Последовательное и параллельное соединение.
Иногда нужно увеличить ёмкость или сопротивление, а подходящих деталей на нужное сопротивление нет, или размеры конструкции не позволяют вставить один большой конденсатор на 3000 мкф.
В этом случае можно набрать необходимые ёмкость или сопротивление из нескольких деталей, а вместо конденсатора на 3000 микрофарад вставить 3 штуки по 1000 микрофарад.
Для увеличения ёмкости конденсаторы соединяются параллельно.
Для увеличения сопротивления резисторы соединяются последовательно.
Вода через трубу с двумя валенками течёт хуже, чем через трубу с одним валенком.
Последовательное соединение — когда детали стоят друг за дружкой, «в очереди», будто за колбасой, потому оно так и называется.
Не путайте эти соединения, для увеличения ёмкости конденсаторы соединяются параллельно, а резисторы для увеличения сопротивления последовательно
Со сложением ёмкостей и сопротивлений всё легко.
С параллельным соединением резисторов и последовательным соединением конденсаторов слегка посложнее, но к нашему счастью конденсаторы довольно редко соединяют последовательно, а резисторы параллельно.
Последовательное соединение конденсаторов может понадобиться например в сборке гаусс-гана (электромагнитной стрелялки), когда под рукой конденсаторы только на 400 вольт, а нам нужен 800-вольтовый конденсатор, а их редко где найдёшь и они дорогие.
Параллельное соединение резисторов считается вот по какой формуле:
Через три трубы, в которых в каждой по валенку, вода лучше потечёт, чем через одну трубу с одним валенком. Или если в бочке проковырять три дырки, то вода быстрее выльется, чем если бы мы проковыряли одну дырку.
Последовательное соединение конденсаторов считается по той же формуле.
Если два одинаковых конденсатора по 680uF с максимальным напряжением 400В поставить последовательно, то получится конденсатор на 340 uF с напряжением 800 вольт.
Параллельное соединение конденсаторов — Всё о электрике
Соединение конденсаторов
Как правильно соединять конденсаторы?
У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”
Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!
Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?
Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.
В реальности это выглядит так:
Параллельное соединение
Принципиальная схема параллельного соединения
Последовательное соединение
Принципиальная схема последовательного соединения
Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.
Как рассчитать общую ёмкость соединённых конденсаторов?
Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.
Общая ёмкость параллельно соединённых конденсаторов:
С1 – ёмкость первого;
С2 – ёмкость второго;
С3 – ёмкость третьего;
СN – ёмкость N-ого конденсатора;
Cобщ – суммарная ёмкость составного конденсатора.
Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!
Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!
Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.
Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:
Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .
Или то же самое, но более понятно:
Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.
В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:
Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.
Стоит также запомнить простое правило:
При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.
Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.
Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.
Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).
Замер ёмкости при последовательном соединении
Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)
А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).
Измерение ёмкости при параллельном соединении
Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).
Что ещё необходимо знать, чтобы правильно соединять конденсаторы?
Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.
При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.
Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.
Для электролитических конденсаторов.
При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.
Параллельное соединение электролитов
Схема параллельного соединения
В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.
Последовательное соединение электролитов
Схема последовательного соединения
Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.
Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.
Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂
Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!
Последовательное и параллельное соединение конденсаторов
Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.
Последовательное соединение конденсаторов
При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику ЭДС/тока одной из своих пластин. Заряд одинаков на всех пластинах, но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.
Напряжение на данном участке цепи соотносятся следующим образом:
Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:
Сократив выражение на Q, получим знакомую формулу:
Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:
Параллельное соединение конденсаторов
При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.
Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:
Так как заряд конденсатора
А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов
Пример 1
Какова результирующая емкость 4 конденсаторов включенных последовательно и параллельно, если известно что С1 = 10 мкФ, C2 = 2 мкФ, C3 = 5 мкФ, а C4 = 1 мкФ?
При последовательном соединении общая емкость равна:
При параллельном соединении общая емкость равна:
Пример 2
Определить результирующую емкость группы конденсаторов подключенных последовательно-параллельно, если известно, что С1 = 7 мкФ, С2 = 2 мкФ, С3 = 1 мкФ.
Сначала найдем общую емкость параллельного участка цепи:
Затем найдем общую емкость для всей цепи:
По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.
Соединение конденсаторов
В электрических цепях применяются различные способы соединения конденсаторов. Соединение конденсаторов может производиться: последовательно, параллельно и последовательно-параллельно (последнее иногда называют смешанное соединение конденсаторов). Существующие виды соединения конденсаторов показаны на рисунке 1.
Рисунок 1. Способы соединения конденсаторов.
Параллельное соединение конденсаторов.
Если группа конденсаторов включена в цепь таким образом, что к точкам включения непосредственно присоединены пластины всех конденсаторов, то такое соединение называется параллельным соединением конденсаторов (рисунок 2.).
Рисунок 2. Параллельное соединение конденсаторов.
При заряде группы конденсаторов, соединенных параллельно, между пластинами всех конденсаторов будет одна и та же разность потенциалов, так как все они заряжаются от одного и того же источника тока. Общее же количество электричества на всех конденсаторах будет равно сумме количеств электричества, помещающихся на каждом из конденсаторов, так как заряд каждого их конденсаторов происходит независимо от заряда других конденсаторов данной группы. Исходя из этого, всю систему параллельно соединенных конденсаторов можно рассматривать как один эквивалентный (равноценный) конденсатор. Тогда общая емкость конденсаторов при параллельном соединении равна сумме емкостей всех соединенных конденсаторов.
Обозначим суммарную емкость соединенных в батарею конденсаторов буквой Собщ, емкость первого конденсатора С1 емкость второго С2 и емкость третьего С3. Тогда для параллельного соединения конденсаторов будет справедлива следующая формула:
Последний знак + и многоточие указывают на то, что этой формулой можно пользоваться при четырех, пяти и вообще при любом числе конденсаторов.
Последовательное соединение конденсаторов.
Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последовательным (рисунок 3).
Рисунок 2. Последовательное соединение конденсаторов.
При последовательном соединении все конденсаторы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины (1 и 6), а остальные пластины (2, 3, 4 и 5) заряжаются через влияние. При этом заряд пластины 2 будет равен по величине и противоположен по знаку заряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пластины 2 и т. д.
Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения. Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.
Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.
Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы.
Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряжения, существующего на всей группе конденсаторов. Напряжение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединенных последовательно, меньше емкости самого малого конденсатора в группе.
Для вычисления общей емкости при последовательном соединении конденсаторов удобнее всего пользоваться следующей формулой:
Для частного случая двух последовательно соединенных конденсаторов формула для вычисления их общей емкости будет иметь вид:
Последовательно-параллельное (смешанное) соединение конденсаторов
Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.
На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.
Рисунок 4. Последовательно-параллельное соединение конденсаторов.
При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:
1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.
2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.
3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.
4. Рассчитывают емкость полученной схемы.
Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.
Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.
Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
{SOURCE}
Послед соединение конденсаторов. Соединение конденсаторов Как правильно соединять конденсаторы
У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”
Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим необходимый конденсатор. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!
Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь 2 – 3 конденсатора на 470 микрофарад. Ставить конденсатор на 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров за одним конденсатором?
Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное .
В реальности это выглядит так:
Параллельное соединение
Принципиальная схема параллельного соединения
Последовательное соединение
Принципиальная схема последовательного соединения
Также можно комбинировать параллельное и последовательное соединение конденсаторов. На практике вам вряд ли это пригодиться.
Как рассчитать общую ёмкость соединённых конденсаторов?
Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.
Общая ёмкость параллельно соединённых конденсаторов:
С 1 – ёмкость первого конденсатора;
С 2 – ёмкость второго конденсатора;
С 3 – ёмкость третьего конденсатора;
С N – ёмкость N -ого конденсатора;
C общ – суммарная ёмкость составного конденсатора.
Как видим, при параллельном соединении ёмкости конденсаторов нужно всего-навсего сложить!
Внимание! Все расчёты необходимо производить в одних единицах. Если рассчитываем ёмкости в микрофарадах, то нужно указывать ёмкость C 1 , C 2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!
Чтобы не допустить ошибку при переводе микрофарад в пикофарады или нанофарады можно воспользоваться специальной таблицей. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно пересчитать значения величин.
Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:
Внимание! Данная формула справедлива только для двух конденсаторов! Для большего количества последовательно включенных конденсаторов потребуется другая формула. Она более запутанная, да и не всегда пригождается .
Или то же самое, но более понятно:
Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении конденсаторов их результирующая ёмкость будет всегда меньше наименьшей ёмкости, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсатор ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость составного конденсатора будет меньше 5.
В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула упрощается и принимает вид:
Здесь, вместо буквы M ставиться количество конденсаторов, а C 1 – ёмкость конденсатора.
Стоит также запомнить простое правило:
При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из конденсаторов.
Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате ёмкость составного конденсатора составит 5 нанофарад.
Проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул для расчёта.
Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.), другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ с функцией измерения ёмкости конденсаторов и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).
Замер ёмкости последовательно соединённых конденсаторов
Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)
А теперь проделаем то же самое, но для параллельного соединения конденсаторов. Проверим результат с помощью тестера (см. фото).
Измерение ёмкости параллельно соединённых конденсаторов
Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).
Что ещё необходимо знать, чтобы правильно соединить конденсаторы?
Во-первых, не стоит забывать, что кроме ёмкости у конденсаторов есть ещё один немаловажный параметр, как номинальное напряжение.
При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально ёмкостям этих конденсаторов. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряже
Параллельное и последовательное соединение конденсаторов: способы, правила, формулы
Как правильно соединять конденсаторы?
У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”
Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!
Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?
Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.
В реальности это выглядит так:
Параллельное соединение
Принципиальная схема параллельного соединения
Последовательное соединение
Принципиальная схема последовательного соединения
Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.
Как рассчитать общую ёмкость соединённых конденсаторов?
Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.
Общая ёмкость параллельно соединённых конденсаторов:
С1 – ёмкость первого; С2 – ёмкость второго; С3 – ёмкость третьего; СN – ёмкость N-ого конденсатора;
Cобщ – суммарная ёмкость составного конденсатора.
Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!
Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!
Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.
Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:
Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .
Или то же самое, но более понятно:
Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.
В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:
Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.
Стоит также запомнить простое правило:
При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.
Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.
Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.
Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметрVictor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).
Замер ёмкости при последовательном соединении
Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)
А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).
Измерение ёмкости при параллельном соединении
Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).
Что ещё необходимо знать, чтобы правильно соединять конденсаторы?
Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.
При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.
Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.
Для электролитических конденсаторов.
При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.
Параллельное соединение электролитов
Схема параллельного соединения
В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.
Последовательное соединение электролитов
Схема последовательного соединения
Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.
Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.
Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂
Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Научись паять! Минимальный наборчик для пайки.
Научись паять! Подготовка и уход за паяльником.
«Мультирозетка». Собираем многофункциональную розетку.
Резистор. Параметры резисторов.
Всем привет. Этот маленький пост посвящу теме соединения конденсаторов.
На практике, часто бывает так, что в наличии нет конденсатора нужного номинала для установки, а технику нужно срочно отремонтировать. Как раз для таких случаев нам необходимы знания о правилах соединения конденсаторов.
Способов соединения конденсаторов существуют всего два. Это последовательное и параллельное соединение. Сейчас более детально рассмотрим оба способа.
Параллельное соединение конденсаторов.
Это наиболее частый вид соединения конденсаторов. При подключении параллельно, емкость конденсатора увеличивается, а напряжение остается прежним.
Формула параллельного соединения конденсаторов: С= С1+С2+С3…
Рассмотрим на примере. Предположим, что необходим конденсатор 100 мкф 50в, а у Вас в наличии только 47мкф на 50в. Если соединить эти конденсаторы параллельно (плюс к плюсу а минус к минусу) то общая емкость получившегося конденсатора будет ровняться около 94 мкф на 50в. Это допустимое отклонение, так что можно свободно устанавливать в технику.
Параллельное соединение конденсаторов
Последовательное соединение конденсаторов.
При подключении, таким образом, общая емкость уменьшается, а напряжение работы конденсатора растёт.
Рассчитывается последовательное подключение конденсаторов по такой формуле:
Формула расчета последовательного соединения конденсаторов
Для примера подключим 3 конденсатора номиналом 100мкф на 100в последовательно. Согласно формуле, делим единицу, на емкость конденсаторов. Потом суммируем . Далее единицу делим на результат.
В работе, последовательное соединение использую редко, но иногда бывает.
Рекомендую ознакомиться со статей о ESR конденсаторов.
Всем спасибо за просмотр.
Весь инструмент и расходники, которые я использую в ремонтах находится здесь.Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .
Радиоэлементы можно соединить между собой тремя способами. Существует параллельное и последовательное соединение конденсаторов, а также смешанный тип. Всегда можно точно определить емкость равноценного конденсатора по этому показателю. Его можно поменять на ряд соединенных в цепь других, более мелких по емкости конденсаторов. Для равнозначного конденсаторы должно быть выполнено некоторое условие, а именно подключенное напряжение к конденсатору равно напряжению на зажимах этой группы этих.
Таким же образом подключается все радиоэлементы, существующие на данный момент. Главным образом используются параллельное и последовательное соединение конденсаторов. В данной статьи рассмотрены все типы соединений конденсаторов. В качестве бонуса. в статье есть видеоролик и статья, посвященные этой теме.
Виды соединения конденсаторов в обмотке.
Последовательное и параллельное соединение конденсаторов
Соединение конденсаторов в электрической цепи может быть последовательным, параллельным и последовательно-пареллельным (смешанным). Если провести аналогию между соединением конденсаторов и соединением резисторов, то стоит отметить, что формулы расчета общей емкости и общего сопротивления идентичны, только между разными типами соединений: Формула Cобщ при параллельном соединении конденсаторов = формула Rобщ при последовательном соединении резисторов.
- Cобщ — общая емкость.
- Rобщ — общее сопротивление.
При последовательном соединении конденсаторов (рис. 3) на обкладках отдельных конденсаторов электрические заряды по величине равны: Q1 = Q2 = Q3 = Q. Действительно, от источника питания заряды поступают лишь на внешние обкладки цепи конденсаторов, а на соединенных между собой внутренних обкладках смежных конденсаторов происходит лишь перенос такого же по величине заряда с одной обкладки на другую (наблюдается электростатическая индукция), поэтому и на них по- являются равные и разноименые электрические заряды.
Соединения конденсаторов.
Напряжения между обкладками отдельных конденсаторов при их последовательном соединении зависят от емкостей отдельных конденсаторов: U1 = Q/C1, U1 = Q/C2, U1 = Q/C3, а общее напряжение U = U1 + U2 + U3. Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / (U1 + U2 + U3), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов. Формулы эквивалентных емкостей аналогичны формулам эквивалентных проводимостей.
Материал в тему: все о переменном конденсаторе.
Параллельное соединение конденсаторов
Параллельное соединение конденсаторов — это соединение при котором конденсаторы соединяются собой обоими контактами. В результате к одной точке может быть присоединено несколько конденсаторов. При параллельном соединении формируется один большой конденсатор с площадью обкладок, равной сумме площадей обкладок всех отдельных компонентов. Поскольку емкость конденсаторов прямо пропорциональна площади обкладок, общая емкость Собщ при параллельном соединении равняется сумме емкостей всех конденсаторов в цепи.
Напряжение при параллельном соединении
На все параллельно соединенные конденсаторы падает одинаковое напряжение. Так происходит, потому что существует всего лишь две точки, между которыми может быть разность потенциалов (напряжение). Другими словами, можно сказать что при параллельном соединении все конденсаторы подключены к одному источнику напряжения. Ток конденсатора во время переходного периода зависит от его емкости и изменения напряжения:
- ic — ток конденсатора
- C — Емкость конденсатора
- ΔVC/Δt – Скорость изменения напряжения
Будет интересно➡ Формула расчёта сопротивления конденсатора
При параллельном соединении через каждый конденсатор потечет одельный ток, в зависимости от емкости конденсатора:
Последовательное соединение конденсаторов
Если же соединение конденсаторов в батарею производится в виде цепочки и к точкам включения в цепь непосредственно присоединены пластины только первого и последнего конденсаторов, то такое соединение конденсаторов называется последовательным. При последовательном соединении все конденсаторы заряжаются одинаковым количеством электричества, так как непосредственно от источника тока заряжаются только крайние пластины, а остальные пластины заряжаются через влияние. При этом заряд пластины будет равен по величине и противоположен по знаку заряду пластины 1, заряд пластины 3 будет равен по величине и противоположен по знаку заряду пластины 2 и т. д.
Напряжения на различных конденсаторах будут, вообще говоря, различными, так как для заряда одним и тем же количеством электричества конденсаторов различной емкости всегда требуются различные напряжения.
Типы соединений конденсаторов.Чем меньше емкость конденсатора, тем большее напряжение необходимо для того, чтобы зарядить этот конденсатор требуемым количеством электричества, и наоборот.
Таким образом, при заряде группы конденсаторов, соединенных последовательно, на конденсаторах малой емкости напряжения будут больше, а на конденсаторах большой емкости — меньше.
Аналогично предыдущему случаю можно рассматривать всю группу конденсаторов, соединенных последовательно, как один эквивалентный конденсатор, между пластинами которого существует напряжение, равное сумме напряжений на всех конденсаторах группы, а заряд которого равен заряду любого из конденсаторов группы. Возьмем самый маленький конденсатор в группе. На нем должно быть самое большое напряжение. Но напряжение на этом конденсаторе составляет только часть общего напряжения, существующего на всей группе конденсаторов. Напряжение на всей группе больше напряжения на конденсаторе, имеющем самую малую емкость. А отсюда непосредственно следует, что общая емкость группы конденсаторов, соединенных последовательно, меньше емкости самого малого конденсатора в группе.
Последовательное соединение конденсаторов – это соединение двух или более конденсаторов в форме цепи, в которой каждый отдельный конденсатор соединяется с другим отдельным конденсатором только в одной точке. Ток (iC), заряжающий последовательную цепь конденсаторов, будет одинаковым для всех конденсаторов, поскольку у него есть только один возможный путь прохождения.
Вследствие того что через все последовательно соединенные конденсаторы течет одинаковый ток, количество накопленого электрического заряда для каждого конденсатора будет одинаковым, независимо от его емкости. Так происходит, потому что электрический заряд, накапливаемый на обкладке любого конденсатора, должен прийти с обкладки примыкающего конденсатора. Таким образом, последовательно соединенные конденсаторы имеют одинаковый электрический заряд.
Стоит почитать: все об электолитических конденсаторах.
Правая обкладка первого конденсатора С1 соединяется с левой второго конденсатора С2, у которого правая обкладка соединяется с левой третьего конденсатора С3. Это означает, что в режиме постоянного тока конденсатор С2 электрически изолирован от общей цепи. В итогое эффективная площадь обкладок уменьшается до площади обкладок самого маленького конденсатора. Это объясняется тем, что как только обкладки наименшей площади заполнятся электрическим зарядом, данный конденсатор перестанет пропускать ток. В результате ток прекратиться во всей цепи, и процесс зарядки остальных конденсаторов также прекратится. При последовательном соединении общее расстояние между обкладками увеличивается до суммы расстояний между обкладками всех конденсаторов.
Будет интересно➡ Что такое танталовый конденсатор
Таким образом, последовательная цепь формирует один большой конденсатор с площадью обкладок элемента с наименьшей емкостью, и расстоянием между обкладками, равному сумме всех расстояний в цепи. На каждый отдельный конденсатор в последовательной цепи падает разное напряжение. Поскольку емкость обратно пропрциональна напряжению (С = Q/V), то чем меньше емкость конденсатора, тем большее напряжение на него упадет. Применим закон Кирхгофа для напряжения в последовательной цепи из трех конденсаторов.
Емкость конденсатора прямо пропорциональна его заряду и обратно пропорциональна его напряжению — C = Q/V. Как уже упоминалось выше, последовательно соединенные конденсаторы имеют одинаковый электрический заряд — Qобщ = Q1 = Q2 = Q3. Из данного уравнения можно легко вывести формулу общей емкости для любого частного случая последовательного соединения.
Интересно почитать: принцип действия и основные характеристики варисторов.
Если в цепи есть и последовательное и параллельное соединение, то такую цепь называют смешанной или последовательно-параллельной. Тем не менее, смешанное соединение может иметь как последовательный, так и параллельный характер.
Типы соединений конденсаторов.
Общая емкость смешанного соединения конденсаторов
Чтобы посчитать общую емкость смешанного соединения конденсаторов, следуют такому же алгоритму, как и при расчете общего сопротивления смешанного соединения резисторов.
- Цепь разбивают на участки с только пареллельным или только последовательным соединением
- Вычисляют общую емкость для каждого отдельного участка.
- Вычисляют общую емкость для всей цепи смешанного соединения.
Вполне справедливым может оказаться вопрос, для чего надо соединять конденсаторы последовательно, если общая емкость будет меньше? Скорее всего, первым что приходит в голову — это чтобы получить новый эквивалентный конденсатор с меньшей емкостью. Но в производстве микросхем вряд ли будут делать подобное, поскольку, во -первых, обычно нужно экономить место на печатной плате, а во-вторых, нет смысла тратить деньги на два компонента или больше, если можно купить один с требуемой емкостью.
Но если в параллельном или последовательном соединении конденсаторов еще есть хоть какая-то логика, то кому вообще нужно смешанное? Дело в том, что емкостью, то есть способностью накапливать электрический заряд, обладает любое тело в природе, даже человеческое.
Если мы говорим о электрической цепи, то все ее элементы на практике обладают емкостью, и их можно представить, как конденсаторы. Часто такую емкость еще называют паразитической, потому как она создает разного рода помехи.
Например, у нас есть какая-то электронная цепь с множеством различных компонентов, которая принимает сигнал, обрабатывает его определенным образом и выдает на выход результат. Известно, что время задержки сигнала, в основном, зависит от паразитической емкости электронных компонентов схемы. Поскольку должно пройти время зарядки паразитической емкости, прежде чем она начнет пропускать сигнал. Если мы хотим узнать время задержки, нужно посчитать общую емкость всех компонентов, конвертировав их в цепь из конденсаторов.
Материал в тему: описание и область применения подстроечного резистора.
Последовательное и параллельное соединение конденсаторов
Последовательное и параллельное соединение конденсаторов применяют в зависимости от поставленной цели. При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов. А общее напряжение будет равняться сумме напряжений всех конденсаторов. Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый. При их последовательном соединении общий конденсатор будет иметь следующие данные: 10 мкФ x 300 В.
Будет интересно➡ Что такое плоские конденсаторы
При параллельном соединении общая емкость конденсаторов складывается, а допустимое напряжение всего набора будет равно напряжению конденсатора, имеющего самое низкое значение допустимого напряжения из всего набора. C = C1 + C2 + C3 + C4 + …Например: мы имеем три конденсатора 30 мкФ x 100 В, соединённые параллельно. Параметры всего набора конденсаторов в этом случае будут следующие: 90 мкФ x 100 В.
Соединение более двух конденсаторов последовательно редко встречается в реальных схемах. Хотя для увеличения общего напряжения такой набор может встретиться в высоковольтных источниках питания. А вот в низковольтных источниках довольно часто встречается параллельное соединение нескольких конденсаторов для сглаживания пульсаций после выпрямления при больших токах потребления. Обратите внимание, формулы вычисления емкости последовательного и параллельного соединения конденсаторов в точности обратным формулам вычисления сопротивления при последовательном и параллельном соединении резисторов.
Более подробно о типах подключения конденсаторов можно узнать прочитав статью подключения конденсаторов. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.electricalschool.info
www.sxemotehnika.ru
www.katod-anod.ru
www.hightolow.ru
Используемые источники:
- https://go-radio.ru/connection-of-capacitors.html
- https://my-chip.info/kak-pravilno-soedinyat-kondensatory-parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov/
- https://electroinfo.net/kondensatory/chem-otlichajutsja-parallelnoe-i-posledovatelnoe-soedinenie-kondensatorov.html
Соединение конденсаторов Параллельное соединение конденсаторов
При параллельном соединении конденсаторов к каждому конденсатору приложено одинаковое напряжениеU, а величина заряда на обкладках каждого конденсатора Q пропорциональна его емкости (рис. 2).
Рис.2 U=U1=U2=U3
Общий заряд Q всех конденсаторов
Общая емкость С, или емкость батареи, параллельно включенных конденсаторов равна сумме емкостей этих конденсаторов.
Параллельное подключение конденсатора к группе других включенных конденсаторов увеличивает общую емкость батареи этих конденсаторов. Следовательно, параллельное соединение конденсаторов применяется для увеличения емкости.
4)Если параллельно включены т одинаковых конденсаторов емкостью С´ каждый, то общая (эквивалентная) емкость батареи этих конденсаторов может быть определена выражением
Последовательное соединение конденсаторов
Рис.3
На обкладках последовательно соединенных конденсаторов, подключенных к источнику постоянного тока с напряжением U, появятся заряды одинаковые по величине с противоположными знаками.
Q=Q1=Q2=Q3
Напряжение на конденсаторах распределяется обратно пропорционально емкостям конденсаторов:
Обратная величина общей емкости последовательно соединенных конденсаторов равна сумме обратных величин емкостей этих конденсаторов.
При последовательном включении двух конденсаторов их общая емкость определяется следующим выражением:
Если в цепь включены последовательно п одинаковых конденсаторов емкостью С каждый, то общая емкость этих конденсаторов:
Из (14) видно, что, чем больше конденсаторов п соединено последовательно, тем меньше будет их общая емкость С, т. е. последовательное включение конденсаторов приводит к уменьшению общей емкости батареи конденсаторов.
На практике может оказаться , что допустимое рабочее напряжение Up конденсатора меньше напряжения, на которое необходимо подключить конденсатор. Если этот конденсатор подключить на такое напряжение, то он выйдет из строя, так как будет пробит диэлектрик. Если же последовательно включить несколько конденсаторов, то напряжение распределится между ними и на каждом конденсаторе напряжение окажется меньше его допустимого рабочего Up. Следовательно, последовательное соединение конденсаторов применяют для того, чтобы напряжение на каждом конденсаторе не превышало его рабочего напряжения Up.
Смешанное соединение конденсаторов
Смешанное соединение (последовательно-параллельное) конденсаторов применяют тогда, когда необходимо увеличить емкость и рабочее напряжение батареи конденсаторов.
Рассмотрим смешанное соединение конденсаторов на нижеприведенных примерах.
Энергия конденсаторов
где Q — заряд конденсатора или конденсаторов, к которым приложено напряжение U; С — электрическая емкость конденсатора или батареи соединенных конденсаторов, к которой приложено напряжение U.
Таким образом, конденсаторы служат для накопления и сохранения электрического поля и его энергии.
15.Дайте определение понятиям трех лучевая звезда и треугольник сопротивлений. Запишите формулы для преобразования трех лучевой звезды сопротивлений в треугольник сопротивлений и наоборот. Преобразуйте схему к двум узлам (Рисунок 5)
Рисунок 5- Схема электрическая
6.СХЕМЫ ЗАМЕЩЕНИЯ
Для облегчения расчета составляется схема замещения электрической цепи, т. е. схема, отображающая свойства цепи при определенных условиях.
На схеме замещения изображают все элементы, влиянием которых на результат расчета нельзя пренебречь, и указывают также электрические соединения между ними, которые имеются в цепи.
1.Схемы замещения элементов электрических цепей
На расчетных схемах источник энергии можно представить ЭДС без внутреннего сопротивления, если это сопротивление мало по сравнению с сопротивлением приемника (рис. 3.13,6).
Приr= 0 внутреннее падение напряженияUо = 0, поэтомунапряжение на зажимах источника при любом токе равно
ЭДС: U=E=const.
В некоторых случаях источник электрической энергии на расчетной схеме заменяют другой (эквивалентной) схемой (рис. 3.14, а), где вместо ЭДСЕ источник характеризуется его током короткого замыканияIK, а вместо внутреннего сопротивления в расчет вводится внутренняя проводимостьg=1/r.
Возможность такой замены можно доказать, разделив равенство (3.1) на r:
U/r = E/r—I,
где U/r = Io—некоторый ток, равный отношению напряжения на зажимах источника к внутреннему сопротивлению;E/r = IK — ток короткого замыкания источника;
Вводя новые обозначения, получим равенство IK = Io + I, которому удовлетворяет эквивалентная схема рис. 3.14,а.
В этом случае при любой величине напряжения на зажимах; источника его ток остается равным току короткого замыкания (рис. 3.14,6):
I=Iк=const.
Источник с неизменным током, не зависящим от внешнего сопротивления, называют источником тока.
Один и тот же источник электрической энергии может быть заменен в расчетной схеме источником ЭДС или источником тока.
Параллельное включение конденсаторов | Техника и Программы
Иногда рекомендуют параллельное соединение конденсаторов в фильтрах. Причем предлагают следующие варианты:
а) параллельно конденсатору большой емкости включать точно такой же конденсатор, но маленькой емкости;
б) вместо одного конденсатора большой емкости включать два-три конденсатора меньшей емкости того же типа;
в) вместо одного конденсатора большой емкости включать много конденсаторов небольшой емкости.
Естественно, включать надо параллельно, при этом емкости суммируются, и общая емкость во всех этих случаях получается одинаковой. Давайте разберемся в данном вопросе (вся необходимая информация есть в таблице 1 и рис. 47).
Вариант а). Говорят, что маленький конденсатор будет помогать работать большому.
Это не всегда так. У конденсатора меньшей емкости действительно паразитная индуктивность обычно меньше, поэтому частотные свойства зачастую могут быть лучше (а если у конденсатора малой емкости частотные свойства не лучше, то и говорить не о чем). Рассмотрим эту ситуацию. На рис. 48 показана зависимость модуля полного сопротивления конденсаторов разной емкости от частоты.
Максимальной рабочей частотой конденсатора можно считать ту частоту, на которой его сопротивление минимально. Дальше с ростом частоты полное сопротивление конденсатора начинает расти – это сказывается индуктивность конструкции конденсатора. При этом индуктивное сопротивление перевешивает емкостное, и конденсатор ведет себя как катушка индуктивности. То есть уже и не является конденсатором.
Для конденсатора малой емкости минимум сопротивления действительно наступает на большей частоте, но его сопротивление все равно больше, чем у конденсатора большой емкости (свойства которого на этой частоте уже ухудшаются). А ведь главная задача конденсатора на этих частотах – пропускать через себя ток нагрузки, как можно меньше на него влияя. Поэтому чем у конденсатора сопротивление меньше, тем лучше. И конденсатор малой емкости не очень-то и поможет «большому» конденсатору, слишком уж велико его сопротивление. Только в точке А сопротивления обоих конденсаторов становятся равными, и на более высокой частоте у конденсатора малой емкости сопротивление меньше, чем у «большого». Но посмотрите – в этой точке уже и конденсатор малой емкости работает плохо! В реальности эти графики показаны на рис. 47, где цифрами 1…5 обозначены конденсаторы меньшей емкости, а цифрами 8… 12 – конденсаторы большей емкости.
А вот если в системе присутствует керамический или пленочный конденсатор, то он хорошо работает и на этой частоте, и на более высоких частотах (рис. 48). Только емкость его должна быть достаточно большой,
чтобы на нужных частотах он имел низкое сопротивление.
Вывод: параллельное подключение электролитического конденсатора малой емкости заметной пользы не принесет (хоть и не навредит), гораздо выгоднее шунтирование электролита большой емкости хорошим пленочным конденсатором, который наверняка гораздо более высокочастотный.
Напрашивается вопрос: а для чего же так делают? И даже в промышленной аппаратуре? Ну, во-первых, иногда действительно можно подобрать условия, когда «маленький» конденсатор немного поможет. А главное
– почему бы не поставить такой конденсатор, раз в него верят покупатели? Тем более что он очень дешевый.
Вариант б). Вместо одного конденсатора большой емкости включаем два конденсатора меньшей емкости того же типа. Рассмотрим эту ситуацию для конденсаторов, приведенных в двух последних строках таблицы 1. Допустим, мы ставим два конденсатора 4700 мкФ вместо одного 10000 мкФ. Тогда их сопротивление будет 0,071/2 = 0,0355 Ом, а допустимый ток 3-2=6 ампер. Получается, по ESR примерно то же самое, а по току так даже лучше, чем одиночный конденсатор. Только надо помнить, что у конденсаторов довольно большой разброс, так что можно вместо одного хорошего поставить два плохих. Или наоборот. Более длинные провода, соединяющие два конденсатора, будут иметь большее сопротивление, чем у одиночного. Да и токи заряда конденсаторов будут немного неодинаковыми. В результате это небольшое преимущество от удвоения конденсаторов, скорее всего, будет «съедено» неидеальностью остальных элементов схемы.
Так что в данном случае можно считать эти варианты выбора конденсаторов равноценными. И выбирать тот или иной вариант из каких-либо других соображений. Например, какие конденсаторы поместятся в ваш корпус. Или какие конденсаторы продаются в вашем городе.
Вариант в). Ставим 10 конденсаторов 1000 мкФ вместо одного на 10000 мкФ. Что говорит математика: ESR = 0,199/10 = 0,0199 Ом (по сравнению с 0,033 Ом для конденсатора 10000 мкФ), максимальный ток = 10-1,4= 14А (по сравнению с 5 А конденсатора 10000 мкФ). Вроде бы выигрыш по сопротивлению в 1,5 раза, а по току почти в 3 раза. Судя по полученным цифрам, много конденсаторов лучше, чем один.
Слышали когда-нибудь, как ругают теоретиков, говоря, что на практике получается все совсем не так, как у них в теории? Это про таких горе-теоретиков, которые просто умножат-разделят числа, и не подумают об остальных факторах, влияющих на ситуацию. Посмотрите на рис. 49. Индуктивности и резисторы – это сопротивление и индуктивность проводников, соединяющих всю эту кучу конденсаторов. Поскольку конденсаторов теперь много, то длина проводов существенно увеличивается, растут и индуктивности-сопротивления. Вот тут-то и теряются все преимущества, которые мы насчитали по формулам! Нет, формулы правильные! Только они не учитывают эти вот элементы – ведь мы написали эти формулы без их учета, не подумав про них.
В результате общее сопротивление может получиться даже больше, чем у одиночного конденсатора боль-
шой емкости, а ток распределяется очень неравномерно. Например, при заряде конденсаторов, заряд начинается с самого левого по схеме С1, и в него в самый первый момент времени течет весь максимальный ток (в С2 ток потечет только после того, как С1 уже немного зарядится), а конденсатор-то рассчитан всего на 1,4 ампера! Поэтому может случиться, что этот конденсатор будет перегружаться зарядным током, а значит, долго не проживет. Точно также, разряжается первым самый правый конденсатор СЮ, и он будет перегружаться разрядным током.
В общем, все преимущества обычно получаются только на бумаге. Это как раз та ситуация, когда «слишком хорошо – тоже не хорошо». Все всегда должно быть в разумных пределах, а здесь мы из них вышли. Собственно, «много маленьких» конденсаторов не всегда будет хуже, чем «один большой», но далеко и не всегда будет лучше. Хороший профессионал сможет извлечь пользу из такого включения (когда оно оправданно), а новичок скорее всего все испортит.
На самом деле, есть случай, когда параллельное включение двух-трех конденсаторов принесет пользу. Например, когда конденсатор фильтра установлен возле горячего диода и не удается его отодвинуть. Тогда при нескольких конденсаторов греться будет только один из них.
Или если у вас имеются конденсаторы LowESR, или Lowlmpedance, но их емкости недостаточно. Тогда вы ставите этот хороший конденсатор параллельно с «обыкновенным» и полностью используете его преимущества. Все равно ведь низкое-сопротивление получается на достаточно больших частотах, а там конденсатор даже не очень большой емкости хорошо сработает и принесет пользу. Я так сделал в одном своем блоке питания – поставил обычный конденсатор 10000 мкФ и параллельно ему низкоимедансный 4700 мкФ (интересно, что они оказались одинаковые по размерам). В результате получились хорошими и суммарная емкость, и высокочастотные свойства, и сопротивление. Лучше всего устанавливать высокочастотные и низкоимпе- дансные конденсаторы прямо на плате усилителя, где сведены к минимуму все паразитные индуктивности и сопротивления.
И еще. При любом наборе электролитов, подключение пленочного конденсатора только приветствуется.
Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.
Электронные компоненты: конденсаторы в параллельном и последовательном соединении
- Программирование
- Электроника
- Компоненты
- Электронные компоненты: конденсаторы в параллельном и последовательном соединении
Автор: Дуг Лоу
Вы можете объединить конденсаторы в последовательную или параллельную сеть для создания любого необходимого значения емкости в электронной схеме. Например, если вы объедините три конденсатора по 100 мкФ параллельно, общая емкость цепи составит 300 мкФ.
Объединить конденсаторы параллельно
Вычислить общую емкость двух или более конденсаторов, включенных параллельно, просто: просто сложите значения отдельных конденсаторов, чтобы получить общую емкость.
Это правило имеет смысл, если задуматься. Когда вы подключаете конденсаторы параллельно, вы, по сути, соединяете пластины отдельных конденсаторов. Таким образом, параллельное соединение двух идентичных конденсаторов по существу удваивает размер пластин, что фактически удваивает емкость.
Здесь две цепи имеют одинаковые емкости. Первая схема выполняет работу с одним конденсатором, вторая — с тремя. Таким образом, схемы эквивалентны.
Всякий раз, когда вы видите два или более конденсатора, включенных параллельно в цепи, вы можете заменить один конденсатор, значение которого является суммой отдельных конденсаторов. Точно так же каждый раз, когда вы видите один конденсатор в цепи, вы можете заменить два или более конденсатора параллельно, если их значения в сумме равны исходному значению.
Общая емкость конденсаторов, включенных параллельно, всегда больше, чем емкость любого из отдельных конденсаторов. Это потому, что каждый конденсатор добавляет к общей емкости свою собственную емкость.
Подключите конденсаторы последовательно
Вы также можете соединить конденсаторы последовательно, чтобы получить эквивалентные емкости. Однако когда вы это сделаете, математика будет немного сложнее. Оказывается, что вычисления, необходимые для конденсаторов, подключенных последовательно, такие же, как и для расчета резисторов, подключенных параллельно.
Вот правила расчета емкостей последовательно:
Если конденсаторы одинаковой стоимости, вам повезло. Все, что вам нужно сделать, это разделить значение одного из отдельных конденсаторов на количество конденсаторов. Например, общая емкость двух конденсаторов по 100 мкФ составляет 50 мкФ.
Если задействованы только два конденсатора, используйте следующий расчет:
В этой формуле C1 и C2 — номиналы двух конденсаторов.
Вот пример, основанный на последовательно включенных конденсаторах 220 мкФ и 470 мкФ:
Для трех и более конденсаторов, соединенных последовательно, формула следующая:
Обратите внимание, что многоточие в конце выражения указывает на то, что вы продолжаете складывать обратные величины емкостей для того количества конденсаторов, которое у вас есть.
Вот пример для трех конденсаторов номиналом 100 мкФ, 220 мкФ и 470 мкФ:
Как видите, итоговый результат — 59.9768 мкФ. Если ваше имя не Спок, вы, вероятно, не заботитесь о том, чтобы ответ был настолько точным, поэтому вы можете безопасно округлить его до даже 60 мкФ.
Формулы для расчета общей емкости конденсаторной сети противоположны правилам, которым вы следуете при расчете резисторной сети. Другими словами, формула, которую вы используете для резисторов, включенных последовательно, применяется к конденсаторам, включенным параллельно, а формула, которую вы используете для резисторов, подключенных параллельно, применяется к конденсаторам, включенным последовательно.Разве не забавно, что наука иногда любит возиться с вашим умом?
Об авторе книги
У Дуга Лоу все еще есть набор экспериментатора электроники, который дал ему отец, когда ему было 10 лет. Хотя он стал программистом и написал книги по различным языкам программирования, Microsoft Office, веб-программированию и компьютерам (включая 30+ книг для чайников), Дуг никогда не забывал свою первую любовь: электронику. Серияи параллельное соединение | Клуб электроники серии
и параллельное соединение | Клуб электроникиСледующая страница: Напряжение и ток
См. Также: символы и электрические схемы
Соединительные компоненты
Есть два способа соединения компонентов:
В серии , так что каждый компонент имеет одинаковый ток .
Напряжение батареи делится между двумя лампами. Каждая лампа будет иметь половину напряжения батареи, если лампы идентичны.
Параллельно , так что каждый компонент имеет одинаковое напряжение .
Обе лампы имеют полное напряжение батареи. Ток батареи делится между двумя лампами.
Большинство цепей содержат сочетание последовательных и параллельных соединений
Иногда используются термины последовательная цепь и параллельная цепь , но только самые простые схемы полностью относятся к тому или иному типу.Лучше обратиться к конкретным компонентам и сказать, что они соединены последовательно или соединены параллельно .
Например: схема показывает резистор и светодиод, соединенные последовательно (справа) и две лампы соединены параллельно (в центре). Выключатель соединен последовательно с двумя лампами.
Другой пример см. Ниже в разделе «Параллельные лампы».
Схема с последовательным
и параллельным подключением.
Лампы серии
Если несколько ламп соединены последовательно, все они будут включаться и выключаться вместе с помощью подключенного переключателя. в любом месте цепи. Напряжение питания делится между лампами поровну (при условии, что все они идентичны).
Если перегорит одна лампа, все лампы погаснут из-за разрыва цепи.
Параллельные лампы
Если несколько ламп подключены параллельно, каждая из них имеет полное напряжение питания.Лампы можно включать и выключать независимо, подключив выключатель последовательно с каждая лампа , как показано на принципиальной схеме. Такое расположение используется для управления лампами в зданиях.
Этот тип схемы часто называют параллельной схемой , но вы можете видеть, что это не совсем так просто — переключатели идут последовательно с лампами, а именно эти Пары переключателя и лампы , соединенные параллельно.
Коммутаторы серии
Если несколько двухпозиционных переключателей подключены последовательно, все они должны быть замкнуты (включены), чтобы замкнуть цепь.
На схеме показана простая схема с двумя последовательно включенными переключателями для управления лампой.
Переключатель S1 И Переключатель S2 должен быть замкнут, чтобы зажечь лампу.
Параллельные переключатели
Если несколько двухпозиционных переключателей подключены параллельно, только один должен быть замкнут (включен) для замыкания цепи.
На схеме показана простая схема с двумя переключателями, включенными параллельно для управления лампой.
Переключатель S1 ИЛИ Переключатель S2 (или оба) должны быть замкнуты, чтобы зажечь лампу.
Следующая страница: Напряжение и ток | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Веб-сайт размещен на Tsohost
Глава 20 Последовательные и параллельные конденсаторы Конденсаторы в цепях Подобно резисторам, конденсаторы в цепях могут быть подключены последовательно, параллельно или.
Презентация на тему: «Глава 20. Последовательные и параллельные конденсаторы. Конденсаторы в цепях. Подобно резисторам, конденсаторы в цепях могут быть подключены последовательно, параллельно или» — стенограмма презентации:
1
2 Глава 20 Последовательные и параллельные конденсаторы
3 Конденсаторы в цепях Как и резисторы, конденсаторы в цепях можно подключать последовательно, параллельно или в более сложные сети, содержащие как последовательные, так и параллельные соединения.
4 Конденсаторы в параллельном соединении Все конденсаторы, соединенные параллельно, имеют одинаковую разность потенциалов на своих выводах.
5 Последовательные конденсаторы. Последовательные конденсаторы имеют одинаковый заряд, но разную потенциальную разницу. V1V1V1V1 V2V2V2V2 V3V3V3V3
6 RC-цепи. Конденсатор, включенный последовательно с резистором, является частью RC-цепи.Сопротивление ограничивает зарядный ток Емкость определяет окончательный заряд
7 Последовательные цепи. Конденсаторы или другие устройства, подключенные по одному пути, называются последовательно соединенными. См. Схему ниже: Последовательное соединение конденсаторов. «+ К — к +…» Заряд внутри точек индуцируется. Батарея C1C1 C2C2 C3C3 + + — — + + + + — — — —
8 Последовательный заряд конденсаторов Поскольку внутренний заряд только индуцированный, заряд на каждом конденсаторе одинаков.Зарядка такая же: последовательное соединение конденсаторов. Q = Q 1 = Q 2 = Q 3 Аккумулятор C1C1 C2C2 C3C3 + + — — + + + + — — — — Q1Q1 Q2Q2 Q3Q3
9 Напряжение на последовательно соединенных конденсаторах Поскольку разность потенциалов между точками A и B не зависит от пути, напряжение V батареи должно равняться сумме напряжений на каждом конденсаторе. Общее напряжение V Последовательное соединение Сумма напряжений V = V 1 + V 2 + V 3 Батарея C1C1 C2C2 C3C3 + + — — + + + + — — — — V1V1 V2V2 V3V3 AB
10 Эквивалентная емкость: Серия V = V 1 + V 2 + V 3 Q 1 = Q 2 = Q 3 + + — — + + + + — — — — C1C1 C2C2 C3C3 V1V1 V2V2 V3V3 Эквивалент C e для последовательно включенных конденсаторов:
11 Пример 1.Найдите эквивалентную емкость трех конденсаторов, последовательно соединенных с батареей 24 В. + + — — + + + + — — — — 2 F C1C1 C2C2 C3C3 24 В 4 F6 F C e для серии: C e = 1,09 F
12 Пример 1 (продолжение): Эквивалентная схема может быть показана следующим образом с одним C e. + + — — + + + + — — — — 2 F C1C1 C2C2 C3C3 24 В 4 F 6 F 1,09 F CeCe 24 VC e = 1,09 F Обратите внимание, что эквивалентная емкость C e для последовательно соединенных конденсаторов всегда равна меньше, чем наименьшее в схеме.(1,09 <2 Обратите внимание, что эквивалентная емкость C e для конденсаторов, включенных последовательно, всегда меньше наименьшего значения в цепи. (1,09 F <2 F)
Конденсаторы
- • Определите распространенные типы конденсаторов и способы их использования.
- • Основные обозначения схем конденсаторов
Рис. 2.1.1 Базовые обозначения схем конденсаторов
Конденсаторы (и катушки индуктивности) обладают способностью накапливать электрическую энергию, катушки индуктивности накапливают энергию в виде магнитного поля вокруг компонента, а конденсатор хранит электрическую энергию в виде ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ, которое создается между двумя тонкими листами металла, называемыми «пластинами», которые у каждого свой электрический потенциал (или напряжение).
На рис. 2.1.1 показаны символы схем для Великобритании и США для различных типов конденсаторов. Основной конденсатор с фиксированным номиналом состоит из двух пластин, сделанных из металлической фольги, разделенных изолятором. Это может быть сделано из различных изоляционных материалов с хорошими ДИЭЛЕКТРИЧЕСКИМИ свойствами. Некоторые основные типы конструкции конденсатора показаны на рис. 2.1.2а.
Рис. 2.1.2 Общие типы конденсаторов
Конденсаторыимеют много применений.
Конденсаторы находят множество применений в электронных схемах.Каждая цель использует одну или несколько функций, описанных в этом модуле. На рис. 2.1.2 показаны различные конденсаторы. Типичное использование может включать:
- Высоковольтный электролитик, используемый в источниках питания.
- Электролитический осевой; меньшее напряжение меньшего размера для общего назначения, где требуются большие значения емкости.
- Диск керамический высоковольтный; малый размер и значение емкости, отличные характеристики допуска.
- Металлизированный полипропилен; небольшой размер для значений до 2 мкФ, хорошая надежность.
- Субминиатюрный конденсатор с многослойным керамическим чипом (поверхностный монтаж). относительно высокая емкость для размера, достигаемая за счет нескольких слоев. Фактически несколько конденсаторов параллельно.
Рис. 2.1.3 Конструкция — Конденсаторы постоянной величины
Конструкция конденсатора
Конструкция неполяризованных конденсаторов во многих типах аналогична. Различия заключаются в площади пластин и типе диэлектрического материала, используемого для данной емкости; В идеале диэлектрик, выбранный для любого конденсатора, должен соответствовать трем основным критериям.
1. Он будет максимально тонким, потому что емкость обратно пропорциональна расстоянию между пластинами.
2. Диэлектрическая проницаемость материала должна быть максимально высокой, поскольку диэлектрическая проницаемость напрямую влияет на эффективность диэлектрика.
3. Диэлектрическая прочность должна быть достаточной, чтобы выдерживать требуемое номинальное напряжение конденсатора.
Каждый из основных типов конденсаторов, показанных на рис. 2.1.3 (кроме типов миниатюрных керамических микросхем), будет покрыт изолирующим слоем (часто эпоксидной смолой).
Рис. 2.1.4 Конструкция электролитического конденсатора
Конденсаторы электролитические
Конструкция электролитических конденсаторов в некотором роде похожа на конденсатор из фольги. За исключением того, что, как показано на рис. 2.1.4, слои между фольгой теперь представляют собой два очень тонких слоя бумаги, один из которых образует изолятор (3), разделяющий свернутые пары слоев, а другой — слой ткани (4). между положительной (1) и отрицательной (2) пластиной из фольги, пропитанной электролитом, который делает ткань проводящей!
Из предыдущего абзаца может показаться, что намокшая ткань вызывает короткое замыкание между пластинами.Но настоящий диэлектрический слой создается после завершения строительства в процессе, называемом «Формование». Через конденсатор пропускается ток, и под действием электролита на положительной пластине образуется очень тонкий слой оксида алюминия (5). Именно этот чрезвычайно тонкий слой используется в качестве изолирующего диэлектрика. Это обеспечивает конденсатор очень эффективным диэлектриком, что дает значения емкости во много сотен раз больше, чем это возможно для обычного пластикового пленочного конденсатора аналогичного физического размера.
Обратной стороной этого процесса является то, что конденсатор поляризован и к нему не должно подаваться напряжение обратной полярности. Если это происходит, изолирующий оксидный слой очень быстро отделяется от положительной пластины, позволяя конденсатору пропускать большой ток. Когда это происходит в запечатанном контейнере, «жидкий» электролит быстро закипает и быстро расширяется. Это может привести к сильному взрыву в считанные секунды! НИКОГДА не подключайте электролитический конденсатор неправильно! Из-за этой опасности электролитические конденсаторы имеют маркировку, показывающую полярность их соединительных проводов.Общая маркировка полярности (6) показана на рис. 2.1.4 и состоит из полосы минусовых (-) символов, обозначающих отрицательный вывод конденсатора.
Обратите также внимание на то, что на конце конденсатора есть три канавки для обеспечения слабого места в герметичном корпусе, так что в случае взрыва верхняя часть корпуса выйдет из строя, что, как мы надеемся, минимизирует повреждение окружающих компонентов.
Все конденсаторы, независимо от их типа, также имеют максимально безопасное рабочее напряжение (Vwkg). Если напряжение, указанное на конденсаторе (7), превышено, существует высокий риск того, что изоляция диэлектрического слоя, разделяющего две пластины, выйдет из строя и вызовет короткое замыкание между пластинами, это также может вызвать быстрый и сильный перегрев, что приведет к возможный взрыв.
Рис. 2.1.5 Переменные конденсаторы
Конденсаторы переменные
Переменные конденсаторы, показанные на рис. 2.1.5 используются в качестве настроечных конденсаторов в AM-радиоприемниках, хотя в значительной степени они были заменены диодами «варикап» (переменной емкости), имеющими небольшую емкость, которая может изменяться путем приложения переменного напряжения. но конденсаторы с механической регулировкой все еще можно найти на принципиальных схемах и в каталогах поставщиков для замены.
Настроечные конденсаторы, независимо от их типа, обычно имеют очень малые значения емкости, обычно от нескольких пФ до нескольких десятков пФ. Большие типы воздушных диэлектриков, такие как анимированный на рис. 2.1.5, были заменены миниатюрными типами диэлектриков из ПВХ, как показано в правом верхнем углу на рис. 2.1.5. Вид спереди и сзади показывает крошечные предустановленные или подстроечные конденсаторы, доступ к которым осуществляется через отверстия в задней части корпуса).
Обозначения переменных конденсаторов
Рис. 2.1.6 Обозначения переменных и предварительно установленных конденсаторов
Обозначения для переменных конденсаторов приведены на рис. 2.1.6. Переменные конденсаторы часто доступны как компоненты GANGED. Обычно два переменных конденсатора регулируются с помощью одного управляющего винта. Символ стрелки указывает на переменный конденсатор (настраивается пользователем оборудования, а диагональ Т-образной формы указывает на предварительно установленный конденсатор, только для технической настройки. Пунктирная линия, соединяющая пару переменных конденсаторов, указывает на то, что они объединены в группу.
Эти небольшие предустановленные конденсаторы доступны во множестве очень маленьких конструкций и работают аналогично более крупным переменным, с крошечными вращающимися пластинами и, как правило, диэлектрическими слоями из ПВХ-пленки между ними.Их емкость составляет всего несколько пикофарад, и они часто используются в сочетании с более крупными переменными конденсаторами (и даже устанавливаются внутри корпуса настроечных конденсаторов) для повышения точности.
Конденсаторы, соединенные последовательно и параллельно
Конденсаторы, соединенные последовательно и параллельно
Конденсаторы — один из стандартных компонентов в электронных и электрических цепях. Однако в практических схемах чаще всего встречаются сложные комбинации конденсаторов.
Следовательно, полезно иметь набор правил для определения эквивалентной емкости некоторых общих схем конденсаторов.
Эквивалентная емкость любого сложного устройства может быть определена путем повторного применения двух простых правил , и эти правила относятся к конденсаторам, подключенным последовательно и параллельно.
Конденсаторы серии
Говорят, что конденсаторысоединены последовательно, когда они эффективно соединены последовательно в одну линию.
Рассмотрим два конденсатора, соединенных в серию : , то есть в линию, так что положительная пластина одного прикреплена к отрицательной пластине другого, как показано на рис. выше.
На самом деле, предположим, что положительная пластина конденсатора 1 подключена к входному проводу, отрицательная пластина конденсатора 1 подключена к положительной пластине конденсатора 2, а отрицательная пластина конденсатора 2 подключена к выходному проводу. .
Теперь возникает вопрос, какова эквивалентная емкость между входным и выходным проводами?
В этой связи важно понимать, что заряд Q, хранящийся в двух конденсаторах, одинаков.
Это можно объяснить следующим образом:
Рассмотрим внутренние пластины , т.е. , отрицательную пластину конденсатора 1 и положительную пластину конденсатора 2.
Эти пластины физически отключены от остальной цепи, поэтому общий заряд на них должен оставаться постоянным.
Предполагая, что эти пластины несут нулевой заряд, когда к двум конденсаторам приложена нулевая разность потенциалов, следует, что при наличии ненулевой разности потенциалов заряд Q на положительной пластине конденсатора 2 должен быть уравновешен равным и противоположный заряд -Q на отрицательной пластине конденсатора 1.
Поскольку отрицательная пластина конденсатора 1 несет заряд -Q, положительная пластина конденсатора 2 несет заряд + Q, чтобы сбалансировать его.
В результате оба конденсатора имеют одинаковый накопленный заряд.
Потенциал падает, и на двух конденсаторах разный.
Однако сумма этих падений равна общему падению потенциала, приложенному на входных и выходных проводах:
т.е.
Эквивалентная емкость пары конденсаторов снова.Таким образом,
Следовательно,
Отсюда можно сделать вывод, что:
Обратное значение эквивалентной емкости двух последовательно соединенных конденсаторов является суммой обратных величин индивидуальных емкостей.
Для конденсаторов, соединенных последовательно, уравнение эквивалентной емкости можно обобщить до:
Пример
Найдите общую емкость и отдельные среднеквадратичные падения напряжения на двух конденсаторах, каждый по 47 нФ, последовательно при подключении к 12 В переменного тока.c. поставка.
Решение:
Общая емкость,
Падение напряжения на двух идентичных конденсаторах 47 нФ,
Параллельные конденсаторы
Конденсаторы считаются подключенными параллельно, если оба их вывода соответственно подключены к каждому выводу другого конденсатора или конденсаторов.
Рассмотрим два конденсатора, подключенных по параллельно : , то есть , с положительно заряженными пластинами, подключенными к общему входному проводу, а отрицательно заряженные пластины, подключенными к общему выходному проводу, как показано на рис.
Какая эквивалентная емкость между входными и выходными проводами?
В этом случае разность потенциалов на двух конденсаторах одинакова и равна разности потенциалов между входным и выходным проводами.
Однако общий накопленный заряд Q делится между двумя конденсаторами, поскольку он должен распределяться таким образом, чтобы напряжение на них было одинаковым.
Т.к., конденсаторы могут иметь разную емкость, и, заряды, а также могут быть разными.
Эквивалентная емкость пары конденсаторов — это просто отношение,
где — общий накопленный заряд.
Отсюда следует, что:
Следовательно,
В целом можно сказать, что:
Эквивалентная емкость двух конденсаторов, соединенных параллельно, является суммой индивидуальных емкостей.
Для конденсаторов, подключенных параллельно, уравнение для эквивалента
Двигатели, подключенные последовательно или параллельно — 4QD
Перейти к содержанию+44 (0) 1487 450520
esales @ 4qd.co.uk
Корзина (0)
- Главная
- О нас
- Дистрибьюторы
- Моя учетная запись
- Отзывы
- Контроллеры
- Серия контроллеров
- Как выбрать контроллер
- Диапазон
- Porter Диапазон
- Диапазон DNO
- Pro-150
- Pro-160
- Диапазон 4QD
- Pro-360
- Сравнительные таблицы контроллеров
- Принадлежности
- Диапазон принадлежностей
- Дроссели
- Счетчики батарей
- Выключатели
- Предохранители и защита
- Разъемы
- Pro-160/360 Принадлежности
- Радиаторы
- Разные детали
- Модель локомотивов
- 000 Электровозы
- Гольф Лодки 90 004
- Промышленные машины
- Роботы
- Руководства
- Поиск и устранение неисправностей
- Сервис
- База знаний
- Видео
- Глоссарий
- Текущие модели
- DNO
- DNO и звуковые карты
- Регулировка ограничения тока DNO
- Защита от пониженного напряжения DNO
- DNO История версий [DNO]
- Схема подключения с двумя направлениями [DNO]
- Управление DNO с помощью Raspberry Pi
- Позиционное сервоуправление [DNO / VTX]
- Проводка для ручного управления и радиоуправления
- Проводка для кнопочного управления
- Про-1 50
- Питание дроссельной заслонки Холла Pro-150
- Программирование дроссельной заслонки Холла Pro-150
- Pro-150 с шунтирующими двигателями
- Использование кнопки Pro-150
- Руководство по поиску неисправностей Pro-150
- Pro-150 Pt Код неисправности
- Pro-150 Механическая информация
- Базовая электрическая схема Pro-150
- DMR-203: Использование с контроллерами PRO-150
- Модификация конденсатора Pro-150
- PRO-150 История проблем
- PRO-150 Предел тока
- PRO-150 Программирование джойстика
- Несколько контроллеров [двойной заголовок]
- 4QD
- Положения перемычек платы управления
- Двигатель Ampflow
- Повреждение от перегоревшего Mosfets
- Контроллеры DMR-203 серии
- : использование с батареями 4QD4 Контактор
- Регулировка для 48 В
- Перегрев в лодках
- Преобразование стояночного тормоза в стоп-сигнал
- Отключение HPLO на ранних моделях 4QD
- Запрет изменения линейного изменения [серия 4QD]
- Защита от перенапряжения в серии 4QD
- Значения зоны нечувствительности и удаление
- Как разобрать серию 4QD
- Тестирование базовой платы 4QD и полевых МОП-транзисторов
- Порог изменения обратного приема] [RAT
- История версий 4QD
- Резисторы ограничения тока
- Модификация платы управления [до июня 2010 г.]
- Использование с платой обратной связи тахометра
- Серия 4QD: Использование с последовательными двигателями
- Режим прямого / выключенного / обратного хода (серия 4QD)
- Обнаружение неисправностей в серии 4QD
- Модификация реверсивной защелки [предварительная версия 16]
- Модификация обратной скорости [предварительная версия 17]
- Повреждение от перевернутой батареи (серия 4QD)
- Смешивание плат серии 4QD 150/200/300
- Inhibit
- Multiple Controllers [Double Heading]
- Porter
- Как подключить a Porter 5
- Контроль тока в замкнутом контуре
- Установка носильщика на мототрик PDQ
- Портер: отключение рекуперативного торможения
- Регулировка предела тока портера
- DMR-203 Радиоуправление портера 5/10
- Вождение носильщика by Raspberry Pi
- Pro-120 Mk2
- Ограничение тока в Pro-120 [и др.]
- История Pro-120 Mk2
- Ключевые компоненты Pro-120
- Модификация Pro-120 для других напряжений
- Pro-120 Модификация для обеспечения однонаправленного управления
- Pro-120 Robot Wars Version
- Pro-120 Опции зажигания
- Заземляющие предохранители: почему они срабатывают?
- Советы по поиску неисправностей Pro-120
- PRO-120 Снижение рампы
- Разъем расширения фитинга
- PRO-120: несколько ведомых устройств
- Внутренняя схема источника питания и защиты
- Проводка для использования кнопки
- Pro-360
- Версии программного обеспечения Pro-160/360
- Pro-160 / 360 Коды неисправностей
- SST
- Настройки SST-031 для дроссельной заслонки Холла
- Принадлежности
- Настроенные дуговые потенциометры
- Настройка тахометра
- RB4T /
- RBT Поворот кастрюли
- DMR-203/213
- Радиоуправляемый предохранительный выключатель дроссельной заслонки и реверс
- DMR-203: Использование с контроллерами серии 4QD
- Отказ радиоприемника
- Отказ выпадения DMR-203
- Джойстики
- Поставщики джойстиков
- Примечания по применению
- Примечания по применению
- Green
- Рекомендации по подключению радиоуправления
- Управление с помощью микропроцессора
- Предметы для роботов
- Подавление двигателей в Robot Wars
- Крутящий момент
- Запуск с помощью роботов
- Рулевое управление роботов
- Поставщики моделей локомотивов DNO и звуковые карты
- Булавы с тестовыми платами контроллеров
- Интерфейс DCC / Airwire
- Схема подключения двойного заголовка [DNO]
- Mtroniks и торможение рекуперацией
- Буксировка
- Phoenix Loco Wiring Relay
- Loco Control: Hand Control Доска
- Проблемы с двойным заголовком 9 0004
- Двойной переключатель направления
- Лодки
- Перегрев в лодках
- Зарядка под парусом
- Багги для гольфа
- Напряжение стояночного тормоза
- Багги Fraser Golf3 150 9000 для автомобилей Golf4 для автомобилей Golf4 — Обзор
- Характеристики контроллера
- Перечень функций
- Программируемые параметры Pro-150
- Рампы ускорения и замедления
- Цепь зажигания
- Запрет
- Установка компонентов
- 9004 9000
- Шумоподавление двигателя
- Схемы принадлежностей
- Диод-ловушка
- DMR-203 Радиоуправление переносным устройством 5/10
- Проводка для ручного управления и радиоуправления
- Электропроводка локомотива: ручное управление и плата реле звукового сигнала
- Ножка Педаль
- Схемы подключения приложений
- Управление несколькими скоростями
- Зарядка батареи 24 В от источника 12 В
- Рекомендации по подключению радиоуправления
- Несколько контроллеров [двойное заголовок]
- Переключатель с двумя направлениями
- Схемы подключения контроллера
- Pro-150 с шунтирующими двигателями
- Схема подключения двойного направления [DNO]
- Схема подключения DNO с помощью Raspberry Pi
- Базовая схема подключения Pro-150
- Управление портером с помощью Raspberry Pi
- Переключение для двойного направления
- Обнаружение столкновений / Автоматические реверсивные схемы
- Типовая проводка для контроллеров PRO, DNO, VTX и NCC
- Проводка для ручного управления и радиоуправления
- Проводка для кнопочного использования
- Варианты проводки UNI / Egret
- Несколько контроллеров [двойное заголовок]
- Передовой опыт установки
- Захват d iode
- Предохранители и автоматические выключатели
- Надлежащая электромонтажная практика
- Двигатели
- Внутренняя проводка Rhino VX
- Последовательные или параллельные двигатели
- Производители двигателей
- Типы двигателей
- Подробное описание двигателей
- Примеры двигателей ]
- Обзор типов двигателей
- Номинальные характеристики двигателя Общая информация
- Старые контроллеры
- Номера плат
- 1QD
- Примечания по подключению Easybike
- 1QD Регулятор скорости
- 2
- Eagle
- Eagle Speed Controller
- Egret
- Egret Speed Controller
- NCC
- Разъем расширения NCC
- Разъем расширения NCC
- Батареи Rampage / VTX) 90 004
- Внутренняя схема источника питания и защиты
- Контроллер скорости NCC
- Рабочие напряжения VTX и NCC
- Описание цепи NCC
- Поиск неисправностей VTX / NCC
- NCC Mark 2 История номеров выпусков
- NCC Mark 1 История номеров
- Ключевые компоненты NCC
- Отказ стабилитрона NCC
- Porter 40
- Регулятор скорости Porter 40
- Porter 40: использование с входом PWM
- PRO-120 Mark 1 1 Speed 120 Контроллер
- Ограничение тока в Pro-120 [и др.