение или излучение тепловой энергии, когда электроны переходят из одного состояния в другое через разнородные полупроводниковые переходы.Просто подключите его к Genecon или другому источнику напряжения, поверните ручку в одном направлении, и пластина нагреется. Поменяйте направление движения (или поменяйте местами провода), и пластина остынет! Такие термоэлектрические цепи позволяют регулировать температуру, когда габариты или экономичность делают обычные методы охлаждения непрактичными. Они используются на печатных платах для охлаждения компонентов и в холодильниках для пикников, питаемых от автомобильных зажигалок. В качестве дополнительной задачи попросите учащихся предложить более важные или разнообразные приложения для устройства.Вояджер 2 20120613 09

Три цилиндрических объекта, выстроенных в линию на удлиненной стреле, — это радиоизотопные термоэлектрические генераторы (РИТЭГ), которые по сути представляют собой ядерные батареи, используемые для питания космического корабля. Тепло, выделяемое при естественном распаде плутония, преобразуется непосредственно в электричество с помощью термопар. Он будет продолжать обеспечивать питание космического корабля как минимум до 2020 года, через 43 года после его запуска. Подобные источники энергии были типичны для космических аппаратов, работающих за пределами орбиты Марса.

20111113 MSL 07

Цилиндрический объект в задней части марсохода представляет собой радиоизотопный термоэлектрический генератор (РИТЭГ). Используя естественный распад изотопа диоксида плутония, он может обеспечить марсоход мощностью около 125 Вт электроэнергии.

термоэлектрический генератор своими руками Предлагаемый вариант написан как учебник для студентов старших курсов или для выпускников первого года обучения и охватывает современные тепловые устройства, такие как радиаторы, термоэлектрические генераторы и охладители, тепловые трубы и теплообменники, как конструктивные элементы в более крупных системах.Эти устройства становятся все более важными и фундаментальными в тепловом проектировании в таких разнообразных областях, как охлаждение микроэлектроники, преобразование зеленой или тепловой энергии, терморегулирование и управление в космосе и т. Д. Однако учебников по этому кругу тем не существует. Предлагаемая книга может быть использована в качестве курса проектирования замкового камня после фундаментальных курсов, таких как термодинамика, механика жидкости и теплопередача. Основные концепции в этой книге охватывают: 1) понимание физических механизмов тепловых устройств с основными формулами и подробными выводами, и 2) проектирование тепловых устройств в сочетании с математическим моделированием, графической оптимизацией и иногда вычислительными жидкостями. динамическое (CFD) моделирование.Важные примеры дизайна разрабатываются с использованием коммерческого программного обеспечения MathCAD, которое позволяет студентам легко находить графические решения даже при очень подробных процессах. Другими словами, концепция дизайна воплощена в примерах задач. Графическое представление обычно предоставляет дизайнерам или студентам богатые и гибкие решения для достижения оптимального дизайна. Будет предоставлено руководство по решениям.

% PDF-1.5 % 4547 0 obj> эндобдж xref 4547 301 0000000016 00000 н. 0000009364 00000 н. 0000009645 00000 н. 0000009698 00000 п. 0000009816 00000 н. 0000009900 00000 н. 0000009985 00000 н. 0000010063 00000 п. 0000010328 00000 п. 0000010413 00000 п. 0000010530 00000 п. 0000010627 00000 п. 0000010718 00000 п. 0000010889 00000 п. 0000010987 00000 п. 0000011078 00000 п. 0000011851 00000 п. 0000011877 00000 п. 0000011903 00000 п. 0000017852 00000 п. 0000024028 00000 п. 0000030290 00000 п. 0000036512 00000 п. 0000043054 00000 п. 0000050000 00000 н. 0000051245 00000 п. 0000052489 00000 п. 0000053724 00000 п. 0000054959 00000 п. 0000061774 00000 п. 0000067411 00000 п. 0000067435 00000 п. 0000080075 00000 п. 0000080286 00000 п. 0000080937 00000 п. 0000080961 00000 п. 0000092414 00000 п. 0000092624 00000 п. 0000093275 00000 п. 0000093452 00000 п. 0000094085 00000 п. 0000094262 00000 п. 0000094906 00000 п. 0000094929 00000 п. 0000095036 00000 п. 0000095064 00000 п. 0000095084 00000 п. 0000095184 00000 п. 0000095316 00000 п. 0000095402 00000 п. 0000095425 00000 п. 0000095532 00000 п. 0000095560 00000 п. 0000095580 00000 п. 0000095680 00000 п. 0000095812 00000 п. 0000095898 00000 п. 0000095925 00000 п. 0000096032 00000 п. 0000096140 00000 п. 0000096177 00000 п. 0000096204 00000 п. 0000096304 00000 п. 0000096437 00000 п. 0000096523 00000 п. 0000096550 00000 п. 0000096657 00000 п. 0000096765 00000 п. 0000096802 00000 п. 0000096829 00000 п. 0000096929 00000 п. 0000097062 00000 п. 0000097148 00000 п. 0000097175 00000 п. 0000097282 00000 п. 0000097390 00000 п. 0000097427 00000 н. 0000097454 00000 п. 0000097554 00000 п. 0000097687 00000 п. 0000097773 00000 п. 0000097800 00000 н. 0000097907 00000 п. 0000098015 00000 п. 0000098052 00000 п. 0000098079 00000 п. 0000098179 00000 п. 0000098312 00000 п. 0000098398 00000 п. 0000098425 00000 п. 0000098532 00000 п. 0000098640 00000 п. 0000098677 00000 п. 0000098704 00000 п. 0000098804 00000 п. 0000098937 00000 п. 0000099023 00000 п. 0000099050 00000 н. 0000099157 00000 п. 0000099265 00000 п. 0000099302 00000 н. 0000099329 00000 н. 0000099429 00000 н. 0000099562 00000 н. 0000099648 00000 н. 0000099675 00000 п. 0000099782 00000 п. 0000099890 00000 н. 0000099927 00000 н. 0000099954 00000 п. 0000100054 00000 н. 0000100187 00000 н. 0000100273 00000 н. 0000100300 00000 п 0000100407 00000 н. 0000100515 00000 н. 0000100552 00000 н. 0000100579 00000 н. 0000100679 00000 н. 0000100812 00000 н. 0000100898 00000 н. 0000100921 00000 н. 0000101028 00000 н. 0000101056 00000 п. 0000101076 00000 н. 0000101176 00000 н. 0000101308 00000 н. 0000101394 00000 н. 0000101421 00000 н. 0000101528 00000 н. 0000101636 00000 н. 0000101673 00000 н. 0000101700 00000 н. 0000101800 00000 н. 0000101933 00000 н. 0000102019 00000 н. 0000102042 00000 н. 0000102149 00000 п. 0000102177 00000 н. 0000102197 00000 н. 0000102297 00000 н. 0000102429 00000 н. 0000102515 00000 н. 0000102542 00000 н. 0000102649 00000 н. 0000102757 00000 н. 0000102794 00000 н. 0000102821 00000 н. 0000102921 00000 н. 0000103053 00000 н. 0000103139 00000 п. 0000103162 00000 п. 0000103269 00000 н. 0000103297 00000 н. 0000103317 00000 н. 0000103417 00000 н. 0000103549 00000 п. 0000103635 00000 п. 0000103662 00000 н. 0000103769 00000 п. 0000103877 00000 н. 0000103914 00000 н. 0000103941 00000 н. 0000104041 00000 н. 0000104174 00000 п. 0000104260 00000 п. 0000104283 00000 п. 0000104390 00000 н. 0000104418 00000 н. 0000104438 00000 н. 0000104538 00000 п. 0000104670 00000 п. 0000104756 00000 п. 0000104783 00000 н. 0000104890 00000 н. 0000104998 00000 п. 0000105035 00000 н. 0000105062 00000 н. 0000105162 00000 п. 0000105295 00000 п. 0000105381 00000 п. 0000105404 00000 п. 0000105511 00000 п. 0000105539 00000 п. 0000105559 00000 н. 0000105659 00000 н. 0000105791 00000 н. 0000105877 00000 н. 0000105904 00000 н. 0000106013 00000 н. 0000106122 00000 п. 0000106159 00000 п. 0000106186 00000 п. 0000106286 00000 п. 0000106419 00000 п. 0000106505 00000 н. 0000106528 00000 н. 0000106635 00000 н. 0000106663 00000 н. 0000106683 00000 п. 0000106783 00000 н. 0000106915 00000 н. 0000107001 00000 н. 0000107028 00000 п. 0000107135 00000 п. 0000107243 00000 н. 0000107280 00000 н. 0000107307 00000 н. 0000107407 00000 н. 0000107539 00000 п. 0000107625 00000 н. 0000107648 00000 н. 0000107755 00000 п. 0000107783 00000 н. 0000107803 00000 н. 0000107903 00000 н. 0000108035 00000 н. 0000108121 00000 п. 0000108144 00000 н. 0000108251 00000 н. 0000108279 00000 н. 0000108299 00000 н. 0000108399 00000 н. 0000108531 00000 н. 0000108617 00000 н. 0000108640 00000 п. 0000108747 00000 н. 0000108775 00000 н. 0000108795 00000 н. 0000108895 00000 н. 0000109026 00000 н. 0000109112 00000 н. 0000109135 00000 п. 0000109242 00000 н. 0000109270 00000 п. 0000109290 00000 п. 0000109390 00000 н. 0000109522 00000 н. 0000109608 00000 н. 0000109686 00000 н. 0000109746 00000 н. 0000109898 00000 п. 0000110120 00000 н. 0000110287 00000 н. 0000110394 00000 п. 0000110589 00000 н. 0000110715 00000 н. 0000110764 00000 н. 0000110977 00000 н. 0000111178 00000 н. 0000111441 00000 н. 0000111587 00000 н. 0000111778 00000 н. 0000112020 00000 н. 0000112166 00000 н. 0000112357 00000 н. 0000112614 00000 н. 0000112772 00000 н. 0000112952 00000 н. 0000113145 00000 н. 0000113322 00000 н. 0000113543 00000 н. 0000113677 00000 н. 0000113815 00000 н. 0000113935 00000 н. 0000114131 00000 н. 0000114325 00000 н. 0000114457 00000 н. 0000114681 00000 н. 0000114856 00000 н. 0000115000 00000 н. 0000115224 00000 н. 0000115434 00000 н. 0000115588 00000 н. 0000115807 00000 н. 0000115959 00000 н. 0000116151 00000 н. 0000116303 00000 н. 0000116527 00000 н. 0000116686 00000 н. 0000116852 00000 н. 0000117031 00000 н. 0000117242 00000 н. 0000117397 00000 н. 0000117579 00000 п. 0000117774 00000 н. 0000117963 00000 н. 0000118134 00000 п. 0000118378 00000 н. 0000118521 00000 н. 0000118732 00000 н. 0000118957 00000 н. 0000119152 00000 н. 0000119321 00000 н. 0000119512 00000 н. 0000119659 00000 н. 0000119864 00000 н. 0000120050 00000 н. 0000120173 00000 н. 0000009102 00000 п. 0000006448 00000 н. трейлер ] >> startxref 0 %% EOF 4847 0 obj> поток xWyTW _ h8 v6r «t @ qKEF Km # NFDd! Zk @ PQp 陹 [szs {߽! AhB #; Dhx> 9D! QcC̥_P ‘\ Ď ꑵ QТ B] IY꘠k | ZmJJ @ Atq # ޸1 蠣 4Hx.>? C = Mdͭ > / — ; ک UV \ xU), _ ŷLlKp> LV / r ړ 9: Շ [‘.} RM ~ 2z $ cYxcW_lSZ 㘸 #gGC _ (/ — vuzE (> Z ‹Ѧ \ Y _-; VG 6ʸH چ M! E {[a ۫

Термоэлектрические печи : Отказаться от солнечных батарей?

Иллюстрация: Диего Мармолехо.

Если 2000-летняя ветряная мельница является предшественником сегодняшних ветряных турбин, то камин и дровяная печь — еще более старые предшественники сегодняшних солнечных батарей. Как и солнечные батареи, деревья и другие растения превращают солнечный свет в полезный источник энергии для человека.На протяжении всей истории сжигание древесины и другой биомассы обеспечивало домашние хозяйства тепловой энергией, которая использовалась для приготовления пищи, отопления, стирки и освещения.

Фотосинтез также лежал в основе всех исторических источников механической энергии: он служил топливом для энергии человека и животных, а также строительными материалами для водяных и ветряных мельниц. Ни старомодная ветряная мельница, ни старинная дровяная печь не производили электричества, но и то, и другое легко приспособить для этого. Достаточно подключить к ветряку электрогенератор, а к дровяной печи — термоэлектрический генератор.

Термоэлектрический генератор

Термоэлектрические генераторы (или «TEGS») очень похожи на «фотоэлектрические» генераторы, которые мы теперь называем «фотоэлектрическими» генераторами или солнечными фотоэлементами. Фотоэлектрический генератор преобразует свет непосредственно в электричество, а термоэлектрический генератор преобразует тепло непосредственно в электричество.

Термоэлектрический генератор состоит из ряда полупроводниковых элементов в форме слитков, которые последовательно соединены металлическими полосами и зажаты между двумя электрически изолирующими, но теплопроводными керамическими пластинами, образуя очень компактный модуль. Они коммерчески доступны от таких производителей, как Hi-Z, Tellurex, Thermalforce и Thermomanic.

Термоэлектрический модуль. Изображение: Gerardtv (CC BY-SA 3.0)

Термоэлектрический модуль. Изображение использовано с разрешения Applied Thermoelectric Solutions LLC, How Thermoelectric Generators Work.

Прикрепите термоэлектрический модуль к поверхности дровяной печи, и он будет производить электричество всякий раз, когда печь используется для приготовления пищи, обогрева помещений или нагрева воды.В экспериментах и ​​прототипах, которые более подробно описаны ниже, выходная мощность на модуль варьируется от 3 до 19 Вт.

Как и в случае с солнечными панелями, модули можно соединять параллельно и последовательно для получения любого необходимого напряжения и мощности — по крайней мере, до тех пор, пока остается поверхность печи. Как и в случае с солнечными панелями, электрический ток, который вырабатывается термоэлектрическим модулем (модулями), регулируется контроллером заряда и сохраняется в батарее, так что мощность также доступна, когда печь не используется.Термоэлектрическая плита обычно сочетается с низковольтными приборами постоянного тока, что позволяет избежать потерь преобразования при использовании инвертора.

Термоэлектрические печи могут применяться во многих частях мира. Большинство исследований нацелено на глобальный Юг, где около 3000 миллионов человек (40% населения мира) полагаются на сжигание биомассы для приготовления пищи и нагрева воды для бытовых нужд. Некоторые из этих домохозяйств также используют печь или камин для освещения (1300 миллионов человек не имеют доступа к электричеству) и для обогрева помещений в течение определенного периода времени.Однако есть также исследования, нацеленные на домохозяйства в индустриальных обществах, где печи и горелки на биомассе стали популярнее, особенно за пределами городов.

100% КПД

С тех пор, как термоэлектрический эффект был впервые описан Томасом Зеебеком в 1821 году, термоэлектрические генераторы были печально известны своей низкой эффективностью при преобразовании тепла в электричество. Сегодня электрический КПД термоэлектрических модулей составляет всего около 5-6%, что примерно в три раза ниже, чем у наиболее часто используемых солнечных фотоэлектрических панелей.

Однако в сочетании с плитой электрический КПД термоэлектрического модуля не имеет большого значения. Если эффективность модуля в преобразовании тепла в электричество составляет всего 5%, остальные 95% снова вырабатываются в виде тепла. Если печь используется для отопления помещений, это тепло нельзя рассматривать как потерю энергии, потому что оно по-прежнему способствует своему первоначальному назначению. Общий КПД системы (тепло + электричество) близок к 100% — энергия не теряется. При соответствующей конструкции печи тепло от преобразования электроэнергии также можно повторно использовать для приготовления пищи или нагрева воды для бытового потребления.

Надежнее солнечных панелей

Термоэлектрические модули

обладают многими преимуществами солнечных панелей: они модульные, не требуют значительного обслуживания, у них нет движущихся частей, они работают бесшумно и имеют большой ожидаемый срок службы. Однако термоэлектрические модули также предлагают интересные преимущества по сравнению с солнечными фотоэлектрическими панелями при условии, что в доме есть регулярно используемый (неэлектрический) источник тепла.

Хотя термоэлектрические модули примерно в три раза менее эффективны, чем солнечные фотоэлектрические панели, термоэлектрические печи обеспечивают более надежное электроснабжение, поскольку их выработка энергии меньше зависит от погоды, времени года и времени суток.Выражаясь жаргоном, термоэлектрические печи имеют более высокий «коэффициент полезной мощности», чем солнечные фотоэлектрические панели.

Даже если плита используется только для приготовления пищи и приготовления горячей воды, эти повседневные домашние дела все равно гарантируют надежную выходную мощность независимо от климата. Кроме того, выработка энергии термоэлектрической плитой очень хорошо соответствует потребностям домовладельцев в электроэнергии: время, когда печь используется, обычно также является временем, когда используется большая часть электроэнергии. С другой стороны, солнечные панели производят мало электроэнергии или не производят ее вообще в периоды пикового спроса на электроэнергию.

Изображение: Советский термоэлектрический генератор на основе керосиновой лампы, питающий радио, 1959 год. Источник: Музей ретротехнологии.

Обратите внимание, что эти преимущества исчезают, когда термоэлектрические генераторы питаются от прямой солнечной энергии. Солнечные термоэлектрические генераторы (или «STEGS»), в которых термоэлектрические модули нагреваются концентрированным солнечным светом, не компенсируют низкую эффективность их модулей из-за более высокой надежности, поскольку они так же зависят от погоды, как и солнечные фотоэлектрические панели.

Меньше накопителя энергии

Благодаря более высокой надежности, нет необходимости увеличивать мощность выработки и накопления энергии термоэлектрической системы для компенсации ночей, темных сезонов или дней с плохой погодой, как в случае с солнечной фотоэлектрической установкой. Емкость батареи должна быть достаточно большой, чтобы хранить электроэнергию для использования между двумя включениями печи, и нет необходимости добавлять дополнительные модули, чтобы компенсировать периоды низкой выработки энергии.

Солнечные панели и термоэлектрические печи также можно комбинировать, что дает надежную автономную систему с небольшой потребностью в накоплении энергии. Такая гибридная система хорошо сочетается с печью, которая используется только для обогрева помещений. Зимой большую часть электроэнергии вырабатывают термоэлектрические модули, а летом — солнечные батареи.

Дешевле в установке, проще утилизировать

Второе преимущество состоит в том, что термоэлектрические модули легче установить, чем солнечные панели.Нет необходимости строить конструкцию на крыше и электрическую связь с внешним миром, потому что вся электростанция находится в помещении. Это также предотвращает кражу источника питания, что в некоторых регионах является серьезной проблемой для солнечных батарей.

Все эти факторы делают электроэнергию от термоэлектрической плиты более дешевой и устойчивой по сравнению с энергией от солнечных фотоэлектрических панелей. Для производства батарей, модулей и опорных конструкций требуется меньше энергии, материалов и денег.

С точки зрения устойчивости есть еще одно преимущество: в отличие от солнечных фотоэлектрических панелей, термоэлектрические модули относительно легко утилизировать.Хотя сами кремниевые солнечные элементы идеально подходят для вторичной переработки, они заключены в пластиковый слой (обычно «EVA» или полимер этилена / винилацетата), который имеет решающее значение для долговременной работы модулей. Удаление этого слоя без разрушения кремниевых элементов технически возможно, но настолько сложно, что делает переработку непривлекательной как с финансовой, так и с энергетической точки зрения. С другой стороны, термоэлектрические модули вообще не содержат пластика.

Охлаждение модулей

Электрический КПД термоэлектрического генератора зависит не только от самого модуля. На это также в значительной степени влияет разница температур между холодной и горячей сторонами модуля. Термоэлектрический модуль, работающий при половинной разнице температур, будет вырабатывать только четверть мощности. Следовательно, улучшение терморегулирования термоэлектрического генератора является основным направлением при разработке термоэлектрических печей, поскольку оно позволяет производить больше энергии с меньшим количеством модулей.

С одной стороны, это включает в себя определение самых горячих точек на плите и закрепление там модулей — при условии, что они могут выдерживать тепло. Большинство печей имеют температуру поверхности от 100 до 300 градусов по Цельсию, а горячая сторона модулей из теллурида висмута (наиболее доступных и эффективных) выдерживает постоянные температуры от 150 до 350 градусов, в зависимости от модели.

С другой стороны, управление температурным режимом сводится к максимально возможному снижению температуры холодной стороны, что может быть выполнено четырьмя способами: принудительная конвекция с воздушным и водяным охлаждением, которая включает электрические вентиляторы и насосы, и воздух. — естественная конвекция с водяным и водяным охлаждением, предполагающая использование пассивных радиаторов, не оказывающих паразитной нагрузки на систему.

Активное охлаждение обычно имеет более высокий КПД, даже если принять во внимание дополнительное использование вентилятора или насоса. Однако пассивные системы дешевле, работают бесшумно и надежнее активных. В частности, проблема может быть в поломке вентилятора, так как это может привести к выходу модуля из строя из-за перегрева.

Термоэлектрические печи с радиаторами

Первые термоэлектрические печи на биомассе были построены в начале 2000-х годов, хотя в 1950-х годах Советы впервые применили аналогичную концепцию, в которой в основном использовались электрические радиоприемники, работающие на керосиновых лампах. В 2004 году группа ливанских исследователей модернизировала типичную чугунную дровяную печь из местных сельских районов одним термоэлектрическим модулем размером 56 x 56 мм, который они сделали сами. Печь, которая используется для приготовления пищи и выпечки, а также для обогрева помещений и воды, довольно мала (52 x 44 x 29 см) и весит 40 кг.

Изображение: Чугунная печь, использованная в экспериментах.

Исследователи прикрутили гладкую алюминиевую пластину толщиной 1 см к самому горячему месту на поверхности печи, закрепили там модуль и прикрепили очень большой (180 x 136 x 125 мм) радиатор с алюминиевыми ребрами к его холодной стороне.При скорости горения 2,5 кг мягкой древесины сосны в час их эксперименты показали среднюю выходную мощность 4,2 Вт. Таким образом, дровяная печь работает 10 часов в день (исключая фазу разогрева), поэтому сельское ливанское домашнее хозяйство получает 42 ватт-часа электроэнергии, чего достаточно для удовлетворения основных потребностей.

Изображение: Детали установки и расположение ТЭГ на плите.

Для увеличения выходной мощности можно добавить дополнительные модули и радиаторы, но, конечно, поверхность печи ограничена, и по мере добавления дополнительных модулей они будут располагаться в областях с более низкой температурой поверхности, что снижает их эффективность.Другой способ увеличить выработку энергии — использовать радиатор еще большего размера и / или более дорогой радиатор, сделанный из материалов с более высокой теплопроводностью.

Термоэлектрические печи с вентиляторами

В большинстве построенных на сегодняшний день термоэлектрических печей для охлаждения модуля используются электрические вентиляторы в сочетании с гораздо меньшим радиатором. Хотя вентилятор может сломаться и является паразитной нагрузкой на систему, он может одновременно повысить эффективность печи, нагнетая горячий воздух в камеру сгорания, что снижает расход дров и загрязнение воздуха примерно вдвое.Кроме того, печи с приводом от вентилятора избегают образования дымохода и вместо этого могут полагаться на горизонтальную вытяжную трубу. Следовательно, автономные печи с вентиляторным охлаждением позволяют сократить потребление дров и загрязнение воздуха в помещениях в сельских регионах глобального Юга, где у людей нет ни доступа к электричеству, ни средств, чтобы проложить дымоход через крышу.

Исследование термоэлектрической кухонной плиты с принудительной тягой с одним модулем показало выходную мощность 4,5 Вт, из которых 1 Вт требуется для работы вентилятора. Чистая выработка электроэнергии (3,5 Вт) ниже, чем у печи с только радиатором (4,2 Вт), но печь с вентиляторным охлаждением потребляет вдвое меньше дров: она вырабатывает 3,5 Вт чистой электроэнергии со скоростью горения. 1 кг дров в час, в то время как печь с пассивным охлаждением требует 2,5 кг дров для выработки 4,2 Вт.

Изображение: Печь с наддувом, работающая на ТЭГ.

80-дневные полевые испытания аналогичной портативной термоэлектрической кухонной плиты в Малави показали, что эта технология была высоко оценена пользователями, поскольку печи производили больше электроэнергии, чем требовалось.За весь период выработка электроэнергии составила от 250 до 700 ватт-часов, а потребление электроэнергии — от 100 до 250 ватт-часов.

Некоторые термоэлектрические кухонные плиты с вентиляторным охлаждением доступны в продаже, и их конструкция часто рассчитана на туристов. Примерами являются печи BioLite, Termomanic и Termefor, которые рекламируют выходную мощность от 3 до 10 Вт, в зависимости от конструкции и количества модулей.

Термоэлектрические печи с резервуаром для воды

Самыми эффективными термоэлектрическими плитами являются те, в которых холодная сторона модуля (модулей) охлаждается путем прямого контакта с резервуаром для воды.Вода имеет более низкое тепловое сопротивление, чем воздух, и поэтому охлаждается более эффективно. Кроме того, его температура не может превышать 100 градусов по Цельсию, что снижает вероятность отказа модуля из-за перегрева.

Изображение: принцип термоэлектрической печи с пассивным водяным охлаждением.

Когда термоэлектрические модули имеют водяное охлаждение, отходящее тепло от их преобразования электричества способствует не обогреву помещения, а подогреву воды для бытовых нужд. Термоэлектрические печи с водяным охлаждением могут быть активными (с использованием насоса) или пассивными (без движущихся частей).

Большинство термоэлектрических плит с пассивным водяным охлаждением имеют небольшие размеры и используются только для нагрева относительно небольшого количества воды. Фактически, это чаще всего не плита, а котелок, оснащенный термоэлектрическими модулями. Например, PowerPot — это коммерчески доступный котелок для приготовления пищи рюкзачного типа с термоэлектрическим модулем, прикрепленным к основанию, который может быть размещен непосредственно на верхней части плиты и обеспечивает выработку энергии в 5-10 Вт.

Изображение: многофункциональная дровяная печь с пассивным водяным охлаждением.

Гораздо более крупная и универсальная термоэлектрическая печь с пассивным водяным охлаждением была разработана французскими исследователями на основе конструкции большой многофункциональной дровяной печи из Марокко. Они установили восемь термоэлектрических модулей на дно встроенного 30-литрового резервуара для хранения воды, который служит не только радиатором для холодной стороны генератора, но и для горячего водоснабжения домашнего хозяйства. . Кроме того, печь оснащена автономным электрическим вентилятором и имеет двойную камеру сгорания для повышения эффективности сгорания.

Испытания прототипа генерировали мощность 28 Вт с использованием двух модулей при сжигании 1,5 кг древесины для приготовления пищи и / или обогрева. Вентилятор потребляет 15 Вт, а это означает, что 13 Вт мощности остается для других целей. Печь также давала 60 литров горячей воды в час. В зависимости от продолжительности двух сеансов приготовления в день в батарее запасалось от 35 до 55 ватт-часов электроэнергии. Отметим, что здесь учтены потери контроллера заряда, аккумулятора 6В и вентилятора.

Плиты термоэлектрические с насосами

У пассивного водяного охлаждения есть обратная сторона. По мере увеличения температуры воды в баке разница между холодной и горячей сторонами модуля будет уменьшаться, а вместе с тем и электрический КПД. Либо между двумя включениями печи должно быть достаточно времени, чтобы вода снова остыла, либо следует регулярно использовать теплую воду и заменять ее на холодную. Насос делает эту задачу более удобной.

Изображение: Прототип термоэлектрической печи с модулями водяного охлаждения.

Прототип 2015 года, в котором дровяная печь, используемая для приготовления пищи и обогрева помещений и воды, была оборудована 21 термоэлектрическим модулем, охлаждаемым насосной системой водоснабжения, показал выработку мощности от 25 Вт (сжигание 1 кг сосновой древесины в час) более 70 Вт ( От 4 кг древесины в час) до 166 Вт (9 кг древесины в час). Выходная мощность на модуль достигает 7,9 Вт, что почти вдвое превышает выходную мощность на модуль печи с естественным воздушным охлаждением. Насос потребляет 5 Вт, а печь также оснащена вентилятором для повышения эффективности сгорания, который потребляет 1 Вт.

Термоэлектрические газовые котлы?

Термоэлектрические генераторы с принудительным водяным охлаждением лучше подходят для энергетической инфраструктуры в промышленных обществах, особенно в домашних хозяйствах с системами центрального отопления. Могут быть добавлены дополнительные модули, что приведет к выработке энергии, соответствующей образу жизни с относительно высоким энергопотреблением. Однако есть некоторые предостережения. Во-первых, системы центрального отопления используются только для отопления помещений и нагрева воды, а не для приготовления пищи, что снижает надежность их производства электроэнергии в течение всего года.Во-вторых, только некоторые системы центрального отопления работают на горелках, работающих на биомассе или древесных гранулах, а многие другие работают на газе, масле или электричестве.

Прототип термоэлектрической горелки на древесных гранулах.

Очевидно, когда источник тепла электрический, нет смысла приклеивать к нему термоэлектрический модуль. Термоэлектрическая система несовместима с видением высокотехнологичного устойчивого здания, где отопление осуществляется с помощью электрического теплового насоса, приготовление пищи происходит на электрической кухонной плите, а горячая вода производится электрическим бойлером.

Однако, когда источником энергии является газ или нефть, термоэлектрический котел представляет собой такое же низкоуглеродное решение, как солнечная фотоэлектрическая система на крыше, подключенная к сети. Термоэлектрическая система обогрева не делает дом независимым от ископаемого топлива, как и солнечная фотоэлектрическая установка, подключенная к сети. Он полагается на энергосистему (в основном работающую на ископаемом топливе) для решения проблемы дефицита и избытка энергии, и обычно рассчитывает на систему центрального отопления, работающую на ископаемом топливе, для отопления помещений и нагрева воды.

Изображение: термоэлектрический генератор мощностью 1 кВт с принудительным водяным охлаждением для низкотемпературных геотермальных ресурсов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *