Параболическая антенна: Параболическая антенна Википедия

Содержание

Параболическая антенна Википедия

Зерка́льная анте́нна — антенна, у которой электромагнитное поле в раскрыве образуется за счёт отражения электромагнитной волны от металлической поверхности специального зеркала (рефлектора). В качестве источника волны обычно выступает небольшой излучатель, располагаемый в фокусе зеркала. В его роли может быть любая другая антенна с фазовым центром, излучающая сферическую волну. Основная цель зеркальных антенн сводится к преобразованию сферического или цилиндрического фронта волны в плоский фронт[1].

История

Первая параболическая антенна, разработанная Генрихом Герцем

Параболическая антенна была изобретена немецким физиком Генрихом Герцем в 1887 году. Герц использовал цилиндрические параболические рефлекторы для искрового возбуждения дипольных антенн во время своих экспериментов. Антенна имела размер апертуры в 1,2 метра шириной и использовалась на частоте около 450 МГц. Отражатель был сделан из цинковой листовой стали. С двумя такими антеннами, одна из которой была передающей, а другая — приёмной, Герц успешно продемонстрировал существование электромагнитных волн, которые 22 годами раньше были предсказаны Максвеллом.

Итальянский изобретатель Гульельмо Маркони использовал параболический рефлектор в 1930-х годах в экспериментах для передачи сигналов на лодку в Средиземном море. В 1931 году была установлена радиорелейная телефонная связь на частоте 1,7 ГГц через Ла-Манш с помощью зеркальной антенны. Первая большая параболическая антенна с диаметром рефлектора 9 м была построена в 1937 году радиоастроном Гроте Ребер в своём дворе. С её помощью он исследовал звёздное небо.

Разработка радаров во время Второй мировой войны придала толчок разработкам новых форм параболических антенн, были созданы антенны с секторными диаграммами направленности. После войны были созданы параболические антенны с диаметрами зеркала в 60 метров (Медвежьи озёра в СССР), 100-метровый радиотелескоп в Грин-Бэнк, Западная Вирджиния и другие.

В 1960-х зеркальные антенны стали широко применяться для наземных радиорелейных сетей связи. Первая параболическая антенна, используемая для спутниковой связи, была построена в 1962 году на Гунхилли в Корнуолл, Англия, чтобы работать со спутником связи Telstar. Антенна Кассегрена была разработана в Японии в 1963 году в NTT, KDDI и Mitsubishi Electric. Появление в 1980-е годы компьютеров, способных проводить сложные расчёты диаграмм направленности параболических антенн, привело к разработке сложных асимметричных и многозеркальных антенн.

Общие сведения

Структура зеркальной антенны Типовая суммарно разностная диаграмма параболической антенны с боковыми лепестками Типовая суммарно разностная диаграмма параболической антенны пеленгатора Рефлектор офсетной антенны вырезан сбоку из параболоида вращения

Зеркальные антенны являются одними из самых распространённых узконаправленных антенн диапазона УКВ[1].

Обычно в зеркальных антеннах происходит преобразование более широкой диаграммы направленности облучателя в узкую диаграмму направленности самой антенны[1].

Кромка зеркала и плоскость Z образуют поверхность, называемую раскрывом зеркала. При этом радиус R называется радиусом раскрыва, а угол 2ψ — углом раскрыва зеркала. От угла раскрыва зависит тип зеркала[2]:

  • если ψ < π/2 — зеркало называют мелким или длиннофокусным;
  • если ψ > π/2 — глубоким или короткофокусным,
  • если ψ = π/2 — средним.

Фокус облучателя антенны может как располагаться в фокусе зеркала F, так и быть смещённым относительно него. Если фокус облучателя расположен в фокусе антенны, то она называется прямофокусной. Прямофокусные антенны существуют различных размеров, в то время как осенесимметричные антенны, облучатель которых находится не в фокусе зеркала, обычно не превышают в диаметре более 1,5 м

[3]. Такие антенны часто называют офсетными. Преимущество офсетной антенны — это бо́льший коэффициент усиления антенны, что обусловлено отсутствием затенения раскрыва зеркала облучателем[3]. Рефлектор офсетных антенн представляет собой боковую вырезку из параболоида вращения. Фокус облучателей в таких антеннах расположен в фокальной плоскости рефлектора.

Зеркальная антенна может иметь дополнительное эллиптическое зеркало (двухзеркальная схема Грегори) или дополнительное гиперболическое зеркало (двухзеркальная схема Кассегрена), с фокусами, расположенными в фокальной плоскости зеркальной антенны. При этом облучатель расположен в фокусе дополнительного зеркала.

Зеркальная антенна может иметь одновременно несколько облучателей, расположенных в фокальной плоскости антенны. Каждый облучатель формирует диаграмму направленности, направленную в нужном направлении. Облучатели могут работать в разных диапазонах волн (С, Ku, Ka) или каждый одновременно в нескольких диапазонах.

Расположение фокуса и фокальной плоскости зеркала антенны не зависит от рабочего диапазона волн.

В зависимости от поставленных задач и облучателя зеркальная антенна формирует одну узконаправленную суммарную, суммарно-разностную диаграмму направленности (для пеленгаторов) или одновременно несколько разнонаправленных диаграмм — при использовании нескольких облучателей.

Типы зеркал

В технике наибольшее распространение нашли следующие типы зеркал:

  1. параболические зеркала преобразуют цилиндрическую или сферическую волну в плоскую. Для цилиндрической волны — зеркало представляет собой параболический цилиндр, для сферической волны — параболоид вращения[1].
  2. сферические зеркала мало отличаются от параболических зеркал с фокусным расстоянием, равным половине радиуса сферы[1].
  3. плоские зеркала в основном используются в вибраторных антеннах и иногда в перископических и остронаправленных[1], при этом система из двух зеркал, находящихся под определённым углом друг к другу, образуют вместе с симметричным вибратором (облучатель) уголковую антенну (тип зеркала в данном случае называют уголковым)
    [4]
    .
  4. зеркала специального профиля чаще представляют собой параболические зеркала с рассчитанным отклонением от параболической поверхности. Основная цель использования таких антенн — формирование диаграммы направленности специальной формы, например, [1] или любой заданной формы. Зеркала специальной формы могут применяться также для создания диаграммы направленности, комформной зоне обслуживания, в которой работает радиостанция (пример: спутник, базовая станция сотовой связи). Основная цель использования таких зеркал — экономия энергетического ресурса РЭС при максимальном качестве приёма — передачи в зоне обслуживания.
  • Прямофокусная параболическая зеркальная антенна

  • Офсетные параболические зеркальные антенны

  • Тороидальная зеркальная антенна

  • Зеркальная антенна со схемой Кассегрена

  • Зеркальная антенна в аэропорту Ганновера, Германия

Особенности конструкции

Основные типы конструкций параболических антенн

Зеркало обычно состоит из диэлектрической основы (углепластик — для космических антенн), которую покрывают металлическими листами, проводящей краской, фольгой[4]. При этом листы часто являются перфорированными или представляют собой сетку, что обусловлено стремлением снизить вес конструкции, а также максимально снизить сопротивление ветру и осадкам. Однако такое несплошное зеркало приводит к следующим последствиям: часть энергии проникает сквозь зеркало, что приводит к ослаблению КНД антенны, и усилению излучения позади рефлектора. Эффективность антенны с несплошным зеркалом рассчитывается по формуле T=PprPpad{\displaystyle T={\frac {P_{pr}}{P_{pad}}}}, где Ppr{\displaystyle P_{pr}} — мощность излучения позади рефлектора, а Ppad{\displaystyle P_{pad}} — мощность излучения рефлектора (падающей волны)[4]. Если T<0,01{\displaystyle T<0,01}, несплошное зеркало считают хорошим. Данное условие обычно выполняется при диаметре отверстий перфорированного зеркала менее 0,2λ{\displaystyle 0,2\lambda } и суммарной площади отверстий до 0,5−0,6{\displaystyle 0,5-0,6} от всей площади зеркала

[4]. Для сетчатых зеркал диаметр отверстий не должен превышать 0,1λ{\displaystyle 0,1\lambda }[4].

Облучатель

Диаграмма направленности параболической антенны формируется облучателем. Облучателей в антенне может быть один или несколько, соответственно в антенне формируется одна или несколько диаграмм направленности. Делается это, например, для того, чтобы принимать сигнал одновременно с нескольких космических спутников связи.

Раскрыв облучателей расположен в фокусе параболического рефлектора или в его фокальной плоскости, если используется несколько облучателей в одной антенне. Несколько облучателей формируют в одной антенне несколько диаграмм направленности, это необходимо при наведении одной антенны сразу на несколько спутников связи.

См. также: Облучатель.

Ширина луча

Параметры параболической антенны. Ширина ДН, уровень боковых лепестков, усиление

Угловая ширина луча антенны и её диаграмма направленности не зависит от того, работает ли антенна на приём или на передачу. Ширина луча определяется по уровню половинной мощности луча, то есть по уровню (-3 дБ) от его максимального значения.{2}\ e_{A}}

При этом существует обратная зависимость между усилением и шириной луча.

Параболические антенны больших диаметров формируют очень узкие лучи. Наведение таких лучей на спутник связи становится проблемой, так как вместо основного лепестка можно навести антенну на боковой лепесток.

Диаграмма направленности антенны представляет собой узкий главный луч и боковые лепестки. Круговая поляризация в главном луче задаётся в соответствии с задачами, уровень поляризации в разных местах главного луча разный, в первых боковых лепестках поляризация меняется на противоположную, левая — на правую, правая — на левую.

Характеристики зеркальных антенн

Характеристики зеркальной антенны измеряются в дальней зоне.

  • Ширина диаграммы направленности (ДН) в заданных плоскостях (Е, Н) или во всех направлениях
  • Форма ДН (контурная, круговая)
  • Коэффициент направленного действия
  • Коэффициент усиления в максимуме ДН антенны[5]
  • Эффективная площадь антенны[6]
  • КПД антенны
  • Уровень боковых лепестков
  • КСВ
  • Поляризация (круговая-эллиптическая, линейная) и развязка между ортогональными поляризациями.
  • Направление вращения поля антенны
  • Коэффициент поляризации
  • Диапазон рабочих частот
  • Допустимые ветровые нагрузки
  • Вес (для космических антенн)

Интересные факты

  • В однозеркальной антенне с круговой поляризацией облучатель должен иметь направление вращения поля, противоположное заданному направлению вращения поля антенны.
  • Зеркальные антенны с направлением ДН на движущийся объект обычно имеют электропривод для отслеживания углового направления за объектом.
  • Измерения ДН больших зеркальных антенн в дальней зоне связано с большими трудностями, связанными со значительными расстояниями от антенн до мест измерения их сигналов. Для измерений ДН используют шумовые сигналы от Солнца, спутников связи, большие коллиматорные антенны.
  • Большие зеркальные антенны, расположенные в разных местах планеты Земля, используются в качестве элементов антенных решёток, для исследования дальнего космоса.

Применение

Параболические антенны используются в качестве антенн с большим усилением для следующих видов связи: радиорелейная связь между близлежащими городами, беспроводная связь WAN / LAN линий связи для передачи данных, для спутниковой связи и связи между космическими аппаратами. Они также используются для радиотелескопов.

Параболические антенны также используются в качестве радиолокационных антенн, управляющих кораблями, самолётами и управляемыми ракетами. С появлением домашних спутниковых телевизионных приёмников, параболические антенны стали особенностью ландшафтов современных городов.

См. также

Примечания

  1. 1 2 3 4 5 6 7 Справочник по радиоэлектронике / Под ред. А. А. Куликовского. — М.: Энергия, 1967. — Т. 1. — 316 с.
  2. И.П. Заикин, А.В. Тоцкий, С.К. Абрамов, В.В. Лукин. Проектирование антенных устройств СВЧ / Под ред. А. А. Куликовского.. — Харьков: Нац. аэрокосм. ун-т «Харьк. авиац. ин-т», 2005. — С. 47. — 107 с.
  3. 1 2 Зеркальные антенны Архивная копия от 5 апреля 2011 на Wayback Machine на antenna.{2}}}}. Соотношение между эффективной и геометрической площадью антенны зависит от её конструктивных особенностей. Антенны бо́льших размеров при прочих равных условиях имеют и бо́льшую эффективную площадь.

Спутниковая антенна Википедия

Антенны оператора сети спутниковой связи

Спутниковая антенна, также антенна спутниковой связи, — антенна, используемая для приёма и (или) передачи радиосигналов между земными станциями спутниковой связи и искусственными спутниками Земли, в более узком значении — антенна, используемая при организации связи между земными станциями с ретрансляцией через спутники. В спутниковой связи используются различные типы антенн, самый известный — зеркальные параболические антенны («спутниковые тарелки», англ. Satellite Dish), массово применяемые в различных областях, от спутникового ТВ и сетей VSAT до центров космической связи. Активно развивается применение для спутниковой связи фазированных антенных решёток, позволяющих осуществлять скоростное наведение антенны на спутник исключительно электронными методами. Распространены слабонаправленные спутниковые антенны, не требующие никакого наведения, как внешние, так и встраиваемые в приемники сигналов спутниковой навигации, спутниковые телефоны и другое оборудование. В зависимости от назначения системы спутниковой связи могут применяться и другие типы антенн.

Применение антенн спутниковой связи

В земных станциях спутниковой связи, в зависимости от назначения системы, применяются антенны различных типов. Выбор конкретного типа определяется диапазоном частот[1], в котором организуется связь, требуемым усилением антенной системы, а также ценовыми и эксплуатационными ограничениями (по размеру, весу, трудоемкости установки и использования)[2].

Наиболее известная область применения спутниковых антенн — приём программ спутникового ТВ. По оценкам, к ним подключено более половины всех телевизоров[3]. Для приёма широкополосных сигналов ТВ-вещания требуется достаточно высокое усиление антенны, поэтому применяются направленные зеркальные антенны, в просторечии именуемые «спутниковыми тарелками»[4]. В 1970—1980-е годы для приёма и передачи телевизионных сигналов в С-диапазоне использовались зеркальные антенны размером в метры и десятки метров, устанавливаемые на специальных станциях космической связи[5][6]. Приемные станции советской системы «Экран», осуществлявшей с конца 1970-х до середины 2000-х годов непосредственное аналоговое ТВ-вещание в диапазоне дециметровых волн, оснащались сборками антенн типа волновой канал, также достаточно громоздкими и позволяли принимать только одну программу[6]. К 1990-м, благодаря переходу в более высокочастотный Ku-диапазон и росту энергетики спутников, стало возможным использовать для приема спутникового вещания недорогие антенны небольшого размера, около 1 метра, а впоследствии и менее, и начался бурный рост домашних установок спутникового приёма[7]. Головные станции кабельных сетей также оснащаются спутниковыми антеннами, обычно бо́льшего, чем для домашнего приёма, размера, чтобы обеспечить запас по усилению, а значит и надёжности приёма, в неблагоприятных условиях[8]. Узлы распределительных cпутниковых сетей, доставляющие сигнал в региональные телецентры, продолжают использовать С-диапазон, как более устойчивый к погодным условиям, и оборудованы антеннами размером в метры[9].

Еще одна область, где широко используются спутниковые тарелки — VSAT-станции (или малые земные станции спутниковой связи) систем широкополосной передачи данных, таких, как спутниковый интернет и ведомственные сети связи. Такие станции как принимают, так и передают радиосигналы и должны соответствовать требованиям регламента радиосвязи[10]. Требования к их антеннам гораздо выше, чем к телевизионным «тарелкам», как по точности изготовления, так и по прочности конструкции и точности наведения. Антенны VSAT должны удерживать на себе не только приёмный конвертер, но и передающий блок, не создавать при передаче помех окружающим и другим спутниковым станциям и сохранять своё положение даже при сильной ветровой нагрузке[2]. Станции VSAT не настолько распространены, как антенны спутникового ТВ, но применяются довольно широко и незаменимы во многих областях человеческой деятельности[11][12]. Антенны первых станций VSAT, работавших в C-диапазоне, имели размер 2.5 метра. Современные малые станции диапазонов Ku и Ka оснащаются антеннами с типичными размерами от десятков сантиметров до полутора метров[13].

Направленные антенны должны быть максимально точно ориентированы в сторону космического аппарата, через который происходит работа. Для работы со спутниками на геостационарной орбите наведение антенны производится при её установке, для спутников на других орбитах, а также при работе в движении, требуется непрерывное сопровождение спутника антенной[15]. Cистемы непрерывного удержания антенны в направлении спутника существенно усложняют и удорожают её конструкцию, поэтому большое внимание уделяется внедрению в спутниковую связь технологий фазированных антенных решёток, позволяющих сделать антенны более компактными и реализовать электронное управление наведением, без механического перемещения[16].

Во многих применениях мобильной спутниковой связи, таких как навигация, телефония, низкоскоростная передача данных, используются дешёвые слабонаправленные антенны, не требующие постоянного наведения на спутник[17]. Такие антенны, например, входят в состав любого устройства с функциями приёма сигналов GPS/ГЛОНАСС[18].

Типы антенн земных станций спутниковой связи

Зеркальные антенны

Основные виды зеркальных антенн

Зеркальные антенны — наиболее распространённый тип направленных спутниковых антенн[19]. Зеркальные антенны применяются в различных диапазонах спутниковой связи, от дециметровых волн до Ka-диапазона, и на различных типах станций — от систем индивидуального ТВ-приёма до центров космической связи. Зеркальные антенны большого размера применяются в центрах передачи сигналов спутникового вещания, на центральных станциях спутниковой связи, на магистральных высокоскоростных каналах[20].

Принцип действия

Зеркало антенны (отражатель, рефлектор) собирает всю энергию попадающих на его площадь радиоволн в своём фокусе. Для того, чтобы в точке фокуса не возникало взаимного гашения приходящих в неё радиоволн, зеркало изготавливается в форме параболоида вращения, где радиоволны, отраженные от любой точки поверхности зеркала, достигают фокуса в одной фазе. Такие антенны называются параболоидными или, чаще, параболическими[21].

В точке фокуса устанавливается облучатель — небольшая дополнительная антенна, засвечивающая зеркало. Облучатель должен иметь диаграмму направленности, согласованную с размерами отражателя, поскольку если засвечивается не вся поверхность зеркала, усиление антенны не может достичь возможного максимума. С другой стороны, если направленность облучателя недостаточно узка, часть энергии излучается вхолостую, также снижая усиление антенны. Кроме того, возникают помехи окружающим устройствам при передаче, и увеличение уровня шума при приёме. При этом облучатель должен работать во всём диапазоне частот, для которого предназначена антенна. Собственно зеркальной антенной становится только согласованная система «зеркало+облучатель» в сборе. Для формирования нужной диаграммы облучателя используются рупоры, диэлектрические линзы, могут применяться и другие типы направленных антенн[22].

Ширина диаграммы направленности и усиление зеркальной антенны зависят от отношения её апертуры к длине волны, точности изготовления зеркала (отклонения должны быть на порядок меньше длины волны), коэффициента использования поверхности, зависящего от выбранной конструкции антенны и характеристик её облучателя, точности установки частей антенны (зеркала, облучателя, контррефлектора, если есть) относительно друг друга. Точка фокуса отражателя антенны не зависит от используемого диапазона частот, поэтому одно и то же зеркало может использоваться в различных диапазонах при установке на него различных облучателей и выполнения требований по точности изготовления для самого высокочастотного (коротковолнового) из используемых диапазонов. Чем в более высокочастотном диапазоне используется антенна, тем у́же её диаграмма направленности и выше усиление при одном и том же размере зеркала[23].

Конструкция

Зеркало антенны изготавливается из электропроводящего материала (сталь, алюминиевые сплавы) с антикоррозионным покрытием. Для снижения ветровых нагрузок и уменьшения веса зеркала может использоваться металлическая сетка (при условии, что диаметр отверстий не превышает 0.1*λ, где λ — длина волны). По технологическим и экономическим соображениям зеркала могут изготавливаться из неметаллических материалов — композитов (углепластик, стеклопластик) или пластмасс. Если зеркало антенны изготавливается из непроводящего материала, в его структуру дополнительно вводится отражающая поверхность из металлической фольги, сетки, электропроводяшей краски[24].

Кроме рефлектора и облучателя, в состав антенны входит опорно-поворотное устройство, с помощью которого производится наведение антенны на спутник, ручное или моторизованное. Опорно-поворотное устройство обеспечивает стабильное положение антенны, которое не должно меняться под действием её веса и ветра со скоростью до 20-25 м/с, а разрушаться антенна не должна и при значительно бо́льших ветровых нагрузках. При работе в сложных климатических условиях на антенну может устанавливаться антиобледенительная система из установленных с обратной стороны зеркала нагревательных элементов или тепловых пушек[25].

Осесимметричные антенны

Осесимметричные антенны имеют симметричное зеркало, фокус которого расположен на оси симметрии. У прямофокусной антенны (англ. Prime Focus) облучатель устанавливается в точке фокуса, перед зеркалом. Также используются двухзеркальные схемы, в которых на оси антенны устанавливается небольшое дополнительное зеркало-контррефлектор, а облучатель располагается со стороны зеркала в фокусе контррефлектора. Схемы с контррефлектором сложнее в расчёте, изготовлении и настройке, но позволяют уменьшить габариты антенны и упростить доступ к облучателю, снизить уровень боковых лепестков диаграммы направленности и шумовую температуру антенны, в некоторых случаях улучшить коэффициент использования поверхности. Облучатель или контррефлектор и его крепления затеняют часть зеркала антенны, что приводит к уменьшению эффективной апертуры. Поэтому осесимметричные схемы применяют в основном на достаточно больших (1,5 — 2 метра и более) антеннах, затеняемая площадь которых относительно невелика[26][27].

Осесимметричные схемы применяются также для антенн малого диаметра мобильных спутниковых станций[28]. На таких антеннах часто используется двухзеркальная схема с кольцевым фокусом, формируемым рефлектором специальной формы[29]. Такая схема сложна в расчёте и изготовлении, но она позволяет увеличить коэффициент использования поверхности, cделать антенну более компактной и упростить её сборку[30].

Офсетные антенны

Офсетные антенны, или антенны со смещённым облучателем, получаются путём вырезки из параболического зеркала. Диаграмма направленности такой антенны смещена относительно оси её зеркала на угол, называемый углом офсета (или углом смещения). Офсетные антенны имеют несимметричную (овальную) форму и несколько вытянуты по вертикали, тем сильнее, чем больше угол офсета. Это объясняется тем, что зеркало антенны наклонено относительно направления на спутник и в то же время должно обеспечивать равномерную засветку поверхности облучателя[31]. Как и осесимметричные, офсетные антенны могут быть выполнены по двухзеркальным схемам[32].

Основное преимущество офсетных антенн в том, что облучатель и элементы его крепления не перекрывают собой направление на спутник и не затеняют зеркало антенны, что позволяет увеличить коэффициент использования поверхности[33].

Офсетная конструкция имеет и ряд недостатков. Офсетные зеркала большого размера значительно сложнее в изготовлении и сборке, чем осесимметричные, поэтому по офсетной схеме строятся антенны небольшого размера (до 2,5 метров), используемые для приёма спутникового ТВ и на VSAT-станциях, где возможность полного использования зеркала антенны, без затенения его облучателем, даёт заметный выигрыш в усилении[33]. При работе с линейной поляризацией офсетные антенны имеют худший уровень поляризационной развязки[34], что может приводить к увеличению уровня помех от сигналов соседней поляризации на том же спутнике. При работе с круговой поляризацией диаграмма направленности офсетной антенны отличается для левой и правой поляризаций, поэтому при смене рабочей поляризации требуется и одновременная подстройка наведения антенны, причём эффект тем заметнее, чем больше размер зеркала[35].

При малых углах вертикального наведения наклон офсетной антенны к вертикали становится отрицательным — зеркало «смотрит в землю», хотя нацелено на спутник, находящийся выше горизонта. При этом конструкция опорно-поворотного устройства может ограничивать минимальный угол наведения из-за того, что нижний край зеркала упирается в опору[36].

  • Офсетные антенны VSAT Ku-диапазона

  • Офсетная антенна для приёма спутникового ТВ

  • Офсетная антенна при малом угле возвышения на спутник

Фазированные антенные решётки

Плоские фазированные антенные решётки (ФАР) используются для создания компактных спутниковых антенн различных диапазонов.

Принцип действия

ФАР формируется многими когерентно запитываемыми излучателями, в качестве которых могут использоваться полосковые, рупорные, щелевые и другие типы антенн[37]. Если сигнал на все излучатели приходит в одной фазе (синфазная решётка), то диаграмма направленности антенны перпендикулярна к её плоскости[38]. Усиление такой антенны зависит от отношения её размера (апертуры) к длине волны, количества и взаимного расположения излучателей и от потерь в линиях, через которые запитываются излучатели. Синфазная решетка, как любая направленная антенна, требует механической ориентации в направлении сигнала. При изменении соотношения фаз между излучателями диаграмма направленности фазированной решетки отклоняется относительно плоскости антенны[38], усиление антенны при этом уменьшается, тем сильнее, чем больше диаграмма направленности отклонена от нормали[37]. Управляемые фазовращатели в линиях питания излучателей ФАР позволяют построить антенну с электронным управлением диаграммой направленности, не требующим механического перемещения при наведении. Электронное наведение антенны, в отличие от механического, может быть практически мгновенным. Хотя такая схема достаточно сложна в реализации и приводит к уменьшению усиления антенны при изменении диаграммы направленности, она востребована в многих применениях спутниковой связи[39]. Применяется и гибридная схема управления диаграммой направленности ФАР — электронным сканированием в одной плоскости и механическим перемещением в другой[40].

Применение в спутниковой связи

Спутниковые антенны, создаваемые на базе фазированных решёток, имеют ряд ограничений. Они могут работать только в сравнительно узком диапазоне частот (например, работа во всем диапазоне от 10,7 до 12,75 ГГц с одной антенной на базе ФАР невозможна), сложны в разработке и изготовлении и имеют высокую цену[41]. На основе ФАР строятся в основном спутниковые антенны с малой апертурой[28].

Преимущества антенн на базе ФАР — компактность и возможность электронного управления диаграммой направленности — делают их востребованными в мобильной спутниковой связи[16]. Фазированные решётки используются в составе носимых и подвижных станций диапазонов Ku и Ka[40], портативных терминалов Inmarsat BGAN[en] (L-диапазон)[42], носимых спутниковых станций специального назначения[43]. Разрабатываются новые типы спутниковых антенн на базе ФАР, использующие управляемые линзы из метаматериалов[44], что должно улучшить их характеристики и, в перспективе, снизить стоимость при массовом производстве[45]. В земных станциях спутниковой сети Starlink компании SpaceX, где требуется непрерывное сопровождение антенной низкоорбитальных спутников, планировалось применение фазированных решёток с электронным управлением диаграммой направленности, при этом заявлялась стоимость терминала менее $300, но на первом этапе предложено использовать существенно более дорогие, по оценкам, антенны[46], комбинирующие электронное наведение с предварительным механическим (встроенными моторами)[47][48].

Также на базе антенных решёток выпускаются плоские компактные антенны для домашнего приёма спутникового ТВ[38][41], которые требуют для установки гораздо меньше места, чем классические «тарелки» сравнимой апертуры, поскольку не имеют вынесенного перед плоскостью антенны облучателя. Это позволяет размещать их не только на улице, но и в помещении (на окне, балконе, лоджии и т. п.) при условии, что место установки обеспечивает видимость спутника[49].

Слабонаправленные антенны

Слабонаправленные (также всенаправленные[en]) антенны (полосковые, квадрифиллярные[50]) используются для связи через низкоорбитальные и геостационарные спутники в спутниковых телефонах, спутниковом радио, приёме сигналов систем спутниковой навигации и других приложениях, где нет возможности непрерывно ориентировать антенну. Такие антенны имеют широкую диаграмму направленности, что приводит к приёму большого количества шумов (высокой шумовой температуре антенны) и малому отношению сигнал/шум для полезного сигнала на входе приёмника, а следовательно и к низкой пропускной способности системы в целом, но позволяет работать со спутниками, находящимися в зоне видимости, без дополнительного наведения[17].

  • Антенна терминала мобильной спутниковой связи Иридиум

  • Спутниковый телефон Inmarsat

Антенны бегущей волны

Направленные антенны бегущей волны и близкие к ним (спиральные, волновой канал, логопериодические и т. д.), имеющие заметное усиление по сравнению с ненаправленными, применяются в диапазонах метровых (англ. VHF) и дециметровых (англ. UHF) волн, где зеркальные антенны с аналогичными параметрами становятся слишком большими и сложными сооружениями. Антенны бегущей волны используются для приёма телеметрии и связи со спутниками на низких орбитах, обмена информацией с метеорологическими спутниками, в любительской радиосвязи через спутники, для некоторых специальных видов спутниковой связи[51].

  • Терминал тактической спутниковой связи

  • Антенна УКВ-связи с космическими кораблями

  • Антенна приёма телеметрии и слежения за спутниками

Наведение спутниковых антенн

Для работы через спутник прежде всего необходимо, чтобы между антенной и спутником имелась прямая видимость (не было препятствий, мешающих прохождению радиосигнала). При выполнении этого условия слабонаправленные антенны наведения не требуют. Направленная антенна должна быть ориентирована таким образом, чтобы направление на спутник совпадало с максимумом её диаграммы направленности. Малые антенны в низкочастотных диапазонах (L,C) имеют широкую диаграмму направленности, например, для портативного терминала Inmarsat BGAN ширина ДН составляет от 30° до 60°[42]. Такую антенну достаточно грубо сориентировать в нужном направлении, чтобы спутник попадал в ограниченный её диаграммой сектор. Антенны с узкой диаграммой направленности и высоким усилением требуют максимально точного наведения.

Фиксированное наведение на геостационарные спутники

Геостационарные спутники расположены над экватором и обращаются вокруг Земли с периодом, равным периоду вращения Земли. В идеальном случае геостационарный спутник абсолютно неподвижен относительно земного наблюдателя, и сопровождение антенной спутника не требуется. Антенну достаточно навести один раз и зафиксировать, дополнительное наведение потребуется только в случае смещения антенны[15]. В реальности геостационарные спутники удерживаются в своей точке стояния с определённой точностью, составляющей для современных аппаратов менее 0,1°[52]. Если диаграмма направленности антенны в несколько раз шире, чем максимальное отклонение аппарата от точки стояния, то видимым смещением спутника можно пренебречь и считать его неподвижным. Например, ширина главного лепестка диаграммы направленности в Ku-диапазоне для антенны диаметром 2,4 метра — около 0,7°[53], для антенн диаметром 0,9 метра — более 1,5°[54], для антенн меньшего размера — ещё больше. С такими антеннами, используемыми на VSAT-станциях и при приёме спутникового ТВ, дополнительного сопровождения спутника после наведения не требуется.

Для наведения антенны нужно установить углы места (возвышения над горизонтом) и азимута, определяющие направление на спутник. Эти углы рассчитываются из географических координат места установки антенны и точки стояния спутника[55].

Многолучевые антенны

Многолучевые системы позволяют формировать на одной антенне несколько диаграмм направленности и работать с несколькими спутниками на геостационарной орбите без поворота антенны. Многолучевые антенны могут строиться на базе стандартных параболических зеркал (мультифид), на базе зеркал сферического и тороидального (тороидально-параболического) профиля, на базе фазированных антенных решёток[56][39].

Мультифид
«Мультифид» — несколько облучателей на одной антенне

При смещении облучателя в фокальной плоскости параболического зеркала диаграмма направленности антенны отклоняется в противоположную сторону с одновременным уменьшением усиления, тем бо́льшим, чем сильнее смещён облучатель. На этом основана многолучевая система на основе стандартной зеркальной антенны — «мультифид». Система строится из нескольких облучателей (конвертеров), расположенных со смещением от фокуса параболической антенны таким образом, что каждый принимает сигнал со спутников в разных орбитальных позициях. «Мультифидом» также называют конструктивный элемент (кронштейн), на котором крепятся дополнительные конвертеры. Максимально возможное отклонение облучателя от точки фокуса параболической антенны составляет около 10°[56].

Тороидальная антенна

Для одновременной работы со многими спутниками в широком секторе геостационарной орбиты используются тороидальные антенны[57]. Тороидальные антенны Simulsat[58] или CPI 700-70TCK[59] позволяют одновременно принимать до 35 спутников, расположенных на дуге шириной 70°. При домашнем приёме спутникового ТВ могут использоваться тороидальные антенны WaveFrontier или аналогичные, позволяющие принимать сигнал с 16 спутников на дуге в 40° и более[60].

Моторизованные антенны

Моторизованные приводы наведения антенн используются в следующих случаях:

  • Автоматическое перенаведение антенны на различные спутники,
  • Автоматическое наведение на спутник при развёртывании антенны,
  • Автоматическое сопровождение спутника.
Антенна на полярном подвесе
Перенаведение между спутниками

Автоматическое перенаведение антенны между спутниками используется в спутниковом телевидении для увеличения количества принимаемых программ. Для этого используется полярный подвес[en], позволяющий с помощью одного привода одновременно изменять углы азимута и возвышения так, что антенна движется вдоль «дуги Кларка» (линии, на которой находятся все геостационарные спутники при взгляде с Земли). Ось вращения антенны на полярном подвесе параллельна оси вращения Земли. Выбор позиции, на которую наводится антенна, производится спутниковым ресивером или компьютерным спутниковым тюнером с помощью позиционера, управляемого по протоколам USALS или Diseqc. При установке полярного подвеса требуется тщательная работа по его настройке[61].

Автоматическое развёртывание и наведение

Автоматическое наведение используется в возимых или переносных мобильных спутниковых станциях для быстрого установления связи[62]. Для наведения используется отдельное устройство — контроллер[63], определяющий координаты антенны с помощью системы спутникового позиционирования (GPS, Глонасс) и вычисляющий углы азимута, места и поворота поляризации для наведения на требуемый спутник. На основании вычисленных углов контроллер устанавливает положение антенны, проверяет захват сигнала со спутника и производит точное донаведение по его максимуму. При необходимости возможно перенаведение с одного спутника на другой, параметры которого также должны иметься в контроллере.

Автоматическое сопровождение спутника

Автоматическое сопровождение спутника — непрерывное удержание его в максимуме диаграммы направленности при движении относительно антенны. Автосопровождение может осуществляться как моторными приводами антенны, так и электронным управлением диаграммой направленности[16]. Для автосопровождения требуется контроллер, управляющий наведением антенны. Автосопровождение применяется в следующих случаях:

  • Станции для связи в движении, устанавливаемые на транспортных средствах (автомобилях, поездах, судах, самолётах). При движении положение антенны относительно спутника непрерывно меняется и требуется её удержание (стабилизация) в нужном направлении. Для удержания направления на спутник на движущихся объектах используются два метода. Первый — непрерывное определение направления, в котором смещается спутник относительно антенны, путём постоянного сканирования (отклонения диаграммы направленности) в узком секторе, не приводящем к существенному ухудшению сигнала. Второй — удержание положения антенны с помощью гироскопов и датчиков ускорений[64].
  • Большие антенны, ширина диаграммы направленности которых сравнима с возможным отклонением геостационарного спутника от точки стояния. При использовании такой антенны без системы сопровождения уровень сигнала будет меняться в течение суток в соответствии с видимым движением спутника на небосклоне. Контроллер автосопровождения отслеживает уровень принимаемого со спутника сигнала и подводит антенну так, чтобы он был максимальным. Для стабильного удержания используется программное предсказание видимого смещения спутника на основании ранее накопленных данных и элементов его орбиты[65].
  • Антенны для работы со спутниками на негеостационарных орбитах. Спутник, находящийся на любой орбите, кроме геостационарной, непрерывно движется относительно земного наблюдателя. Скорость и траектория движения зависят от параметров орбиты. При использовании направленных антенн для работы с такими спутниками требуется их постоянное сопровождение, которое осуществляется на основе информации о местоположении станции и элементах орбиты спутника и может корректироваться по принимаемому сигналу[66][15].

См. также

Примечания

  1. ↑ RADIO FREQUENCIES FOR SPACE COMMUNICATION (англ.). THE AUSTRALIAN SPACE ACADEMY.
  2. 1 2 Jeremy E. Allnutt. Satellite Earth Station Antenna Systems and System Design // Handbook of Satellite Applications / Editors: Joseph N. Pelton, Scott Madry, Sergio Camacho-Lara. — Springer International Publishing. — 2017. — ISBN 978-3-319-23386-4.
  3. Йохан Йенс Беньямин Мирбах, Наталия Королева. Семь услуг, которые нам оказывают спутники (рус.). Deutsche Welle (10 марта 2016). Дата обращения: 1 ноября 2020.
  4. И. Шабанов. Как выбрать спутниковую антенну // ТЕЛЕСПУТНИК : журнал. — 1998. — Сентябрь.
  5. ↑ Распространение радиоволн и антенны спутниковых систем связи, 2015, Антенны спутниковой связи.
  6. 1 2 М.А. Быховский, М.Н. Дьячкова. История создания и развития отечественных систем спутниковой связи и вещания (неопр.). Виртуальный компьютерный музей. Дата обращения: 4 ноября 2020.
  7. ↑ ТВ на ракете: основные этапы развития спутникового телевещания (рус.). Телеспутник (12 апреля 2017). Дата обращения: 2 ноября 2020.
  8. А. Колосков, И. Аникушин. Формирование телепорта для крупных систем кабельного телевидения (рус.). Теле-Спутник. Дата обращения: 15 октября 2020.
  9. ↑ С-диапазон оставлен спутниковым операторам (рус.). Телеспутник (1 января 2016). Дата обращения: 5 ноября 2020.
  10. Г. Большакова, Л. Невдяев. Спутниковая связь в России (рус.) // Сети/Network world : журнал. — 2000. — № 4.
  11. А. Устинова, Ю. Мельникова. VSAT в цифровой экономике (рус.) // Стандарт : журнал. — Commnews, 2020. — № 2—3. — С. 48—54.
  12. В. Колюбакин. Российский VSAT-рынок (рус.) // Телеспутник : журнал. — 2016. — Июль. — С. 11—16.
  13. В. Колюбакин. Что такое VSAT (рус.) // Телеспутник : журнал. — 2015. — Июль. — С. 6—8.
  14. ↑ Центр космической связи (ЦКС) «Дубна». ИСТОРИЯ (неопр.). ФГУП «Космическая связь».
  15. 1 2 3 Распространение радиоволн и антенны спутниковых систем связи, 2015, Виды орбит. Основные определения. Состав и назначение систем спутниковой связи.
  16. 1 2 3 ELECTRONICALLY STEERABLE ANTENNAS FOR SATELLITE COMMUNICATIONS, 2007.
  17. 1 2 Mobile Antenna Systems Handbook, 2008, OMNIDIRECTIONAL ANTENNAS FOR MOBILE SATELLITE COMMUNICATIONS.
  18. Банков С.Е. Введение // Антенны спутниковых навигаторов. — Москва: «Перо», 2014. — ISBN 978-5-00086-225-4.
  19. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008.
  20. Эльдар Муртазин. Центр космической связи в Дубне - спутники, ТВ и связь (неопр.). Mobile Review (24 ноября 2015 г.).
  21. ↑ Распространение радиоволн и антенны спутниковых систем связи, 2015, Принцип действия зеркальных антенн.
  22. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Облучатели.
  23. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Влияние конструктивных элементов антенны на параметры излучения.
  24. Шифрин Я.С. Антенны. — ВИРТА им. Говорова Л.А., 1976.
  25. Леонид Невдяев. Системы спутниковой связи. Часть 3. Земные станции (рус.) // Сети/Network world : журнал. — 1999. — № 7.
  26. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Осесимметричные однозеркальные антенны.
  27. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Двухзеркальные осесимметричные антенны.
  28. 1 2 Dr. Andrew Slaney. The Challenges Of Micro-VSAT Design (англ.) // SatMagazine : журнал. — Satnews Publishers, 2014. — September.
  29. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Двухзеркальные антенны с кольцевым фокусом.
  30. Sudhakar Rao, ‎Lotfollah Shafai, ‎Satish K. Sharma. Compact Reflector Antenna for Ku-Band ESV and VSAT // Handbook of Reflector Antennas and Feed Systems (англ.). — Artech House, 2013. — Vol. 3. — P. 125—132. — ISBN 978-1-60807-519-5.
  31. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Однозеркальные антенны типа офсет.
  32. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Двухзеркальные офсетные антенны.
  33. 1 2 Зеркальные антенны для земных станций спутниковой связи, 2008, Сравнение однозеркальных осесимметричных антенн и антенн типа офсет.
  34. А.Киселев , В.Нагорнов , В.Бобков , М.Ефимов. ПОЛЯРИЗАЦИОННАЯ РАЗВЯЗКА: ВЗГЛЯД ЭКСПЕРТА // Connect! Мир связи : журнал. — 2004. — № 2.
  35. ↑ Зеркальные антенны для земных станций спутниковой связи, 2008, Кроссполяризационное излучение.
  36. Г.Высоцкий. Телевидение и Интернет для полярных летчиков (рус.) // Теле-Спутник : журнал. — 2004. — № 12.
  37. 1 2 Фазированная антенная решётка // Ульяновск — Франкфорт. — М. : Советская энциклопедия, 1977. — (Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров ; 1969—1978, т. 27).
  38. 1 2 3 М. Парнес. Фазированные антенные решетки // Телеспутник : журнал. — 1997. — Август.
  39. 1 2 Фазированная антенная решетка — глаза радиотехнической системы, 1997.
  40. 1 2 Ferdinando Tiezzi, Stefano Vaccaro, Daniel Llorens, Cesar Dominguez, Manuel Fajardo. APPLICATIONS OF HYBRID PHASED ARRAY ANTENNAS FOR MOBILE SATELLITE BROADBAND COMMUNICATION USER TERMINALS. ESA/ESTEC, NOORDWIJK, THE NETHERLANDS 3-5 OCTOBER 2012 (англ.).
  41. 1 2 А.Бителева. Антенны для телевизионного приема в СВЧ диапазоне // Телеспутник : журнал. — 1999. — Апрель.
  42. 1 2 Low Profile BGAN (англ.). Inmarsat.
  43. ↑ Невматуллин, Р. А. Применение станций космической связи в вооруженных силах РФ // Наука ЮУрГУ. Секции технических наук : материалы 63-й науч. конф.: Юж.-Урал. гос. ун-т.- Челябинск : Издательский центр ЮУрГУ, 2011.- Т. 1.- С. 237—240.
  44. Слюсар В.И. Перспективные технологии антенных решеток для мобильных терминалов спутниковой связи // Технологии и средства связи : журнал. — 2014. — № 4. — С. 64–68.
  45. R.Stevenson, M.Sazegar, A.Bily, M.Johnson, N. Kundtz. Metamaterial Surface Antenna Technology: Commercialization through Diffractive Metamaterials and Liquid Crystal Display Manufacturing (англ.) // 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics – Metamaterials : сборник. — 2016. — P. 349—351. — ISBN 978-1-5090-1803-1.
  46. Charlie Wood. One of SpaceX’s most ambitious projects remains tethered to the ground — for now (англ.). CNBC (Jun 28 2020). Дата обращения: 8 августа 2020.
  47. ↑ «Starlink terminal has motors to self-orient for optimal view angle.» Elon Mask. Elon Mask в Твиттере (англ.).
  48. Сер­гей Пехтерев. Энциклопедия Starlink (рус.). Commnews (07.10.2020). Дата обращения: 12 октября 2020.
  49. ↑ Flat antenna test - comparisons. (англ.). REVIEWS-TEST.com.
  50. С. Е. Банков, А. Бычков, А. Г. Давыдов, А. А. Курушин. Многопроводные Квадрифиллярные Антенны // ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ : электронный журнал. — Институт радиотехники и электроники им. В. А. Котельникова, 2010. — № 9. — ISSN 1684-1719.
  51. Марченков В.К. Коллекция аппаратуры космической связи в Центральном Музее Связи имени А.С. Попова // Космическая связь:прошлое, настоящее, будущее: Материалы Четвертых научных чтений памяти А. С. Попова : сборник. — СПб: Центральный музей связи имени А. С. Попова, 2011.
  52. ↑ Спутниковая группировка (рус.). ФГУП «Космическая связь».
  53. ↑ 2.4M C & KU-BAND SERIES 1252 (англ.). Prodelin.
  54. ↑ 96 cm Rx/Tx Antenna System (англ.). Skyware Global.
  55. ↑ Самостоятельное наведение антенны на спутник (рус.). StarBlazer.
  56. 1 2 С. П. Гeруни, Д.М. Сазонов. Шестнадцать антенн в одной // Телеспутник : журнал. — 1997. — Ноябрь.
  57. ↑ Распространение радиоволн и антенны спутниковых систем связи, 2015, Тороидальные многолучевые антенны.
  58. ↑ SIMULSAT Multibeam Earth Station (англ.). ATCi.
  59. ↑ Torus Multiple Band Antenna (англ.). Communications and Power Industries.
  60. Алексей Бызов. Как принимать 16 спутников на одну антенну (рус.). Телеспутник (28.05.2019).
  61. В. Лощинин. Настройка «полярки» - это технология // Телеспутник : журнал. — 1997. — Декабрь.
  62. Александр Барсков. Видеосвязь, где бы ты ни был. Терминалы VSAT (рус.). Журнал сетевых решений/LAN (30.09.2010).
  63. ↑ Satellite Antenna Controllers (англ.). Research Concepts.
  64. T.E. Ioakimidis, R.S. Wexler. COMMERCIAL KU-BAND SATCOM ON-THE-MOVE USING A HYBRID TRACKING SCHEME (англ.) // 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force : сборник. — 2001. — Vol. 2. — P. 780—784. — doi:10.1109/MILCOM.2001.985944.
  65. G.J. Hawkins, D.J. Edwards, J.P. McGeehan. Tracking systems for satellite communications (англ.) // IEE Proceedings F - Communications, Radar and Signal Processing. — IET, 1998. — Vol. 135, no. 5. — P. 393—407. — ISSN 0143-7070. — doi:10.1049/ip-f-1.1988.0047.
  66. N. Hongyim, S. Mitatha. Building Automatic Antenna Tracking system for Low Earth Orbit(LEO) satellite communications (англ.) // 2015 International Computer Science and Engineering Conference (ICSEC) : сборник. — IEEE, 2015. — P. 1—6. — doi:10.1109/ICSEC.2015.7401448.

Литература

Ссылки

Спутниковое телевидение

Терминология

Рупорно-параболическая антенна Википедия

Широкополосная измерительная рупорная антенна на частоты 0,8—18 ГГц

Рупорная антенна — металлическая конструкция, состоящая из волновода переменного (расширяющегося) сечения с открытым излучающим концом. Как правило, рупорную антенну возбуждают волноводом, присоединённым к узкому концу рупора. По форме рупора различают E-секториальные, H-секториальные, пирамидальные и конические рупорные антенны.

Свойства

Рупорные антенны очень широкополосны и весьма хорошо согласуются с питающей линией — фактически, полоса антенны определяется свойствами возбуждающего волновода. Для этих антенн характерен малый уровень задних лепестков диаграммы направленности (до −40 dB) из-за того, что мало затекание ВЧ-токов на теневую сторону рупора. Рупорные антенны с небольшим усилением просты конструктивно, но достижение большого (>25 dB) усиления требуют применения выравнивающих фазу волны устройств (линз или зеркал) в раскрыве рупора. Без подобных устройств антенну приходится делать непрактично длинной.

Применение

Рупорные антенны применяют как самостоятельно, так и в качестве облучателей зеркальных и других антенн. Рупорную антенну, конструктивно совмещённую с параболическим отражателем, часто называют рупорно-параболической антенной.{2}}{R_{H}}}\right)\leqslant {\frac {\pi }{2}}}, где RE{\displaystyle R_{E}} и RH{\displaystyle R_{H}} — высоты граней пирамиды, образующей рупор.

Типы рупорных антенн

Облучатель параболической антенны в виде конического рупора с канавками
  • Пирамидальный рупор — антенны в форме четырёхгранной пирамиды, с прямоугольным сечением. Они являются наиболее широко используемым типом рупорных антенн. Излучает линейно-поляризованные волны.
  • Секторальный рупор — пирамидальные рупора с расширением только в одной плоскости Е или Н.
  • Конический рупор — раскрыв в форме конуса с круглым сечением. Используются с цилиндрическими волноводами для получения волны с круговой поляризацией.
  • Гофрированные рупора — раскрыв рупоров с параллельными щелями или канавки, малой по сравнению с длиной волны. Канавки покрывают внутреннюю поверхность рупора, поперёк оси.

Гофрированные рупора имеют более широкую полосу пропускания, меньший уровень боковых лепестков и кросс-поляризации. Они широко используются в качестве облучателей для спутниковых параболических антенн и радиотелескопов.

Рупорно-параболическая антенна

Рупорно-параболическая антенна — тип антенны, в которой конструктивно связаны парабола и рупор. Преимуществом этой конструкции по сравнению с рупорной является низкий уровень боковых лепестков и узкая диаграмма направленности. Недостатком — больший вес, чем в параболических антеннах. Примером использования является рупорно-параболическая антенна в космической станции Мир, антенны для радиорелейных станций.

Рупорно-параболические антенны

Рупорно-параболические антенны KS-15676 C-диапазона (4-6 ГГц) радиорелейных линий AT&T Long-Lines на крыше центра телефонных коммуникаций AT&T, Сиэтл, штат Вашингтон, США

Настройка антенны

Настройка КСВ антенны производится в её волноводной части или в КВП выбором положения и размеров запитки КВП. Настройка в волноводной части производится штырями или диафрагмами.

Ссылки

  • Распространение радиоволн антенно-фидерные устройства В. П. Чернышев, Д. И. Шейнман «Связь», 1973.
  • Устройства СВЧ и антенны. Д. И. Воскресенский, В. Л. Гостюхин, В. М. Максимов, Л. И. Пономарёв. Учебник для ВУЗов [1]

Примечания

6.1. Параболические антенны | Техническая библиотека lib.qrz.ru

6.1. Параболические антенны

Прием сигналов спутникового телевидения осуществляется специальными приемными устройствами, составной частью которых является антенна. Для профессионального и любительского приемов передач с ИСЗ наиболее популярны параболические антенны, благодаря свойству параболоида вращения отражать падающие на его апертуру параллельные оси лучи в одну точку, называемую фокусом. Апертура — это часть плоскости, ограниченная кромкой параболоида вращения.

Параболоид вращения, который используется в качестве отражателя антенны, образуется вращением плоской параболы вокруг ее оси. Параболой называется геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой (директрисы) (рис.0.5. (6.1)

По этой классической формуле сделаны миллионы антенн для приема сигналов спутникового телевидения. Чем же заслужила внимание данная антенна?


Параллельные оси параболоида, лучи (радиоволны) от спутника, отраженные от апертуры к фокусу, проходят одинаковое (фокусное расстояние). Условно два луча (1 и 2) падают на площадь раскрыва параболоида в разных точках (рис. 6.2). Однако отраженные сигналы обоих лучей проходят к фокусу F одинаковое расстояние. Это означает, что расстояние A+B=C+D. Таким образом, все лучи, которые излучает передающая антенна спутника и на которую направлено зеркало парабо


лоида, концентрируются синфазно в фокусе F. Этот факт доказывается математически (рис. 6.3).

Выбор параметра параболы определяет глубину параболоида, т. е. расстояние между вершиной и фокусом. При одинаковом диаметре апертуры короткофокусные параболоиды обладают большой глубиной, что делает крайне неудобным установку облучателя в фокусе. Кроме того, в короткофокусных параболоидах расстояние от облучателя до вершины зеркала значительно меньше, чем до его краев, что приводит к неравномерности амплитуд у облучателя для волн, отразившихся от кромки параболоида и от зоны, близкой к вершине.

Длиннофокусные параболоиды имеют меньшую глубину, установка облучателя является более удобной и амплитудное распределение становится более равномерным. Так, при диаметре апертуры 1,2 м и параметре 200 мм глубина параболоида равна 900 мм, а при параметре 750 мм — всего 240 мм. Если параметр превышает радиус апертуры, фокус, в котором должен находиться облучатель, располагается вне объема, ограниченного параболоидом и апертурой. Оптимальным считается вариант, когда параметр несколько больше, чем радиус апертуры.

Спутниковая антенна — единственный усиливающий элемент приемной системы, который не вносит собственных шумов и не ухудшает сигнал, а следовательно, и изображение. Антенны с зеркалом в виде параболоида вращения делятся на два основных класса: симметричный параболический рефлектор и асимметричный (рис. 6.4, 6.5). Первый тип антенн принято называть прямофокусными, второй — офсетными.


Офсетная антенна является как бы вырезанным сегментом параболы. Фокус такого сегмента расположен ниже геометрического центра антенны. Это устраняет затенение полезной площади антенны облучателем и его опорами, что повышает ее коэффициент полезного использования при одинаковой площади зеркала с осесимметричной антенной. К тому же, облучатель установлен ниже центра тяжести антенны, тем самым увеличивая ее устойчивость при ветровых

нагрузках.

Именно такая конструкция антенны наиболее распространенна в индивидуальном приеме спутникового телевидения, хотя в настоящее время используются и другие принципы построения наземных спутниковых антенн.

Офсетные антенны целесообразно использовать, если для устойчивого приема программ выбранного спутника необходим размер антенны до 1,5 м, так как с увеличением общей площади антенны эффект затенения зеркала становится менее значительным.

Офсетная антенна крепится почти вертикально. В зависимости от географической широты угол ее наклона немного


меняется. Такое положение исключает собирание в чаше антенны атмосферных осадков, которые сильно влияют на качество приема.

Принцип работы (фокусировки) прямофокусной (осесимметричной) и офсетной (асимметричной) антенн показан на рис. 6.6.

Для антенн особое значение имеют характеристики направленности. Благодаря возможности использовать антенны с высокой пространственной избирательностью осуществляется прием спутникового телевидения. Важнейшими характеристиками антенн являются коэффициент усиления и диаграмма направленности.

Коэффициент усиления параболической антенны зависит от диаметра параболоида: чем больше диаметр зеркала, тем выше коэффициент усиления.

Зависимость коэффициента усиления параболической антенны от диаметра приведена ниже.


Роль коэффициента усиления параболической антенны можно проанализировать с помощью электрической лампочки (рис. 6.7, а). Свет равномерно рассеивается в окружающее пространство, и глаз наблюдателя ощущает определенный уровень освещенности, соответствующий мощности электролампочки.


Однако если источник света поместить в фокус параболоида с коэффициентом усиления 300 раз (рис. 6.7, б), его лучи после отражения поверхностью параболоида окажутся параллельны его оси, а сила цвета будет эквивалентна источнику мощностью 13 500 Вт. Такую освещенность глаз наблюдателя воспринять не может. На этом свойстве, в частности, основан принцип работы прожектора.

Таким образом, антенный параболоид, строго говоря, не является антенной в ее понимании преобразования напряженности электромагнитного поля в напряжение сигнала. Параболоид — это лишь отражатель радиоволн, концентрирующий их в фокусе, куда и должна быть помешена активная антенна (облучатель).

Диаграмма направленности антенны (рис. 6.8) характеризует зависимость амплитуды напряженности электрического поля Е, создаваемого в некоторой точке, от направления на эту точку. При этом расстояние от антенны до данной точки остается постоянным.

Увеличение коэффициента усиления антенны влечет за собой сужение главного лепестка диаграммы направленности, а сужение его до величины менее 1° приводит к необходимости снабжать антенну системой слежения, так как геостационарные спутники совершают колебания вокруг своего стационарного положения на орбите. Увеличение ширины диаграммы направленности приводит к снижению коэффициента усиления, а значит, и к уменьшению мощности сигнала на входе приемника. Исходя из этого, оптимальной шириной главного лепестка диаграммы направленности яв-


ляется ширина в 1...2° при условии, что передающая антенна спутника удерживается на орбите с точностью ±0,1°.

Наличие боковых лепестков в диаграмме направленности также снижает коэффициент усиления антенны и повышает возможность приема помех. Во многом ширина и конфигурация диаграммы направленности зависят от формы и диаметра зеркала принимающей антенны.

Самой важной характеристикой параболической антенны является точность формы. Она должна с минимальными ошибками повторять форму параболоида вращения. Точность соблюдения формы определяет коэффициент усиления антенны и ее диаграмму направленности.

Изготовить антенну с поверхностью идеального параболоида практически невозможно. Любое отклонение от реальной формы параболического зеркала от идеальной влияет на характеристики антенны. Возникают фазовые ошибки, которые ухудшают качество принимаемого изображения, снижается коэффициент усиления антенны. Искажение формы происходит и в процессе эксплуатации антенн: под воздействием ветра и атмосферных осадков; силы тяжести; как следствие неравномерного прогрева поверхности солнечными лучами. С учетом этих факторов определяется допустимое суммарное отклонение профиля антенны.

Качество материала также влияет на характеристики антенны. Для изготовления спутниковых антенн в основном используют сталь и дюралюминий.

Стальные антенны дешевле алюминиевых, но тяжелее и больше подвержены коррозии, поэтому для них особенно важна антикоррозийная обработка. Дело в том, что в отражении электромагнитного сигнала от поверхности участвует очень тонкий приповерхностный слой металла. В случае повреждения его ржавчиной значительно снижается эффективность антенны. Стальную антенну лучше сначала покрыть тонким защитным слоем какого-нибудь цветного металла (например, цинка), а затем покрасить.

С алюминиевыми антеннами этих проблем не возникает. Однако они несколько дороже. Промышленность выпускает и пластиковые антенны. Их зеркала с тонким металлическим покрытием подвержены искажениям формы за счет различных внешних воздействий: температуры, ветровых нагрузок и ряда других факторов. Существуют сетчатые антенны, устойчивые к ветровым нагрузкам. Они имеют хорошие весовые характеристики, но плохо зарекомендовали себя при приеме сигналов Ки-диапазона. Такие антенны целесообразно использовать для приема сигналов С-диапазона.

Параболическая антенна на первый взгляд кажется грубым куском металла, но тем не менее она требует аккуратного обращения при хранении, транспортировке и монтаже. Любые искажения формы антенны приводят к резкому снижению ее эффективности и ухудшению качества изображения на экране телевизора. При покупке антенны необходимо обратить внимание на наличие искажений рабочей поверхности антенны. Иногда бывает, что при нанесении антикоррозийных и декоративных покрытий на зеркало антенны ее «ведет» и она приобретает форму пропеллера. Проверить это можно, положив антенну на ровный пол: края антенны везде должны касаться поверхности.

особенности, требования, шаблон и инструкция

На Ютуб выложили дельное видео, поясняющее, что такое параболическая антенна. Сделали скрин, указываем источник www.youtube.com/watch?v=6Cku8eGomec, чтобы авторы получили долю рекламы. Видимое на изображении происходит на 50-х секундах видео. Парабола является линией-местоположением точек, равноудаленных от заданной-фокуса и линии, именуемой директрисой. Физическая особенность параболы: пришедшие с единого направления лучи собираются в фокальной плоскости (плоскость, параллельная директрисе и содержащая на поверхности фокус). Причем, если направление перпендикулярное, точкой приема станет фокус. За счет изложенного происходит многократное усиление сигнала, что используется в спутниковом телевидении. Параболическая антенна, собранная собственноручно, была мечтой радиолюбителей в СССР – в свободной продаже подобных устройств не присутствовало…

Суть работы параболической антенны

Эволюция параболических антенн

Параноидально настроенные люди вели Холодную войну. Для связи со спутником требовалась антенна с невероятным коэффициентом усиления, стандартные модели не подходили. Чтобы шпионить, решили приспособить существующие для локаторов параболические антенны. Смысл уже описан выше. За счет своеобразной формы поверхности получается тонкий луч с невероятным усилением. Возникли две сложности, порожденные одной: как уследить за движущимся космическим аппаратом, как шпион неподвижный геостационарный спутник бесполезен.

Итак, тонкий луч антенны постоянно нацеливается на движущийся спутник. Аппарат меняет непрестанно ориентацию для глаз наблюдателя: вначале обращен первым боком, потом вторым. Следовательно, линейная поляризация для передачи подходит неважно, пришлось бы менять угол наклона антенны, провоцируя лишние вычислительные и энергетические затраты. На спутниках шпионах поляризацию применяли круговую. Как ни смотри, сигнал ловится. НТВ+ используют круговую поляризацию, не приходится конвертер поворачивать в сторону при настройке оборудования. А непосредственно параболоид сориентировать по прямой на спутник требуется, иначе пришедшие лучи в фокальной плоскости соберутся помимо фокуса.

Кстати, указанное свойство используется, чтобы с единственной тарелки набором конвертеров принимать перечень спутников. Располагаются в фокальной плоскости на прямом отрезке стальной арматуры, именуемом мультифидом. Осталось добавить, что размер тарелки выбирается произвольно. В магазине найдется ряд типоразмеров, рекомендуем копировать, изготавливая антенну самостоятельно.

Параболическая антенна

Просто конвертеры рассчитаны на работу с указанными устройствами, действовать иначе – значит, создавать сложности. Вместе с читателями собираемся изучить требования к поверхности. Параболические антенны капризны к форм-фактору, допуски на отклонения от номинальных размеров малы (единицы и доли миллиметра для связного диапазона).

Принцип действия параболической антенны подобен зеркалу, если поверхность окажется неровной, лучи не сойдутся в нужном месте. Точных допусков по памяти не приведем, окунемся в учебник.

Это интересно! Учитель-предметник рассказывал, что в СССР неудачную партию параболоидов выбросили в детские магазины под видом санок. Местные радиолюбители мгновенно разобрали товар.

Требования к самодельной параболической антенне

Договоримся сделать параболическую антенну попроще. Идеально подойдет способ, применяемый на судоверфях. Согласно методике, фигура сечется плоскостями вдоль и поперек, потом для конкретного случая вырезается из стали образующая. В будущем листы корпуса кладутся сверху. Свариваются, образуя часть днища, дальше пойдет корабль. Предлагаем:

  • достать книгу по анадиреклитической геометрии;
  • найти формулу параболоида;
  • решить задачу сечения плоскостями, вдоль и поперек;
  • вырезать из фанеры нужный шаблон;
  • собрать костяк из пересекающихся под прямыми углами досок;
  • обклеить в один слой миткалем, пропитанным типичным клеем герметиком, важно выдержать плавность переходов;
  • подождать, пока формочка станет твердой окончательно;

    Фольга для изготовления антенны

  • осторожно покрыть поверхность фольгой;
  • испытать конструкцию (немного весит) с конвертером на любом спутнике;
  • если тест пройден, получилась отличная формочка, при помощи которой легко собрать любое количество параболических антенн.

Ума не приложим, кому сегодня потребовалась самодельная зеркальная параболическая антенна, если азарт не прошел, приступим к реализации мелочей. Миткаль выбран за грубость и тонкость ткани. Обе характеристики важны. Если уверены, что сумеете ровно обклеить костяк другим материалом, используйте талант по назначению. Расчет параболической антенны ведется по формуле:

z = (x2 + y2) / a2;

Как видим, сложность при изготовлении самодельной параболической антенны в поиске параметра а. Значение не слишком важно, но условились следовать заводским моделям, значит, разработать методику определения нужного размера обязаны. В литературе пишут, что фокусное расстояние составляет 0,2 – 0,4 диаметра тарелки. Диаметр типичной тарелки составляет 90 см при фокусном расстоянии 45 – 55 см. Это совпадает с нашими цифрами. Плюс самодельной конструкции: можем выбрать диаметр, фокусное расстояние согласно собственным потребностям. Стараемся копировать заводские модели.

Как связать фокусное расстояние с параметром а, чтобы просчитать координаты для фанерок. Предоставляем ссылку на сайт http://www.teleradio.ru/arials/part2/CHAPTER6/6-1.htm, где присутствует готовый расчет для параболы диаметром 2 метра и фокусным расстоянием 75 см.

Примечание. Если интересно, на указанном ресурсе предлагается изготовить бугор из камней и цемента по шаблону антенны. Параболоид сечется в нулевой точке. Потом из стали изготавливается по координатам лекало. Подвешиваемое за центр вращается над бугром, чтобы придать нужную форму камням. В результате получится многоразовый шаблон, по которому изготовим параболические антенны. На наш взгляд, подобная параболическая антенна выйдет в копеечку. Вес у конструкции большой, в домашних условиях не изготовишь.

Проще создать шаблон из фанеры, обклеить тонкой тканью, потом по мере надобности править шпатлевкой. Подобную работу желающий проделает дома или – для больших экземпляров – в гараже. Шаблон получается мобильным и весит сравнительно мало. Итак, связь фокуса и параметра а… В учебниках даны научные трехэтажные формулы, но не написано, как увязать воедино два простейших значения. Имеется величина р, называется параметром параболы, а фокусное расстояние равно половине. Увяжем формулы с а. Простая математика. Попробуем проверить на данных, приведенных на сайте. Примите к сведению дополнительное уравнение параболы:

z = x2 / 2p;

В этом случае p = 2 х 0,75 = 1,5 метра, а в нулевой плоскости сечения формула имеет вид:

z = x2 / 3;

Чтобы не мучиться, возьмем точку из таблицы на метровом удалении от центра: 1; 0,333 и видим, что все сходитсяк:

4f = a2; откуда находим связь:

а = 2√f.

Самодельная параболическая антенна

Теперь читатели знают, как соотнести оба уравнения и просчитать ряд плоскостей, чтобы собрать из перекрестий дельный шаблон. Рекомендуем не связываться с каждым миллиметром, чтобы борьба со шпоном не обернулась каторгой. Вместо этого берите ключевые расстояния через каждые 5 см. Потребуется потом обтянуть ровно тканью, смазанной клеем.

Как изготовить по шаблону параболическую антенну

Лекала возможно вырезать с двух сторон относительно тарелки: внешней и внутренней. Читателям внимательным уже понятно, как действовать. Сказали, что проверим шаблон с фольгой, стало быть, обрезка велась внешних частей, получилась вогнутая чаша. Скажем больше: можете взять уже готовую параболическую антенну и по образу и подобию лепить свои в любом количестве. Кто знаком с изготовлением игрушек из папье-маше, уже поняли:

  1. Самодельная параболическая антенна начинается со смачивания чаши и выстилания газетой в один слой.
  2. Тонкая ткань, смоченная клеем, ложится в один слой. Важно не образовать складки и сохранить фактор формы.
  3. Застывший образец аккуратно изымается, с обратной стороны обклеивается слоями, пока не наберет заданную прочность.
  4. Готовая болванка оклеивается тонкой фольгой для создания проводящего слоя и образования зеркала. Готовая конструкция вполне способна к приему спутникового вещания.

Кстати, геометрический фактор выдерживается, не чтобы волны попали в раскрыв, а чтобы попали электромагнитные колебания в одной фазе. Отклонения от формы мгновенно нарушают работоспособность изделия. А что касается раскрыва конвертера, положение не столь критично. Сделать параболическую антенну самостоятельно не просто. Пробуйте, через некоторое время получится дельная конструкция.

Параболическая антенна

Работа спутниковых антенн, в частности тех, которые принимают телевизионный сигнал, основана на оптическом свойстве параболы.2).

Сформулируем упомянутое оптическое свойство параболы. Если в фокусе параболы поместить точечный источник света (лампочку) и включить его, то лучи, отразившись от параболы, пойдут параллельно оси симметрии параболы, причем передний фронт будет перпендикулярен оси. 

Верно и обратное - если на параболу падает поток лучей, параллельных оси симметрии, то, отразившись от параболы, лучи придут в фокус, причём одновременно, если передний фронт потока лучей перпендикулярен оси.

При вращении параболы вокруг её оси симметрии получается параболоид вращения - поверхность второго порядка. При любом сечении параболоида плоскостями, проходящими через ось симметрии, получаются равные параболы с общим фокусом, поэтому параболоид также обладает оптическим свойством. Если поместить излучатель в фокус, то лучи, отразившись от поверхности, пойдут параллельно оси вращения. А если на параболоид падают лучи, параллельные его оси, то после отражения все они собираются в фокусе. 

Оптическое свойство - принципиальная основа параболических антенн. Антенны могут вращаться, пример - параболические антенны в аэропортах, по форме являющиеся "ломтиками" огромных параболоидов, они и передают и принимают сигнал. Антенны могут быть неподвижными. К последнему типу относятся бытовые спутниковые телевизионные антенны ("тарелки"): их нацеливают на спутник-ретранслятор, находящийся высоко над Землёй на геостационарной орбите, после чего их положение фиксируется. 

 

Поскольку спутник находится далеко от поверхности, приходящие от него лучи в точке приёма антенной можно считать параллельными. В фокусе спутниковой антенны находится приёмник, от которого сигнал по кабелю отправляется к телевизору. 


Эта же идея применяется при создании прожекторов железнодорожных локомотивов, фар автомобилей, её можно использовать даже для приготовления еды в полевых условиях. Оптическое свойство параболы "знает" и мир живой природы. Например, некоторые северные цветы, живущие в условиях короткого лета и недостатка солнечных лучей, раскрывают лепестки в форме параболоида, чтобы "сердцу" цветка было теплее. «Параболическими» являются такие альпийские и арктические цветы, как прострел альпийский, беквичия ледниковая, полярный мак. Благодаря оптическому свойству параболы у таких цветов ускоряется созревание семян. Ещё одно полезное для цветов следствие свойства их параболичности — привлечение насекомых, которые любят «понежиться» в чаше цветка, а это влияет на процесс переноса пыльцы (опыление). 

 

 

В сюж­етах, собран­ных в книге, рас­сказы­вается как о мате­мати­ческой «состав­ляющей» круп­нейших дости­жений циви­лизации, так и о мате­мати­ческой «начинке» привычных, каждо­дневных вещей. Все авторы — известные учёные: Н. Н. Андреев, С. П. Коновалов, Н. М. Панюнин.

Параболическая рефлекторная антенна - тарелочная антенна »Электроника

Антенна с параболическим рефлектором, которую часто называют тарелочной антенной, представляет собой антенное решение, применимое для ОВЧ и выше, где требуются высокое усиление и направленность.


Логопериодическая антенна включает:
Основы параболической / параболической антенны Теория и уравнения параболической антенны Усиление и направленность параболической антенны Системы питания параболической антенны


Параболическая рефлекторная или параболическая антенна - это форма антенны, которая находит множество применений в домашнем приеме спутникового телевидения, наземных линиях передачи данных СВЧ, общей спутниковой связи и многом другом.

Его размер означает, что он обычно ограничен использованием частот выше 1 ГГц, хотя антенны большего размера могут использоваться для частот ниже примерно 100 МГц.

Антенна с параболическим отражателем или тарелочная антенна известна своей отличительной формой, высоким коэффициентом усиления и узкой шириной луча. Это производительность, которой можно достичь с помощью одного из них, является причиной того, что он так широко используется на более высоких частотах.

Два параболических отражателя для коммерческого / исследовательского применения

Основные сведения о параболическом отражателе

Любая параболическая рефлекторная антенна состоит из двух основных элементов:

  • Излучающая система: Излучающий элемент в параболической рефлекторной антенне может принимать различные формы.В одних антеннах это может быть простой диполь, в других - рупор. Его цель состоит в том, чтобы осветить второй элемент антенны, отражатель, с равномерной плотностью излучения с минимальным рассыпанием или излучением, не попадающим в отражатель и излучаемым в другом месте.
  • Отражатель: Отражатель является отличительной частью параболической рефлекторной антенны. Параболическая форма является ключевой для работы РЧ-антенны, поскольку пути, взятые от точки питания в фокусе до отражателя, а затем наружу, параллельны.Однако, что более важно, все пути имеют одинаковую длину, и поэтому исходящая форма волны будет формировать плоскую волну, а энергия, принимаемая всеми путями, будет синфазной. Это позволяет антенне работать особенно эффективно.

    Параболическая форма поверхности отражателя антенны позволяет получить очень точный луч. Таким образом, фидерная система образует фактически излучающую часть антенны, а отражающая параболическая поверхность является чисто пассивной.

При рассмотрении антенных систем с параболическим рефлектором существует ряд важных параметров и терминов:

  • Focus Фокус параболического рефлектора - это точка, в которой концентрируются входящие сигналы.При излучении из этой точки сигналы будут отражаться отражающей поверхностью и распространяться в параллельном луче, обеспечивая требуемое усиление и ширину луча.
  • Vertex Это самая внутренняя точка в центре параболического отражателя.
  • Фокусное расстояние Фокусное расстояние параболической антенны - это расстояние от фокуса до вершины.
  • Апертура Апертура параболического отражателя - это то, что можно назвать его «отверстием» или площадью, которую он покрывает.Для круглого отражателя это описывается его диаметром. Его можно сравнить с апертурой оптического объектива.
  • Коэффициент усиления: Коэффициент усиления параболического отражателя является одним из ключевых параметров и зависит от ряда факторов, включая диаметр антенны, длину волны и другие факторы.
  • Системы питания: Параболический рефлектор или тарелочная антенна может питаться различными способами. Осевая или передняя подача, внеосевой, Кассегрен и Григориан - четыре основных метода.

Для большинства домашних систем, таких как те, которые используются для приема спутникового телевидения, используется небольшой рефлектор в сочетании с источником питания фокусной точки, что обеспечивает наиболее простую и экономичную конструкцию. Эти антенны не всегда могут выглядеть точно так же, как традиционные антенны с полной тарелкой. По механическим и производственным причинам подача часто смещена от центра, а часть используемого параболоида снова смещена от центра, поскольку это обеспечивает механическое преимущество.

Преимущества и недостатки параболической рефлекторной антенны

При выборе типа антенны, которая будет использоваться для любого конкретного приложения, всегда необходимо смотреть на характеристики этого типа антенны. Параболический отражатель имеет как достоинства, так и недостатки. Это делает его пригодным для использования в одних приложениях, но не в других.

Преимущества:

Некоторые из основных преимуществ параболической рефлекторной антенны включают следующее:

  • Высокое усиление: Антенны с параболическим рефлектором способны обеспечивать очень высокий уровень усиления.Чем больше «тарелка» по длине волны, тем выше коэффициент усиления.
  • Высокая направленность: Как и в случае с усилением, параболический отражатель или тарелочная антенна может обеспечивать высокий уровень направленности. Чем выше коэффициент усиления, тем уже ширина луча. Это может быть значительным преимуществом в приложениях, где требуется направлять мощность только на небольшую площадь. Это может предотвратить это, например, создать помехи для других пользователей, и это важно при связи со спутниками, потому что это позволяет спутникам, использующим одни и те же полосы частот, быть разделенными расстоянием или, в частности, углом к ​​антенне.

Недостатки:

Как и все виды антенн, параболический отражатель имеет свои ограничения и недостатки:

  • Требуется рефлектор и приводной элемент: Сам параболический рефлектор является только частью антенны. Для этого требуется, чтобы система подачи находилась в фокусе параболического отражателя.
  • Стоимость: Антенна требует аккуратного изготовления. Для отражения радиосигналов необходим параболоид, который нужно делать осторожно.В дополнение к этому также требуется система подачи. Это может увеличить стоимость системы
  • Размер: Антенна не такая маленькая, как некоторые типы антенн, хотя многие используемые для приема спутникового телевидения довольно компактны.

Применение антенн с параболическим рефлектором

Параболическая тарелочная антенна используется во многих областях. В некоторых областях это форма антенны, которая используется практически исключительно из-за ее характеристик.

Расчет формулы

»Электроника

Коэффициент усиления антенны с параболическим рефлектором можно рассчитать с помощью простых формул или уравнений, а также практических факторов, влияющих на усиление антенны «тарелка».


Логопериодическая антенна включает:
Основы параболической / параболической антенны Теория и уравнения параболической антенны Усиление и направленность параболической антенны Системы питания параболической антенны


Коэффициент усиления является одним из ключевых факторов, связанных с антенной с параболическим отражателем.

Высокий уровень усиления - одна из основных причин использования антенн с параболическим отражателем.

Фактически усиление антенны с параболическим рефлектором может достигать 30-40 дБ. Этих показателей усиления нелегко достичь с помощью других форм антенн.

Антенна с параболическим отражателем Голдстоуна имеет очень высокий уровень усиления.
Изображение предоставлено NASA

На микроволновых частотах, где обычно используются эти антенны, они могут обеспечивать очень высокий уровень усиления, и они предлагают очень удобную и прочную конструкцию, которая способен выдерживать суровые условия внешнего использования.Напротив, многие другие типы конструкции антенн на этих частотах не применимы.

Общей чертой всех этих примеров является усиление параболической антенны или усиление параболической тарелки. В то время как у более крупных антенн есть более высокие уровни усиления параболической антенны, производительность всех этих антенн имеет первостепенное значение.

Факторы, влияющие на усиление антенны с параболическим отражателем

На усиление параболической антенны влияет ряд факторов. К этим факторам относятся следующие:

  • Диаметр отражающей поверхности Чем больше диаметр отражающей поверхности антенны, тем выше будет усиление параболического отражателя.
  • Рабочая длина волны: Коэффициент усиления антенны с параболическим отражателем зависит от размера отражателя с точки зрения длины волны. Следовательно, если один и тот же отражатель используется на двух разных частотах, коэффициент усиления будет разным. Он обратно пропорционален используемой длине волны.
  • Эффективность антенны: Эффективность антенны существенно влияет на общее усиление параболического отражателя. Типичные цифры составляют от 50 до 70%.Эффективность варьируется в результате ряда различных факторов, которые подробно описаны ниже.

Коэффициент усиления параболической рефлекторной антенны

Коэффициент усиления параболической антенны можно легко вычислить, зная диаметр отражающей поверхности, длину волны сигнала, а также зная или оценивая эффективность антенны.

Усиление антенны с параболическим отражателем рассчитывается как усиление над изотропным источником, то есть относительно источника, который излучает одинаково во всех направлениях.Это теоретический источник, который используется в качестве эталона, с которым сравнивается большинство антенн. Усиление, указанное таким образом, обозначается как дБи.

Стандартная формула для коэффициента усиления антенны с параболическим отражателем:

Где:
G - коэффициент усиления по сравнению с изотропным источником в дБ
k - коэффициент полезного действия, который обычно составляет от 50% до 60%, т.е. от 0,5 до 0,6
D - диаметр параболического отражателя в метрах
λ - длина волны сигнала в метрах

Из этого видно, что очень большой выигрыш может быть достигнут, если используются достаточно большие отражатели.Однако, когда антенна имеет очень большое усиление, ширина луча также очень мала, и антенна требует очень тщательного контроля ее положения. В профессиональных системах электрические сервосистемы используются для обеспечения очень точного позиционирования.

Можно видеть, что коэффициент усиления параболического отражателя может быть порядка 50 дБ для антенн, имеющих диаметр отражателя в сотню длин волн или более. Хотя антенны такого размера не подходят для многих конструкций антенн, таких как Yagi и многие другие, параболический отражатель можно сделать очень большим по сравнению с длиной волны, и, следовательно, он может достичь таких огромных уровней усиления.Более нормальные размеры для этих антенн - несколько длин волн, но они по-прежнему могут обеспечивать очень высокий уровень усиления.

Коэффициент усиления параболического отражателя

В формулу общего усиления антенны включен коэффициент полезного действия. Обычно это может быть от 50 до 70% в зависимости от реальной антенны.

Эффективность усиления антенны с параболическим отражателем зависит от множества факторов. Все они перемножаются, чтобы получить общую эффективность.

  • Эффективность излучения, k r : Эффективность излучения обозначена выше как кроны . Это зависит от резистивных или омических потерь в антенне. Он контролируется эффективностью излучения элемента антенны, излучающего радиочастотную энергию. Для большинства антенн это высокое значение, близкое к единице. Поэтому эффективность излучения не оказывает большого влияния на усиление антенны с параболическим отражателем и обычно игнорируется.
  • Эффективность перелива k с : Эффективность перелива обозначена выше как ks . Любая энергия, которая проливается через край поверхности отражателя, снижает эффективность и, следовательно, коэффициент усиления антенны параболического отражателя. В идеальном случае поверхность отражателя должна быть равномерно и полностью освещена и ни одна из сторон не должна выходить за край. В реальном случае это нецелесообразно и наблюдается некоторое снижение эффективности и, следовательно, усиление антенны.
  • Эффективность сужения апертуры k t : Эффективность сужения апертуры обозначена выше как kt . Это влияет на усиление антенны, поскольку для достижения оптимального усиления необходимо правильно освещать весь параболический отражатель. Если части поверхности не оптимально освещены излучаемой энергией излучателя, то усиление параболического отражателя будет уменьшено. Оптимальная производительность достигается, когда центр освещен немного больше, чем края.
  • Поверхность Ошибка: Чтобы обеспечить максимальный уровень усиления параболической рефлекторной антенны, поверхность должна как можно точнее следовать параболическому контуру. Отклонения от этого приведут к плохой точности отражения. Однако можно использовать сетку для отражателя для уменьшения веса и сопротивления ветра при условии, что отверстия в марле или сетке малы по сравнению с длиной волны. Ширина прорезей или отверстий в отражающей металлической сетке должна быть меньше λ / 10.
  • Закупорка апертуры: Физическая структура фидера и других элементов антенны часто маскирует часть отражателя. Это, естественно, снижает эффективность и, следовательно, усиление антенны. Этот фактор необходимо учесть при расчете усиления антенны.
  • Перекрестная поляризация: Как и в случае с любой другой антенной, поляризация передаваемых и принимаемых сигналов должна совпадать, в противном случае возникают потери, равные синусу угла между поляризациями, предполагая линейную поляризацию.
  • Не-одноточечная подача: Фокус рефлектора - это одна точка. Однако все антенны имеют конечный размер, и поэтому это будет означать, что антенна выходит за пределы фокальной точки рефлектора. Чем больше излучающий элемент по отношению к отражающей поверхности, тем серьезнее это проблема и тем большее влияние он оказывает на усиление антенны.

Термин км используется для обозначения различных различных элементов эффективности, которые часто труднее определить.К ним относятся те, которые возникают из-за поверхностного усилия, кросс-поляризации, блокировки апертуры и неоднородной подачи.

Расчет ширины луча параболической антенны

По мере увеличения усиления параболической антенны или любой другой антенны ширина луча падает.

Обычно ширина луча определяется как точки, в которых мощность падает до половины максимальной, то есть точки -3 дБ на полярной диаграмме диаграммы направленности.

Можно достаточно точно оценить ширину луча по следующей формуле.

Где:
G - усиление над изотропным источником в дБ
D - диаметр параболического отражателя
λ - длина волны сигнала

Чтобы расчет был правильным, все размеры должны быть в одних и тех же единицах измерения, например диаметр и длина волны в метрах или оба в футах и ​​т. д.

Оптимизация усиления параболической антенны

Чтобы обеспечить оптимальное освещение отражающей поверхности, уровень освещения должен быть больше в центре, чем по бокам.Можно показать, что оптимальная ситуация возникает, когда уровень освещенности в центре на 10–11 дБ превышает уровень освещенности на краю. Более низкие уровни краевого освещения приводят к более низким уровням боковых лепестков.

Антенна с отражающей поверхностью составляет основную часть всей системы. Во многих отношениях это не так критично, как может показаться сначала. Часто можно использовать проволочную сетку. При условии, что шаг сетки мал по сравнению с длиной волны, радиосигналы будут воспринимать ее как непрерывную поверхность.Если использовать сетку, то сопротивление ветра будет уменьшено, и это дает значительные механические преимущества.

Антенна с параболическим рефлектором способна обеспечить значительный уровень усиления, который может найти хорошее применение, особенно для микроволновых частот, где размер антенны для данного уровня усиления становится очень управляемым.

Другие темы об антеннах и распространении:
ЭМ-волны Распространение радио Ионосферное распространение Земная волна Рассеивание метеоров Тропосферное распространение Кубический четырехугольник Диполь Дискон Ферритовый стержень Логопериодическая антенна Антенна с параболическим рефлектором Вертикальные антенны Яги Заземление антенны Коаксиальный кабель Волновод КСВН Балуны для антенн MIMO
Вернуться в меню «Антенны и распространение».. .

Параболическая антенна по выгодной цене - Выгодные предложения на параболическую антенну от глобальных продавцов параболической антенны

Отличные новости !!! Вы находитесь в нужном месте для параболической антенны. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не будет побит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта верхняя параболическая антенна скоро станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели свою параболическую антенну на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в параболической антенне и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести параболическая антенна по самой выгодной цене.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *