Подключение трехфазного счетчика через трансформаторы тока: Подключение счетчика через трансформаторы

Содержание

Схема подключения трехфазного счетчика: через трансформаторы, напрямую

Трехфазные сети в частные дома проводят нечасто, но все-таки, при большом планируемом потреблении разрешение можно получить. С одной стороны, это хорошо, так как есть возможность мощные приборы подключать к трехфазной цепи, то есть использовать провода меньшего сечения. С другой — сама схема сложнее, сложнее разбиение потребителей на группы, так как далеко не вся нагрузка трехфазная, а при использовании обычной техники нежелательно допускать перекос фаз. К тому же даже схема подключения трехфазного счетчика гораздо сложнее, чем однофазного. В общем, нет плюсов без минусов.

Содержание статьи

Типы трехфазных счетчиков

Вообще, тип счетчика, а иногда и его марка, указан в проекте электрификации. Очень редко случается, но у вас могут спросить, какой трехфазный счетчик вы желаете. Такие либеральные проэктанты встречаются крайне редко, и все же, стоит хоть немного разбираться в теме.

Есть трехфазные счетчики для подключения трех и четырех проводов. Первые подключаются если нет «нулевого» повода. С этим разобраться несложно.

Далее необходимы выбрать тип счетчика:

  • Трехфазные счетчики прямого включения. Наиболее простое подключение, так как подсоединяются напрямую к сети. Мощность подключаемой нагрузки не более 60 кВт, ток не более 100 А. К ним можно подключать провода сечением 15 мм² (не более 25 мм²). Это ограничивает область применения — в основном их ставят в домах и квартирах, на небольших предприятиях.

    Выбор типа трехфазного счетчика зависит от потребления тока

  • Трехфазные счетчики косвенного включения. Их можно подключать только через трансформаторы тока и напряжения. Ставят обычно на предприятиях, потому что ограничений по мощности такой тип не имеет.
  • Полукосвенного (трансформаторного) подключения. Также требуют включения через трансформаторы, но не настолько мощные, как косвенные, поэтому могут применяться в частных домах.
    При определении платы за электроэнергию показания необходимо умножать на передаточный коэффициент.

Выбирать вам особо не придется, так как тип счетчика, обычно, тоже указывается в проекте. Для частных домов либо прямого, либо полукосвенного подключения, в квартирах преимущественно прямого. Прямое подключение проще в реализации (просто завести провода на клеммы), элементарно считать показания — просто списывать их. При установке полукосвенного счетчика, нужны трансформаторы тока (ТТ) или напряжения (зависит от проекта) и рекомендовано подключение через испытательную коробку. Под все эти устройства требуется место в щите. Что еще надо помнить, что при расчете показаний требуется учитывать коэффициент трансформации для каждой фазы. То есть, надо будет показания умножать на этот коэффициент.

Принцип работы  счетчика

Однофазные и трехфазные счетчики устроены по одному принципу. Разница только в том, что в сети 380 вольт учет ведется отдельно по каждой из фаз, а затем суммируется.

Давайте разберемся, как работает счетчик для одной фазы, после чего понять устройство з-х фазного несложно. Ниже изображена блок-схема современного прибора с прямым подключением.

Клеммы для подключения проводов обычно располагаются в указанном на рисунке порядке, но лучше проверить по паспорту конкретного счетчика

Электронные модели

Электронные счетчики электроэнергии могут работать как в сетях переменного, так и в сетях постоянного тока. Постоянное напряжения обычно используется на предприятиях, так что для квартир и частных домов оно не слишком важно. Если сравнивать с электромеханическими моделями, по размерам электронные намного меньше, так как в них мало крупногабаритных элементов. Кроме того, они надежнее, так как нет подвижных деталей. Есть у электронных еще один плюс — они учитывают как активную, так и реактивную нагрузку (сумма индуктивной и емкостной составляющей).

Трансформатор напряжения подключен между фазой и нулем, трансформатор тока — в разрыв фазного проводника. Данные с трансформаторов передаются на преобразователь, где трансформируются в частотные сигналы и поступают в микроконтроллер. В нем расшифровываются показания и записываются в ОЗУ (оперативное запоминающее устройство). Параллельно микропроцессор руководит электронным реле и дисплеем.

Блок-схема электронного счетчика электроэнергии

Данные в ОЗУ сохраняются продолжительный период времени, записи делаются по типу дневника. В нем фиксируется расход электроэнергии по датам и времени, что позволяет провести анализ расхода. В некоторых модификациях, электронные трехфазные счетчики могут передавать информацию о расходе по специальному каналу. Этот канал может быть подключен к домашнему компьютеру, системе умный дом. При определенных настройках может автоматически передавать данные в абонентскую службу для проведения расчетов.

Еще одна функция электронных приборов учета — многотарифный учет. При наличии нескольких тарифных сеток, зависящих от времени, величина потребленной в разное время энергии, записывается в разные ячейки. При снятии показаний, данные списываются, умножаются на свой тариф. Использование многотарифного учета позволяет экономить на счетах за электричество.

Электромеханические или индукционные

Учет энергии в индукционных счетчиках построен на отслеживании параметров переменного магнитного поля, поэтому работать такие устройства могут только с переменным током.

Устройство индукционного электромеханического счетчика

Основной элемент индукционного 3-х фазного счетчика — специально сконструированный магнитопровод с прорезью. В прорезь вставляется край диска, закрепленного на оси. Через одну из катушек магнитопровода проходит ток, вторая подключена параллельно. К плоскости диска при помощи шестеренок подключен механический счетчик, отсчитывающий повороты диска.

Ток, проходя по магнитопроводу, создает магнитное поле, а оно вихревые потоки в алюминиевом диске. Взаимодействие магнитного поля и вихревых потоков создает крутящий момент, который заставляет диск крутиться вокруг своей оси. Чем больше сила тока, тем более мощное генерируется поле, тем быстрее вращается диск, тем быстрее сменяются показания на счетчике.

Схема подключения трехфазного счетчика прямого включения

Как уже сказано выше, подключение трехфазного счетчика прямого включения очень простое. Как и в случае с однофазным, к входным клеммам подключаются провода с вводного автомата. С выходных клемм уходят на нагрузку (обычно на противопожарное УЗО, а далее, уже на автоматы линий).

Схема подключения трехфазного счетчика прямого подключения

Обратите внимание, с выхода счетчика провод нейтрали заводится на шину. На другие устройства ноль подается с этой шины. Как видите, подключение совсем несложное. Важно не запутаться с фазами. Для этого лучше использовать цветные провода. Соблюдение цветовой маркировки в разы облегчает разводку электропроводки.

На схеме выше на счетчик заведено сразу четыре провода, включая нейтраль. И это правильно и резонно. Но есть и другая схема, по которой защитный PEN проводник подается не на счетчик, а заводится на шину, а с нее при помощи тонкого провода подается на соответствующий вход счетчика. Эта схема может существовать, так как в ПУЭ пункт 1.7.135 есть прямое указание на возможность такого подключения.  Даже есть счетчики под такую схему — с семью выходами (а не с восемью, как обычно). Например, Энергомера СЕ303-S34.

Вторая схема подключения трехфазного счетчика прямого типа

Но не все подразделения энергосбыта одобряют эту схему. Дело в том, что при таком подключении провод PEN можно отключить. В случае с однофазной сетью это приводит к останову счетчика. С трехфазными не так. Экран погаснет, но счетчик продолжит считать, так как для работы ему достаточно наличия трех фаз. Во всяком случае так утверждают производители. Вот только они не исключают того, что погрешность учета повысится. И никто не знает в какую сторону. Чтобы предотвратить остановку счетчика, некоторые подразделения Энергосбыта ставят три пломбы — как на рисунке выше. Самое неприятное в этом случае — опломбировка шины, ведь может понадобится вносить изменения в схему.

Через трансформаторы тока

При большом потреблении тока — более 100 А — счетчики прямого подключения работать не могут. В этом случае для частного дома рекомендовано подключение полукосвенного прибора учета через трансформаторы тока. Для этого подключения необходимы три трансформатора с определенными параметрами.

  • Коэффициент трансформации. Для определения этой характеристики необходимо посчитать максимальное потребление тока (не забудьте учесть пусковые токи). Эти данные вы подаете в проектную организацию, она рассчитывает требуемый коэффициент трансформации. Обычно это 100/5, но могут быть и другие. Полный перечень возможных вариантов в таблице ниже.

    Коэффициенты трансформации и сопротивление обмоток трансформаторов тока

  • Класс точности. Для того чтобы учет был с минимальными погрешностями, ищите трансформаторы с точностью 0,5S.
    При низком энергопотреблении (например, ночью или когда все на работе) они обеспечивают небольшую погрешность.

Для чего нужны трансформаторы тока при подключении счетчиков? Чтобы измерение потребленной электроэнергии было проще и дешевле. Если у вас максимальное потребление тока 100 А, соответственно, измерительный прибор (счетчик) должен быть рассчитан на прохождение такого тока. Обмотка измерительного прибора, которая выдержит 100 А, во-первых, будет дорогой, во-вторых, громоздкой. И провода для подключения такого прибора придется использовать очень толстые. В общем, неудобно и дорого. Трансформаторы тока подключаются к фазным, пропорционально преобразуют входной ток в меньший номинал и подают на стандартный измерительный прибор (счетчик в данном случае). Во сколько раз уменьшается ток и показывает коэффициент трансформации? Например, трансформатор с коэффициентом трансформации 40/5 уменьшает ток в 8 раз, 100/5 — в 20 раз.

А почему почти всегда ток уменьшается до 5 А? Это одна из стандартных величин, прописанная в нормативах. Могут быть еще варианты с 1 А, но они используются очень редко. Просто все измерительные приборы для трансформаторов тока выпускаются на 5 А или 1 А, все схемы строятся исходя из этого.

Трансформаторы тока и их подключение

Для корректной работы схемы необходимо строго соблюдать правила подключения трансформаторов. Трансформатор имеет следующие клеммы:

  • Л1 — для подключения фазного провода от входного автомата.
  • Л2 — подключают провод на нагрузку.
  • И1 и И2 — измерительные контакты для подключения клемм счетчика.

Что такое трансформатор тока для подключения счетчика

Весь потребляемый ток протекает по первичной обмотке трансформатора тока. Во вторичной обмотке возникает пропорционально уменьшенный ток, который идет на счетчик.

Вот так выглядит наглядная схема подключения 3-х фазного счетчика через ТТ

При вычислении расхода электроэнергии показания счетчика умножаются на коэффициент трансформации. Таким образом высчитывается реальный расход электричества. Все это так, но подключать трансформаторы можно по-разному.

Десятипроводная

Наиболее популярная схема подключения трехфазного счетчика через трансформаторы — десятипроводная. Она дает высокую степень защиты, так как цепи тока и напряжения разделены. Недостаток схемы — большое количество проводов, соответственно высокая вероятность неправильного подключения.

Десятипроводная схема подключения трехфазного счетчика через трансформаторы тока

Подключение происходит в следующем порядке:

  • С выхода защитного автомата фазные провода подаем на входные клеммы первичной обмотки трансформаторов тока. Обозначаются они Л1.
  • С выходов первичной обмотки трансформатора провода идут к нагрузке. Если говорит конкретно по приборам, после счетчика обычно ставят противопожарное УЗО. В этом случае выходы Л2 подают на входы этого устройства.
  • С клеммы И1 провод подаем на клемму для подключения первой фазы, со второго выхода этой фазы тянем провод на клемму И2. так подключаем все три фазы.
  • Нулевой провод  подключать можно двумя способами (описано для прямого подключения):
    • Если на счетчике есть две клеммы для нейтрали, заводим на N1, с выхода N2 подключаем к шине и далее разводку по схеме делаем с шины.
    • Если на счетчике только одна клемма для подключения нейтрали, сначала провод заводим на шину, с нее подаем на гнездо счетчика для подключения нуля.

В общем, вполне понятная и логичная схема, вот только проводов много. Чтобы не запутаться, собирайте схему последовательно. Сначала можно линейную часть, затем — измерительную. Или наоборот.

Звездой

Есть еще одна популярная схема подключения трехфазного счетчика — звездой. В этом случае все выхода измерительных обмоток трансформатора (И2) сходятся в одной точке.

Подключение счетчика электроэнергии через трансформаторы тока по схеме звезда

От описанной выше она отличается двумя моментами:

  • Все выходы измерительных обмоток трансформаторов подаются в последнее гнездо счетчика.
  • Все выходные гнезда для подключения фаз также соединяются между собой и подключаются в предпоследнее гнездо на счетчике. Туда же заводится провод с шины нейтрали.

При таком подключении проводов меньше, и обратите внимание, общая точка вторичных обмоток обязательно заземлена. Недостаток этой схемы — она слишком сложна для проверки.

Через испытательную колодку

Чтобы проще было проверять состояние трансформаторов тока, рекомендовано подключать трехфазный счетчик через испытательную колодку (называют еще испытательный блок). Как известно, оставлять вторичную обмотку без нагрузки нельзя, так как это приводит к ее пробою. При подключении трехфазного счетчика через испытательную колодку, закоротить вторичную обмотку трансформатора при необходимости легко — достаточно установить перемычку между гнездами.

Подключение через клеммную колодку

Испытательная клеммная колодка (блок) устанавливается только если используется десятипроводная схема подключения трехфазного счетчика. Сам блок ставится между счетчиком и трансформаторами.

Более наглядная схема подключения трехфазного счетчика через испытательный блок

Суть схемы не меняется, но в обслуживании узел учета проще. Всегда можно обесточить оборудование обеспечив видимый разрыв цепи. Это оборудование стоит не так много, обслуживание и измерения оно значительно упрощает. Вот только увеличивается число точек коммутации, но, в данном случае, этот недостаток не так критичен.

Как подключить трехфазный счетчик в однофазную сеть

Редко, но бывает, что есть трехфазный счетчик, а его надо установить в сеть 220 В. Это возможно, если прибор учета прямого включения. В этом случае подключается одна из фаз, остальные остаются просто незадействованными.

Схема подключения трехфазного счетчика в однофазную сеть

Само подключение несложное, но могут возникнуть проблемы с энергопоставляющей организацией. Они далеко не всегда принимают такое подключение. Обычно мотивируя тем, что остаются варианты для хищения электроэнергии.

Схема подключения трехфазного счетчика: через трансформаторы, напрямую


Каждый из нас пользуется электричеством. Мы используем электроэнергию везде, где только можно. Телевизоры, электрические плиты, телефоны, чайники и многое другое. Электроэнергия уже стала частью нашей жизни.

У каждого человека в доме есть приборы, подключённые к электросети. Вся электроэнергия, поступающая в квартиры, предоставляется компаниями-поставщиками. Следовательно, за её использование следует платить. Но как можно учесть количество потребляемой электроэнергии?

Для этих целей существует особый прибор, который есть в каждой квартире. Он ведёт учёт всего потребляемого электричества, питающего все электроприборы в доме. Его показания и учитываются при выставлении счёта за потребление электроэнергии. Его наличие обязательно в каждом доме и без него просто невозможно подключиться к электросети. Его обязательно нужно подключать для учёта.

Речь идёт об электросчётчике. Читатель уже, наверное, догадался по прошлому абзацу, о каком именно приборе там говорится. Каждый знает, как выглядит электросчётчик, но далеко не каждый имеет представление о том, как подключать однофазный счётчик.

В данной статье будет рассказано о том, как осуществить подключение однофазного счётчика и о том, на что следует обратить внимание при осуществлении его установки. Эта информация точно будет интересна тем читателям, которые занимаются строительством дома или же заняты ремонтом.

Можно ли самому подключить электросчётчик?

Таким вопросом нередко задаются многие пользователи, учитывая тот факт, что не всегда электроснабжающая организация может позволить своим потребителям самостоятельно устанавливать счётчик, опасаясь манипуляций со стороны последних для уменьшения платы за электричество.

В принципе, потребитель может установить электросчётчик, но компания-поставщик электричества всё равно обязательно должна проконтролировать состояние установленного счётчика и затем его опломбировать. Так что у пользователя есть возможность установить электросчётчик самому.

Виды однофазных счётчиков

Прежде чем установить электросчётчик у себя в квартире, пользователь должен сначала определиться с тем, какой счётчик ему больше подходит. Также стоит обратить на тип подключения прибора и на разрешение его эксплуатации. Конечно, всегда можно обратиться именно в электроснабжающую компанию и приобрести электросчётчик у них, ведь это они будут отвечать за проверку прибора и его обслуживание. Но лучше ознакомиться с тем, какие виды счётчиков вообще существуют.

Как могут подключаться электросчётчики?

Итак, электросчётчики могут различаться по типу своего подключения. При выборе счётчика можно обратить на это внимание, так что тут следует остановиться на них поподробнее.

Какие виды подключения электросчётчиков существуют:

  • Прямое подключение. В таком случае электросчётчик включается непосредственно в силовую цепь. Тут стоит отметить, что подавляющее большинство однофазных счётчиков подключается именно таким образом;
  • Трансформаторное подключение. Название этого вида подключения говорит само за себя. В этом случае электросчётчик подключается к сети через специальные трансформаторы. Электросчётчики с таким типом подключения используются больше в промышленных целях, так как рассчитаны на электросети с очень большой нагрузкой.

Виды конструкции счётчиков электроэнергии

Теперь стоит сказать пару слов о том, какие бывают однофазные электросчётчики, если брать во внимание их конструкционные особенности:

  • Электромеханические счётчики, называющиеся также индукционными. Это электросчётчики старого образца. Их ставили ещё в домах наших родителей, бабушек и дедушек. Они имеет весьма низкий класс точности, да и к тому же постепенно уступают место более современным и мощным моделям;
  • Электронные счётчики. Это уже современные модели, которые имеют высокий класс точности. Приходят на смену устаревшим индукционным счётчикам. Тут, кстати, следует отметить существование электронных счётчиков, но с электромеханическим отсчётным устройством.

Включение в однофазную цепь

Прежде чем описывать эту схему подключения счетчика к сети 380 Вольт необходимо дать краткое описание отличий трехфазного напряжения от однофазного. В обоих видах используется один нулевой проводник N. Разность потенциалов между каждым фазовым проводом и нулем равна 220 В, а по отношению этих фаз друг к другу – 380 В. Такая разность получается из-за того, что колебания на каждом проводе сдвинуты на 120 градусов (рисунки 3 и 4).

Рисунок 3 – Колебания напряжения

Рисунок 4 – Распределение напряжения по фазам

Однофазное напряжение используется в частных домах, на даче, а также в гаражах. В таких местах потребляемая мощность редко превышает 10 кВт. Это также позволяет использовать на участке более дешевые провода с сечением 4 мм.кв., т. к. потребляемый ток ограничен 40 А.

Для мощных электроприемников рекомендуется использовать трехфазное электроснабжение во избежание перекоса фаз выше номинального значения. При установке счетчика рекомендуется проверить несимметрию нагрузки токоизмерительными клещами. Распределение нагрузок между фазами сети освещения общественных зданий должно быть, как правило, равномерным; разница в токах наиболее и наименее нагруженных фаз не должна превышать 30 % в пределах одного щитка и 15 % — в начале питающих линий. (п. 9.5 СП 31-110)

Принципиальная схема подключения трехфазного счетчика в однофазную сеть (ОС) встречается не так часто, поскольку в таких случаях используются однофазные приборы учета. В большинстве случаев схема аналогична электросхеме прямого включения, но фазы 2 и 3 не подключаются (подсоединение происходит на одну фазу). Кроме того, после монтажа могут возникнуть проблемы с поверяющими организациями.

Также о возможных проблемах работы трехфазных электросчетчиков при присоединении к двухпроводной сети можно посмотреть на этом видео:

Подсоединение счетчика к сети 220 Вольт

Инструменты и комплектующие для установки электросчётчика

Перед тем как начать установку электросчётчика, нужно удостовериться в том, что для осуществления процедуры имеются все необходимые составляющие.

Для установки прибора потребуется приобрести следующие комплектующие:

  • Сам счётчик электроэнергии. Стоит сразу же проверить наличие специального штампа ОТК, а также пломбы на его корпусе;
  • В том случае, если устанавливать электросчётчик планируется в имеющийся бокс или электрощит, следует обязательно проверить, есть ли там требуемое крепление. Обычно счётчики электроэнергии крепятся на трёх болтах. В том случае, если в боксе нет DIN-рейки, а на счётчике она имеется, то её можно просто приобрести в магазине;
  • Если старого бокса нет, то придётся приобрести новый;
  • Для общей безопасности рекомендуется установить вместе с электросчётчиком автоматические выключатели. Можно также пойти ещё дальше и установить устройства защитного отключения;
  • В монтаже счётчика потребуется использование монтажного провода;
  • Для того чтобы закрепить бокс или электрощит с установленным туда счётчиком на строительное сооружение, потребуется приобрести набор крепёжных элементов. Речь идёт о дюбелях, саморезах и пластиковых стяжках;

Для того чтобы установить электросчётчика, потребуется позаботиться о наличии под рукой следующих инструментов:

  • Для крепления электрощита на стену строительного сооружения понадобится перфоратор;
  • кусачки;
  • Плоскогубцы;
  • Съёмник изоляции;
  • Строительный нож;
  • Линейка;
  • Набор отвёрток;
  • Рулетка;
  • Строительный уровень;
  • Индикаторная отвёртка — понадобится для проверки наличия напряжения;
  • Может понадобиться и паяльник.

Как подключить счётчик?

После установки однофазный электросчётчик необходимо подключить. Для этого потребуется позаботиться о выполнении следующих пунктов:

  1. На время осуществления всего процесса по подключению электросчётчика потребуется отключить автомат или пробки. В некоторых ситуациях придётся обесточить всю линию;
  2. Ничего трудного в подключении счётчика электроэнергии нет, так как на обратной стороне любого такого устройства имеется схема, согласно которой можно осуществить подключение прибора;
  3. Наконец, потребуется осуществить подключение проводов к контактам, находящимся на клеммной планке. Если счётчик однофазный, то у него имеется четыре клеммы, которые следует подключать в следующем порядке: Ввод фазы к квартире от электросети;
  4. Выход фазы внутрь квартиры;
  5. Ввод нуля к квартире от электросети;
  6. Вывод нулевого изолятора внутрь квартиры.

Подключение 3х фазного счетчика

Приборы данного типа включаются в эклектическую сеть напрямую, по аналогии с однофазными счетчиками. Они обычно рассчитаны на небольшую пропускную мощность (ток до 100 А), отверстия под провода имеет сечение 25мм2 (или даже 16 мм2).

    Процесс подключения проводов имеет вид:
  1. ввод фазы А;
  2. к нагрузке фазы А;
  3. ввод фазы В;
  4. к нагрузке фазы В;
  5. ввод фазы С;
  6. к нагрузке фазы С;
  7. ввод нуля;
  8. вывод нуля к нагрузке.

Подключение трехфазного счетчика через трансформаторы тока схема

Максимальный ток счетчика электроэнергии, как правило, ограничен значением 100 А, поэтому применить их в мощных электроустановках невозможно. В этом случае подключение к трехфазной сети идет не напрямую, а через трансформаторы.

Это также позволяет расширить диапазон измерения приборов учета по току и напряжению. Однако, основная задача входных трансформаторов – уменьшить первичные токи и напряжения до безопасных значений для ЭС и защитных реле.

  • Полукосвенное

При подключении счетчика через трансформатор необходимо следить за полярностью начала и конца обмоток трансформатора тока, как первичной (Л1, Л2), так и вторичной (И1, И2).

Аналогично нужно следить за полярностью при использовании трансформатора напряжения. Общую точку вторичных обмоток трансформаторов необходимо заземлять.

    Назначение контактов трансформатора тока:
  1. Л1 — вход фазной (силовой) линии.
  2. Л2 — выход фазной линии (нагрузка).
  3. И1 — вход измерительной обмотки.
  4. И2 — выход измерительной обмотки.

Такой тип включения электросчетчика в сеть 380 Вольт позволяет разделить цепи тока и напряжения, что повышает электробезопасность. Минусом данной электрической схемы трехфазного подсоединения является большое количество проводов, необходимых для подключения ЭС.

Такой тип подключения счетчика электроэнергии с заземлением к сети 380 В требует меньшего количества проводов. Включение по схеме звезда достигается объединением вывода И2 всех обмоток ТТ в одну общую точку и подсоединением к нулевому проводу.

Недостатком этого способа подключения электросчетчика в сеть 380 Вольт является ненаглядность схемы соединений, что может усложнить проверку включения для представителей энергоснабжающих компаний.

Такая схема подключения трехфазного счетчика используется на высоковольтных присоединениях. Такой тип непрямого присоединения используется в большинстве случае лишь на крупных предприятиях и приведен лишь для ознакомления.

В этом случае используются не только высоковольтные трансформаторы тока, но и трансформаторы напряжения. Для трехфазного подключения необходимо заземлять общую точку трансформаторов тока и напряжения.

Для минимизации погрешности измерений если присутствует несимметрия фазовых напряжений необходимо, чтобы нулевой проводник сети был связан с нулевым зажимом счетчика.

Трансформаторы тока для электросчетчиков

Счетчики для расчетов за потребляемую электроэнергию между энергоснабжающей организацией и потребителями следует устанавливать на границе раздела сети по балансовой принадлежности и эксплуатационной ответственности между энергоснабжающей организацией и потребителем.

Число счетчиков на объекте должно быть минимальным и обосновано принятой схемой электроснабжения объекта и действующими тарифами на электроэнергию для данного потребителя.

Расчетные счетчики у арендаторов, находящихся в жилых, общественных и других зданиях и обособленных в административно-хозяйственном отношении, надо устанавливать раздельно для каждого самостоятельного потребителя (организации, домоуправления, ателье, магазина, мастерской, склада и т.д.).

Коэффициент трансформации трансформаторов тока следует выбирать по расчетной присоединяемой нагрузке с учетом работы установки в аварийном режиме.

Завышенным по коэффициенту трансформации считается такой трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика (номинальный ток — 5 А).

В зависимости от величин сопротивления потребителей вторичной цепи Z2, Ом, и вторичной нагрузки трансформатора тока S2, ВА, один и тот же трансформатор тока может работать в различных классах точности.

Для обеспечения достаточной точности показаний приборов и действия аппаратов защиты, подключенных к трансформатору тока, необходимо, чтобы величина Z2 не выходила за пределы номинальной нагрузки трансформатора тока.

Угловая погрешность определяется углом δ между векторами тока I1 и I2 и учитывается только в показаниях счетчиков и ваттметров.

Трансформаторы тока имеют следующие классы точности: 0,2; 0,5; 1; 3; 10, что соответствует величинам токовых погрешностей.

    Класс точности трансформаторов тока должен быть:
  1. для счетчиков коммерческого учета — 0,5;
  2. для электроизмерительных приборов— 1;
  3. для реле токовых защит — 3;
  4. для лабораторных приборов — 0,2.

Пример выбора трансформаторов тока для подключения счетчика. Расчетный ток присоединения в нормальном режиме — 90 А, в аварийном — 126 А. Выбирают трансформаторы тока с коэффициентом трансформации nт = 150/5 исходя из нагрузки в аварийном режиме.

Проверка. При 25%-ной нагрузке ток в первичной цепи составляет I1 = (90 х 25)/100 = 22,5 А.

Ток во вторичной цепи (при коэффициенте трансформации nт = 150 : 5 = 30) составит:

I2 = I1/nt = 22,5/30 = 0,75 А.

Сечение жил проводов или кабелей от трансформаторов тока до счетчиков должно быть не менее: медных — 2,5, алюминиевых — 4 мм2. Максимальное сечение жил проводов и кабелей, которые возможно подключить к клеммам прибора, не должно превышать 10 мм2.

При выборе трансформаторов тока к расчетным счетчикам рекомендуется использовать данные из ПУЭ (таблица «Выбор трансформаторов тока»).

Трансформатор тока подключение сечение. Подключение счетчиков через трансформаторы.

Доброе время суток, дорогие читатели!

Давненько я ничего не писал. Тому есть причина. Делаю ремонт.

Хотел было снять несколько роликов о монтаже проводки в квартире, но понял что это не совсем интересно.

Поэтому сегодня статья о счетчиках электрической энергии.

Пафосный и занудный вариант ее я выбросил и решил писать, как будто рассказываю рядовому гражданину, например Вам, который ничего о счетчиках е знает.

Когда-то у меня в перечне работ лаборатории был вид работ: проверка и наладка цепей учета. Даже методика была. А в электрических сетях служба по контролю за учетом электроэнергии вообще входила в состав лаборатории, по крайней мере у нас в Рязани…

Впрочем, начнем.

Итак, счетчики бывают однофазные и трехфазные. Первые в основном применяются в частном секторе (дома, квартиры, гаражи), вторые везде.

По типу подключения счетчики делятся на:

счетчики прямого включения

на рисунке изображено подключение однофазного счетчика.

счетчики включаемые через трансформаторы тока. Про трансформаторы тока статья уже на сайте. Читайте с удовольствием.



на рисунке изображено подключение трехфазного счетчика через трансформаторы тока.

Чем обуславливается выбор типа подключения? Ожидаемым током нагрузки .

Обычно счетчики прямого включения рассчитаны не более чем на 100 А. Обращайте внимание на максимальный допустимый ток счетчика в паспорте или на самом счетчике, т.к. бывают счетчики на 6 А, которые применяют либо для подключения через трансформаторы тока, либо там где нагрузка мала.

Чем обусловлен выпуск счетчиков на разный максимальный возможный ток? Минимизацией погрешности измерений . Предпочтительнее всего когда нагрузка счетчика не превышает 2/3 максимального возможного тока.

Почему бы не выпускать счетчики подключаемые только через трансформаторы тока? Потому что трансформаторы тока так же вносят ошибку в результат измерений.

Поэтому энергоснабжающие организации выбрали золотую середину: стараются убрать трансформаторы тока с коэффициентом трансформации менее 100/5, предписывая установку счетчиков прямого включения в этом случае.

Какие часто возникают вопросы по однофазным счетчикам?

Благодаря тому, что межповерочный интервал счетчика электрической энергии составляет 16 лет (уточнить его можно в паспорте на счетчик) о нем благополучно забыли. Но счетчик это измерительный прибор, который необходимо поверять через определенный промежуток времени, чтобы удостовериться, что он все еще правильно учитывает электроэнергию. С недавних пор об этом вспомнили и пошли гражданам предписания о необходимости поверить прибор учета, а то и заменить.

Чем обосновано требование замены счетчика? Ранее класс точности счетчика должен был быть не хуже 2,5, теперь требования ужесточились, и требуются счетчики с классом точности не хуже 2,0.

Отмечу, что чем меньше число обозначающее класс точности, тем точнее измерение.

В процессе своей деятельности я сталкивался со счетчиками класс точности которых 0,2.

Кроме самого счетчика имеется куча требований к антуражу:

— Высота установки счетчика 0,8 – 1,7 м от пола до клемной колодки.

— Провода для подключения должны быть сечением не менее 2,5 мм 2 если они из меди и не менее 4 мм 2 если они из алюминия. И желательно чтобы жила была не многопроволочной.

— Перед счетчиком должно быть коммутирующее устройство – автоматический выключатель или выключатель нагрузки – это сейчас, а ранее применялись пакетные выключатели. Лучше если оно будет двухполюсным. Т.е. при отключении коммутирующего устройства обрывается не только фаза,но и ноль.

Для чего это нужно? Для безопасного обслуживания прибора учета.

— После счетчика обычно ставятся автоматические выключатели.

Советую замену счетчика отдать на откуп энергоснабжающей организации.

Почему? Дело в том что эта услуга не так дорога, зато работа будет выполнена настоящими профессионалами, которые потом еще счетчик и опломбируют. Если же Вы сами счетчик поменяете или установите, с Вас все равно возьмут те же деньги за проверку правильности подключения и последующую опломбировку.

Схема подключения счетчика всегда приводится в паспорте на счетчик и часто дублируется на обратной стороне крышки клемной колодки:


На рисунке обратная сторона крышки однофазного счетчика.

Гораздо больше вопросов по трехфазным счетчикам.

Трехфазные счетчики бывают на 380 В и на 100 В. Вторые применяются для установки приборов учета на стороне 6 – 10кВ с питанием их от трансформаторов напряжения.

Читайте статью о трансформаторах напряжения на сайте с удовольствием.

Кроме того есть масса особенностей при включении счетчика через трансформаторы тока. Кстати, схемы их подключения так же приводятся в паспорте на счетчик.



На рисунке простейшая схема включения счетчика через трансформаторы тока.

Следует учитывать обязательно направление протекания тока через трансформаторы тока. Если один из трансформаторов перевернуть (Л1 и Л2 поменять местами), а И1 и И2 оставить подключенными по прежнему, то показания счетчика будут неверны.

Аналогично будет и если И1 и И2 одного из трансформаторов тока поменять местами.

Так же нельзя напряженческие проводники и токовые от разных фаз подключать на одну группу контактов счетчика. (например, контакты 1, 2, 3 предназначены для подключения фазы “А” и если на клеммах 1 и 3 подключены токовые цепи фазы “А”, то на клемму 2 сажать проводник с напряжением фазы “В” нельзя)

Для правильности измерений электронными счетчиками так же важна правильность чередования фаз. Правильность чередования фаз у современных счетчиков можно легко определить используя специальное программное обеспечение или прибор “ВАФ”.

Это не касается электромагнитных счетчиков.

Еще Вы можете столкнуться со счетчиком для измерения только реактивной энергии. Их легко определить по типу. В нем обязательно будет буква “Р”, а на клеммнике не будет клеммы для подключения нуля.

Современные электронные счетчики измеряют и активную и реактивную мощность и еще много чего.

А на возникшие у Вас вопросы по поводу учета электроэнергии я обязательно отвечу.

На сем прощаюсь и желаю успехов!

Разобравшись со схемой подключения однофазного электросчетчика перейдем к изучению схемы подключения трехфазного. Трехфазный счетчик состоит из трех однофазных, укомплектованных в одном корпусе с объединенным устройством суммирования и отображения киловатт*часов. При небольших токовых нагрузках до 5/60 и 5/100 А трехфазные счетчики можно включать напрямую в сеть (трансформаторы тока встроены в счетчик). Если же величина тока в трех фазах выше 100 А, то токовые обмотки () или датчики тока () счетчика подключается к сети через вторичные обмоткам измерительных трансформаторов. Кроме того, если счетчик рассчитан на номинальное напряжение 100 В, то параллельные обмотки подключаются через трансформаторы напряжения.

Схема подключения счетчика напрямую

Подключение трехфазного счетчика напрямую аналогично присоединению к сети однофазного, где вместо одной фазы, к примеру «А», подключаются все 3 фазы «А, В, С». Перед включением счетчика напрямую согласно ПУЭ необходимо перед ним ставить вводной коммутационный аппарат ( , или рубильник с предохранителями) на расстоянии, не дальше 10 метров от счетчика.

Самым оптимальным вариантом является трехфазный автоматический выключатель с номинальным током, меньшим по величине тока трехфазного счетчика. Данная схема используется для ведения учета в частных домах, гаражах, не больших магазинах.

Схема подключения трехфазного счетчика через трансформаторы тока

Если в трехфазной сети величина тока по фазам превышает значение номинального тока трехфазного счетчика, то для подключения прибора учета электроэнергии используются трансформаторы тока. Трансформаторы тока служат в основном для увеличения пределов измерения контрольно-измерительных приборов, нашем случае счетчика, рассчитанных на потребляемый ток до 5 А. Состоят из шинопровода (первичная обмотка Л1, Л2) и вторичная обмотка И1, И2.

Как видно из рисунка, токовые обмотки (1-3, 4-6, 7-9)счетчика нужно подключать к выводам И1 и И2 вторичной обмотки измерительного трансформатора. Обмотки напряжения (2, 5, 8) присоединяются к шинопроводам Л1 и к нулевому проводу, к которым будет приложено напряжение 220 В. Схема соединения токовых и параллельных обмоток называется «звездой»! Трансформаторы тока выпускают следующих значений токов 10/5 А, 15/5 А, ….100/5 А и т.д.

Схема подключения трехфазного счетчика через трансформаторы тока и напряжения

Для ведения учета электроэнергии в напряжением не 127 В, 220 В, 380 В, а выше (35 кВ, 110 кВ) совместно с трансформаторами тока используются трансформаторы напряжения, которые преобразуют во вторичной обмотке 100 Вольт для питания электросчетчика. Трансформаторы напряжения выпускают следующих напряжений: 6000/100 В, 10000/100 В.

Первичные обмотки трансформаторов напряжения подключаются к фазам А, В, С высоковольтной цепи и собираются в схему «звезда». Вторичные обмотки подключаются к обмоткам напряжения счетчика и к нулевому проводу, образуя также схему «звезда». Схема трансформаторов тока аналогична выше изложенной.

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1 Номинальное напряжение трансформатора тока.

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

2 Класс точности.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3 Номинальный ток вторичной обмотки.

Обычно 5А.

4 Номинальный ток первичной обмотки.

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Добрый день, уважаемые читатели сайта «Заметки электрика».

Решил написать подробную статью на тему подключения счетчиков электроэнергии через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).

Все схемы подключения электросчетчиков в данной статье относятся, как к индукционным счетчикам, так и к электронным.

О том, как правильно выбрать трансформаторы тока и трансформаторы напряжения я расскажу Вам в следующей статье. Чтобы не пропустить выходы новых статей на сайте — подпишитесь на рассылку новостей.

Итак, приступим.

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ3 — трансформаторы тока.

Общая точка вторичных обмоток трансформаторов тока и напряжения должна быть заземлена с целью безопасности.

ТТ1 — ТТ3 — трансформаторы тока.

Пунктиром на схеме показано соединение, которое может отсутствовать.

Эта схема подключения счетчика аналогична схеме выше, но без использования трансформаторов напряжения. Примером такого подключения является счетчик .

ТТ1 — ТТ2 — трансформаторы тока. Трансформаторы напряжение отсутствуют.

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моих следующих статей:


ТН1 — ТН2 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Подключение счетчика через трансформаторы тока. Выводы

В завершении статьи о подключении счетчика через трансформаторы тока и напряжения, хочу напомнить Вам, что практически у любого счетчика на крышке от клеммных зажимов изображена схема его подключения с маркировкой и нумерацией выводов. А также имеется паспорт, где все подробно описано.

Однако, лучше все таки заранее знать тип счетчика, место установки, класс напряжения и соответственно схему его подключения.

Электромонтаж токовых цепей и цепей напряжения должен проводиться строго по ПУЭ. Требования ПУЭ к сечению проводов токовых цепей — не меньше 2,5 кв. мм, а цепей напряжения — не меньше 1,5 кв.мм. Все сечения указаны только для медного провода.

P.S. В данной статье размещены не все схемы подключения электросчетчиков, а только самые распространенные и востребованные. Если Вас интересуют и Вы знаете другие схемы, то с удовольствием обсудим их в комментариях.

Чтобы облегчить восприятие материала этой статьи по подключению счетчика через трансформаторы тока и напряжения, я приведу Вам наглядные примеры на каждую из вышеперечисленных схем, используя фото- и видео-ролики, созданные лично мною.

Следите за обновлениями или подпишитесь на новости сайта.

Трансформатор тока для счетчика трехфазного

Схема подключения трехфазного счетчика через трансформаторы тока

  1. Принцип работы измерительных трансформаторов
  2. Коэффициент трансформации электросчетчика
  3. Установка счетчика с трансформаторами тока

В электрических сетях, с напряжением 380 вольт, потребляемой мощностью свыше 60 кВт и током более 100 ампер, используется схема подключения трехфазного счетчика через трансформаторы тока. Данный вариант известен как косвенное подключение. Подобная схема дает возможность измерения высокой потребляемой мощности приборами учета, рассчитанными на низкие показатели мощности. Разница между высокими и низкими значениями компенсируется с помощью специального коэффициента, определяющего окончательные показатели счетчика.

Принцип работы измерительных трансформаторов

Принцип действия данных устройств довольно простой. По первичной обмотке трансформатора, включенной последовательно, протекает фазовый ток нагрузки. За счет этого возникает электромагнитная индукция, создающая ток во вторичной обмотке устройства. В эту же обмотку осуществляется включение токовой катушки трехфазного электросчетчика.

В зависимости от коэффициента трансформации, ток во вторичной цепи будет значительно меньше фазного тока нагрузки. Именно этот ток обеспечивает нормальную работу счетчика, а снимаемые показатели умножаются на величину коэффициента трансформации.

Таким образом, трансформаторы тока или измерительные трансформаторы преобразуют высокий первичный ток нагрузки в безопасное значение, удобное для проведения измерений. Трансформаторы тока для электросчетчиков нормально функционируют при рабочей частоте в 50 Гц и вторичном номинальном токе в 5 ампер. Поэтому, если коэффициент трансформации составляет 100/5, это означает максимальную нагрузку в 100 ампер, а значение измерительного тока – 5 ампер. Следовательно, в этом случае показания трехфазного счетчика умножаются в 20 раз (100/5). Благодаря такому конструктивному решению, отпала необходимость в изготовлении более мощных приборов учета. Кроме того, обеспечивается надежная защита счетчика от коротких замыканий и перегрузок, поскольку сгоревший трансформатор меняется значительно легче по сравнению с установкой нового счетчика.

Существуют определенные недостатки при таком подключении. Прежде всего, измерительный ток в случае малого потребления, может быть меньше стартового тока счетчика. Следовательно, счетчик не будет работать и выдавать показания. В первую очередь это касается счетчиков индукционного типа с очень большим собственным потреблением. Современные электросчетчики такого недостатка практически не имеют.

Особое внимание при подключение нужно обращать на соблюдение полярности. Первичная катушка имеет входные клеммы. Одна из них предназначена для подключения фазы и обозначается Л1. Другой выход – Л2 необходим, чтобы подключиться к нагрузке. Измерительная обмотка также имеет клеммы, обозначаемые соответственно, как И1 и И2. Кабель, подключаемый к выходам Л1 и Л2, рассчитывается на необходимую нагрузку.

Для вторичных цепей используется проводник, поперечное сечение которого должно быть не ниже 2,5 мм2. Рекомендуется применять разноцветные промаркированные провода с обозначенными выводами. Нередко подключение вторичной обмотки к счетчику осуществляется с помощью опломбированного промежуточного клеммника. Использование клеммника позволяет проводить замену и обслуживание счетчика без отключения электроэнергии, поступающей к потребителям.

Схемы подключения

Подключение измерительного трансформатора к счетчику может быть выполнено разными способами. Запрещается использовать трансформаторы тока с приборами учета, предназначенными для прямого включения в электрическую сеть. В подобных случаях вначале изучается сама возможность такого подключения, выбирается наиболее подходящий трансформатор, в соответствии с индивидуальной электрической схемой.

Если измерительные трансформаторы имеют различный коэффициент трансформации, они не должны подключаться к одному и тому же к счетчику.

Перед подключением необходимо внимательно изучить схему расположения контактов, имеющихся на трехфазном счетчике. Общий принцип действия электросчетчиков является одинаковым, поэтому контактные клеммы располагаются на одних и тех же местах во всех приборах. Контакт К1 соответствует питанию цепи трансформатора, К2 – подключение цепи напряжения, К3 является выходным контактом, подключаемым к трансформатору. Таким же образом подключается фаза «В» через контакты К4, К5 и К6, а также фаза «С» с контактами К7, К8, К9. Контакт К10 является нулевым, к нему подключаются обмотки напряжения, расположенные внутри счетчика.

Чаще всего применяется наиболее простая схема раздельного подключения вторичных токовых цепей. К фазному зажиму от входного автомата сети подается фазовый ток. Для удобства монтажа с этого же контакта выполняется подключение второй клеммы катушки напряжения фазы на счетчике.

Выход фазы является окончанием первичной обмотки трансформатора. Его подключение осуществляется к нагрузке распределительного щита. Начало вторичной обмотки трансформатора соединяется с первым контактом токовой обмотки фазы счетчика. Конец вторичной обмотки трансформатора соединяется с окончанием токовой обмотки прибора учета. Таким же образом подключаются остальные фазы.

В соответствии с правилами выполняется соединение и заземление вторичных обмоток в виде полной звезды. Однако это требование отражено не в каждом паспорте электросчетчиков. поэтому во время ввода в действие иногда приходится отключать заземляющий шлейф. Выполнение всех монтажных работ должно происходить в строгом соответствии с утвержденным проектом.

Существует и другая схема подключения трехфазного счетчика через трансформаторы тока. применяемая очень редко. В данной схеме используются совмещенные цепи тока и напряжения. Возникает большая погрешность в показаниях. Кроме того, при такой схеме невозможно своевременно выявить обмоточный пробой в трансформаторе.

Большое значение имеет правильный выбор трансформатора. Максимальная нагрузка требует величины тока во вторичной цепи не менее 40% от номинала, а минимальная нагрузка – 5%. Все фазы должны чередоваться в установленном порядке и проверяться специальным прибором – фазометром.

Установка счетчика с трансформаторами тока

Подключение счетчика через трансформаторы тока

Трансформаторы тока (далее ТТ) – это устройства, предназначенные для преобразования (снижения) тока до значений, при которых возможна нормальная работа приборов учета.

Проще говоря, они используются в щитах учета для измерения расхода электроэнергии потребителей большой мощности, когда непосредственное или прямое включение счетчика недопустимо из-за высоких токов в измеряемой цепи, способных привести к сгоранию токовой катушки и выводу прибора учета из строя.

Конструктивно эти устройства представляют собой магнитопровод с двумя обмотками: первичной и вторичной. Первичная (W1) подключается последовательно к измеряемой силовой цепи, к вторичная (W2) – к токовой катушке прибора учета.

Первичная обмотка выполняется с большим сечением и меньшим количеством витков чем вторичная, часто выполняется в виде проходной шины. Снижение тока (собственно, коэффициент трансформации) – это отношение тока W1 к W2 (100/5, 200/5, 300/5, 500/5 и т. д.).

Помимо преобразования измеряемого тока до допустимых для измерения значений, ввиду отсутствия связи W1 с W2 в ТТ происходит разделение измерительных и первичных цепей.

Схемы подключения счетчика через трансформаторы тока

Для правильного учета электроэнергии с применением ТТ необходимо соблюдать полярность подключения их обмоток: начало и конец первичной имеют обозначение Л1 и Л2, вторичной – И1 и И2.

Схемы полукосвенного подключения трехфазных электросчетчиков (с применением только ТТ) могут быть выполнены в разных вариантах:

Семипроводная. Это устаревшая и наименее предпочтительная в плане электробезопасности схема ввиду наличия связи токовых и измерительных цепей – токовые цепи электросчетчика находятся под напряжением.

Десятипроводная схема. Более предпочтительная и рекомендуемая для использования в настоящее время. Отсутствие гальванической связи токовых цепей прибора учета и цепей напряжения делает подключение счетчика более безопасным.

Схема подключения электросчетчика через испытательную колодку .Согласно требований ПУЭ п. 1.5.23 должна применяться при включении образцового счетчика через ТТ. Наличие испытательной коробки позволяет осуществлять шунтирование, отключение токовых цепей, подключение прибора учета без отключения нагрузки, пофазное снятие напряжение с измеряемых цепей.

Подключение выполняется на основе десятипроводной схемы, ее отличие от последней состоит в наличии специального испытательного переходного блока между электросчетчиком и ТТ.

С соединением ТТ в “звезду”. Одни выводы вторичных обмоток ТТ соединяются в одной точке, образуя соединение “звезда”, другие – с токовыми катушками счетчика, также соединяемые по схеме “звезда”.

Недостаток такого способа подключения учета – большая сложность коммутации и проверки правильности сборки схемы.

Информация

Данный сайт создан исключительно в ознакомительных целях. Материалы ресурса носят справочный характер.

При цитировании материалов сайта активная гиперссылка на l220.ru обязательна.

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1. Номинальное напряжение трансформатора тока

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3. Номинальный ток вторичной обмотки

4. Номинальный ток первичной обмотки

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Для правильного выбора трансформаторов тока (ТТ) для расчетных счетчиков, нам нужно правильно выбрать коэффициент трансформации трансформатора тока, исходя из того, что расчетная нагрузка присоединения, будет работать в аварийном режиме.

Коэффициент трансформации считается завышенным, если при 25%-ной нагрузке присоединения в нормальном режиме, ток во вторичной обмотке будет меньше 10% от номинального тока подключенного счетчика – 5 А.

Для того, чтобы присоединенные приборы, работали в требуемом классе точности (напоминаю что для счетчиков коммерческого учета класс точности трансформаторов тока должен быть – 0,2; 0,2S; для технического учета – 0,5; 0,5S), необходимо чтобы, подключаемая вторичная нагрузка Zн не превышала номинальной вторичной нагрузки трансформатора тока, для данного класса точности, при этом должно выполняться условие Zн ≤ Zдоп. Подробно это рассмотрено в статье: «Выбор трансформаторов тока на напряжение 6(10) кВ».

Еще одним условием правильности выбора трансформаторов тока, является проверка трансформаторов тока на токовую ΔI и угловую погрешность δ.

Угловая погрешность учитывается только в показаниях счетчиков и ваттметров, и определяется углом δ между векторами I1 и I2.

Токовая погрешность определяется по формуле [Л1, с61]:

  • Kном. – коэффициент трансформации;
  • I1 – ток первичной обмотки ТТ;
  • I2 – ток вторичной обмотки ТТ;

Пример выбора трансформатора тока для установки расчетных счетчиков

Нужно выбрать трансформаторы тока для отходящей линии, питающей трансформатор ТМ-2500/6. Расчетный ток в нормальном режиме составляет – 240,8А, в аварийном режиме, когда трансформатор будет перегружен на 1,2, ток составит – 289А.

Выбираем ТТ с коэффициентом трансформации 300/5.

1. Рассчитываем первичный ток при 25%-ной нагрузке:

2. Рассчитываем вторичный ток при 25%-ной нагрузке:

Как видим, трансформаторы тока выбраны правильно, так как выполняется условие:

I2 > 10%*Iн.счетчика, т. е. 1 > 0,5.

Рекомендую при выборе трансформаторов тока к расчетным счетчикам использовать таблицы II.4 – II.5.

Таблица II.5 Технические данные трансформаторов тока

Таблица II.4 Выбор трансформаторов тока

Максимальная расчетная мощность, кВАНапряжение
380 В10,5 кВ
Нагрузка, АКоэффициент трансформации, АНагрузка, АКоэффициент трансформации, А
101620/5
152330/5
203030/5
253840/5
304650/5
355350/5 (75/5)
406175/5
507775/5 (100/5)
6091100/5
70106100/5 (150/5)
80122150/5
90137150/5
100152150/5610/5
125190200/5
150228300/5
160242300/5910/5
1801010/5 (15/5)
200304300/5
240365400/51315/5
2501415/5
300456600/5
320487600/51920/5
400609600/52330/5
5608531000/53240/5
6309601000/53640/5
75011401500/54350/5
100015201500/55875/5

Учитывая необходимость подключения трансформаторов тока для питания измерительных приборов и реле, для которых нужны различные классы точности, высоковольтные трансформаторы тока выполняются с двумя вторичными обмотками.

1. Справочник по расчету электрических сетей. И.Ф. Шаповалов. 1974г.

Общие требования

Схемы подключения счетчиков через трансформаторы можно разделить на две группы: полукосвенного и косвенного включения.

При схеме полукосвенного включения, счетчик включается в сеть только через трансформаторы тока (ТТ). Такая схема, как правило, применяется для средних и крупных предприятий которые питаются от сети 0,4кВ и имеют присоединенную нагрузку свыше 100 Ампер.

При схеме косвенного включения, счетчик включается в сеть через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН). Такие схемы применяются, как правило, для крупных предприятий имеющих на своем балансе трансформаторные подстанции и другое высоковольтное оборудование которое питается от сети выше 1кВ.

Счетчик трансформаторного включения имеет 10 либо 11 выводов:

Как видно на картинке выше выводы №1, 3, 4, 6, 7 и 9 используются для подключения токовых цепей (от трансформаторов тока), а выводы №2, 5, и 8 — для подключения цепей напряжения (от трансформаторов напряжения — при косвенной схеме включения либо напрямую от сети — при полукосвенном включении). 10 вывод, как и 11 (при его наличии), служит для подключения нулевого проводника к счетчику.

В соответствии с п. 1.5.16. ПУЭ класс точности трансформаторов тока и напряжения для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Кроме того в соответствии с п.1.5.23. ПУЭ цепи учета (цепи от трансформаторов до счетчика) следует выводить на самостоятельные сборки зажимов или секции в общем ряду зажимов. При отсутствии сборок с зажимами необходимо устанавливать испытательные блоки. При этом токовые цепи должны выполняться сечением не менее 2,5 мм 2 по меди и не менее 4 мм 2 по алюминию (п.3.4.4 ПУЭ), а сечение и длина проводов и кабелей в цепях напряжения счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения (п. 1.5.19. ПУЭ). (Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи)

Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Испытательный блок или испытательная коробка представляет из себя сборку зажимов предназначенных для подключения электросчетчика и обеспечивающих возможность удобного и безопасного проведения работ со счетчиком:

ВАЖНО! Винты для закорачивания первых выводов токовых цепей обязательно должны быть вкручены при семипроводной схеме подключения и выкручены при десятипроводной схеме.

Перемычки для закорачивания токовых цепей должны быть замкнуты только на время монтажа и проведения других работ со счетчиком, в рабочем положении перемычки должны быть разомкнуты!

Подключения счетчика через трансформаторы тока

Как уже было написано выше при напряжении сети 0,4 кВ (380 Вольт) и нагрузках свыше 100 Ампер применяются схемы полукосвенного включения счетчика, при которой цепи напряжения подключаются к счетчику напрямую, а токовые цепи подключаются через трансформаторы тока:

Существуют следующие схемы подключения счетчиков через трансформаторы: десятипроводные, семипроводные и с совмещенными цепями (может использоваться только при полукосвенном включении). Разберем каждую из схем в отдельности:

2.1 Десятипроводная схема

Принципиальная десятипроводная схема подключения счетчика через трансформаторы тока:

Фактически десятипроводная схема будет иметь следующий вид:

Преимущества десятипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Высокая надежность. Учет по каждой фазе собирается независимо друг от друга. В случае нарушения цепей учета по одной из фаз работа учета на других фазах не нарушается.

Недостатки десятипроводной схемы:

  1. Большой расход проводника, для сборки вторичных цепей учета.

2.2 Семипроводная схема

Принципиальная семипроводная схема подключения электросчетчика через трансформаторы тока:

Фактически семипроводная схема будет иметь следующий вид:

Преимущества семипроводной схемы:

  1. Удобство проведения работ со счетчиком. Отсутствует необходимость отключения электроустановки при замене электросчетчика, а так же при выполнении с ним других работ.
  2. Безопасность. Токовые цепи заземлены, что исключает возможность появления на выводах вторичных цепей опасного потенциала. Испытательная коробка позволяет безопасно отключить цепи напряжения.
  3. Экономия проводника, для сборки вторичных цепей учета за счет объединения вторичных токовых цепей.

Недостатки семипроводной схемы:

  1. Низкая надежность. В случае нарушения совмещенной токовой цепи электроэнергия не учитывается ни по одной из фаз.

2.3 Схема с совмещенными цепями

Принципиальная схема подключения электросчетчика через трансформаторы тока с совмещенными цепями.

При данной схеме цепи напряжения объединяются с токовыми цепями путем установки перемычек на трансформаторах от контакта Л1 к контакту Л2.

Фактически схема с совмещенными цепями будет иметь следующий вид:

Схема с совмещенными цепями не соответствует требованиям действующих правил и в настоящее время не применяется, однако она все еще встречается в старых электроустановках.

3. Подключение счетчика через трансформаторы тока и напряжения

В случае необходимости организации учета электрической энергии в сети выше 1000 Вольт применяется схема косвенного включения счетчика при которой токовые цепи подключаются к счетчику через трансформаторы тока, а цепи напряжения подключаются через трансформаторы напряжения:

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Подключение счетчика через трансформаторы тока • Energy-Systems

О каких особенностях подключения счетчика через трансформаторы тока следует знать?

Назначение электросчётчиков прекрасно известно любому человеку, пусть даже страшно далёкому от сферы электроэнергетики. Служат счётчики для того, чтобы вести учёт потребляемой электроэнергии в электросетях переменного тока с 50-ти герцевой частотой. Подключаются они к 3-х или же к 4-х проводным электросетям посредством измерительных трансформаторов тока в 5 ампер и 100 вольт.

Наибольшую заинтересованность у потребителей электроэнергии чаще всего вызывают вопросы правильного и грамотного подключения счётчиков через трансформаторы тока к электрическим сетям, поскольку без этого невозможно нормально организовать работоспособную систему электроснабжения на любом объекте, без всякой зависимости от его назначения. Стоит акцентировать внимание на том, что в данном конкретном случае абсолютно не принципиально, какой тип счётчика применяется – индукционный или электронный, главное – это какую наиболее оптимальную схему нужно подобрать для осуществления такого подключения к электричеству.

Ещё одним крайне важным и требующим серьёзного внимания вопросом является соблюдение полярности первичной и вторичной обмоток трансформатора тока, их начала и конца, а также сама по себе полярность обмоток с полярностью трансформатора.

Перед тем как переходить непосредственно к подключению электросчётчика, стоит обратить внимание на ряд следующих моментов. Схема правильного подключения электросчётчика практически всегда изображается на его крышке вместе с маркировкой и информацией о выводе. Плюс ко всему подобный процесс всегда детально расписывается в прилагаемом к прибору паспорте изделия. В любом случае лучше загодя обладать информацией о таких моментах, как место монтажа счётчика, его тип и предполагаемая схема подключения в каждом конкретном случае.

Необходимо ещё учитывать тот факт, что все электромонтажные работы должны организовываться только согласно ПУЭ, при этом никаких исключений не допускается. Провод должен быть, конечно же, медным с сечением 2,5 кв. мм (это для токовых цепей) и 1,5 кв. мм (для цепей напряжения). Напоследок ещё необходимо отметить, что для облегчения использования и обслуживания электросчётчика в дальнейшем, есть смысл при установке и подключении пользоваться цветными проводами.

Несколько вариантов схем подключения трехфазного счетчика с трансформаторами тока

Вариант № 1.

Эта схема представляет собой организацию подключения электрического счетчика к 3-х проводной сети, состоящей из трёх фаз, количество трансформаторов тока 2.

 

Вариант № 2.

Этот вариант схемы подключения трехфазного счетчика с трансформаторами тока заключает в себе организацию подключения электрического счетчика к 3-х проводной сети, состоящей из трёх фаз, количество трансформаторов тока 3.

Вариант № 3.

Наконец, третий вариант схемы предполагает осуществление подключения электрического счетчика к 3-х проводной сети, состоящей из трёх фаз, количество трансформаторов тока 2, количество трансформаторов напряжения 2.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости выполнения электромонтажных работ.

Онлайн расчет стоимости проектирования

Подключение счетчика через трансформаторы тока и напряжения. Схемы подключения трехфазного электросчётчика, варианты, методы.

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1. Номинальное напряжение трансформатора тока

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

2. Класс точности

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается — 1,0.

3. Номинальный ток вторичной обмотки

Обычно 5А.

4. Номинальный ток первичной обмотки

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора — отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066 200/5. Коэффициент трансформации у него 40.

140/40=3,5А — ток вторичной обмотки при номинальном токе.

5*40/100=2А — минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А — требование выполнено.

14/40=0,35А — ток вторичной обмотки при минимальном токе.

5*5/100=0,25А — минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А — требование выполнено.

140*25/100 — 35А ток при 25%-ной нагрузке.

35/40=0,875 — ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А — минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А — требование выполнено.

Вывод: измерительный трансформатор Т-066 200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться данными таблицы:

Счетчики изготавливаются на номинальные токи до 100 А, изготовить приборы на большие номинальные токи затруднительно, так как сечение провода последовательной обмотки получается чрезмерно большим.

Кроме того, появляются затруднения при выборе числа витков обмотки, которая в этом случае имеет один или два витка. При больших номинальных токах ампер-витки обмотки могут отличаться от тех, которые выбраны за номинальные при малых токах через обмотку. Это может привести к изменению характеристики счетчика, иногда нежелательному.

Например, для счетчика типа СО-2, у которого номинальное количество ампер-витков последовательной обмотки равно 70, при номинальном токе 50 А количество витков может быть выбрано равным 1 или 2. В первом случае номинальное количество ампер-витков будет равным 50, во втором – 100, то есть в обоих случаях мы получим изменение основных характеристик прибора: вращающего момента, нагрузочной кривой.

Поэтому при больших номинальных токах, последовательные обмотки счетчиков обычно включают через измерительные трансформаторы тока (ТТ) , как это показано на рисунке 1. Такое подключение наиболее часто встречается в сетях до 1 кВ.

Параллельные цепи включаются на фазное напряжение сети, а последовательные цепи включаются через ТТ . Последовательная обмотка счетчика при этом рассчитывается на номинальный ток 5А и питается от вторичной обмотки ТТ .

Иногда применяют измерительные трансформаторы с номинальным вторичным током 1А, при этом сопротивление нагрузки трансформатора может быть выбрано большим, что позволяет располагать счетчик на значительном расстоянии от трансформатора.

Параллельные обмотки счетчиков обычно изготавливают на напряжение до 500 В. При более высоких напряжениях для обмотки параллельной цепи приходится применять провод слишком малого сечения.

Поэтому при больших напряжениях сети, обмотки параллельных цепей счетчиков изготавливаются на номинальное напряжение до 100 В и включаются через измерительные трансформаторы напряжения (ТН) , как это показано на рисунке 2, где изображена схема подключения двухэлементного трехфазного прибора учета. Такие схемы учета применяются в сетях 6-35 кВ.


Обмотка средней фазы ТН заземляется, а учет ведется по двум фазам. Катушки напряжения при этом включаются на линейное напряжение 100 В. При соединении приемников по схеме «звезда» или «треугольник» для учета энергии достаточно иметь два однофазных счетчика или один двухэлементный трехфазный, что легко может быть доказано по первому закону Кирхгофа.

В первичной цепи ТН устанавливаются трубчатые предохранители высокого напряжения, защищающие сеть от коротких замыканий в измерительных трансформаторах и их цепях. Во вторичной цепи ТТ предохранители не ставятся, так как нормальный режим работы этих трансформаторов, это режим короткого замыкания. Размыкание их вторичной цепи приводит к разрушению и возникновению опасного потенциала на выводах вторичной обмотки.

На рисунке 3 приведена схема учета, наиболее часто встречающаяся в сетях 110 кВ и выше. Последовательная и параллельная цепи прибора учета включаются через измерительные ТТ .


Для питания цепей напряжения счетчика всегда применяется вторичная обмотка ТН соединенная по схеме «звезда». В этом случае катушки параллельной цепи подключаются на фазное напряжение 100/√3, и полностью отражают изменения напряжения по фазам в первичной сети. ТН в сетях 110 кВ и выше предохранителями со стороны высокого напряжения не защищаются.

На рисунках 2 и 3 подключение прибора учета к вторичным цепям ТН показано несколько упрощенно. На самом же деле, вторичные цепи ТН через клеммные зажимы в ящиках ТН , подаются на шинки напряжения, располагаемые на панелях щита постоянного тока. С шинок напряжения сигнал распределяется на цепи учета, релейной защиты и сигнализации.

Предохранители во вторичных цепях располагают непосредственно у ТН в их ящиках, там же для вывода ТН в ремонт, располагаются рубильники цепей напряжения. Заземление средней фазы вторичной обмотки ТН производится на клеммных рядах в панелях щитов постоянного тока (ЩПТ) .

Применение измерительных трансформаторов дает ряд преимуществ, при учете энергии, в частности позволяет наиболее экономично производить измерения в высоковольтных сетях, повышает устойчивость и надежность схем измерения и обеспечивает безопасность обслуживающего персонала при работе на стороне низкого напряжения.

Каждый из измерительных трансформаторов, через которые включены элементы счетчика, имеет собственные погрешности, как амплитудную, так и фазовую. Погрешности, вносимые измерительными трансформаторами, обычно невелики и ими можно пренебречь.

Более значительные погрешности могут возникнуть при неправильном включении прибора учета с измерительными трансформаторами. Например, если поменять местами выводы вторичных цепей ТТ , промаркированные И1 и И2, в двухэлементном или трехэлементном счетчике, это приведет к значительному недоучету электроэнергии.

По окончании монтажа прибора учета, перед его опломбировкой снимаются векторные характеристики счетчика, с целью определения правильности подключения измерительных трансформаторов.

Грамотно подобранный электросчётчик поможет домовладельцу экономить на оплате коммунальных услуг. Чтобы не ошибиться с выбором, первым делом нужно выяснить, какое устройство подходит в зависимости от подведённой к дому электросети – трёхфазное или однофазное, а также в чём отличие таких приборов, как выполняется их монтаж и какие у них достоинства и недостатки?

Если рассматривать однофазный прибор учёта электричества, то он используется в сетях, напряжение которых соответствует 220В. В свою очередь, трёхфазный аналог подключается в электросети с напряжением 380В . При этом первый тип счётчиков знаком каждому владельцу собственного жилья, так как используется в квартирах, офисных учреждениях, гаражных боксах и других подобных строениях.

Трёхфазные контролирующие устройства не так давно использовались только на предприятиях, но всё чаще их можно повстречать и в частных домостроениях. Этому поспособствовало появление множества бытовых приборов требующих дополнительных мощностей. С этой целью дома и квартиры стали подключать к трёхфазной электрической сети контроль энергии, подающейся по которой, должен производиться специальными аппаратами учёта потребляемой электроэнергии.

Трёхфазный прибор учёта электроэнергии отличается от однофазного аналога возможностью функционировать в достаточно мощных сетях . Если стандартные электросчётчики на 220В устанавливаются в электрическую цепь, мощность которой не более 10 кВт, то, приборы трёхфазного типа работают при мощностных нагрузках от 15 кВт и намного больше. Такие многофункциональные аппараты одинаково хорошо работают как в стандартной бытовой сети, так и контролируют потребление энергии трёхфазными электродвигателями. При этом стандартные контролирующие приборы данного типа состоят из следующих конструктивных частей:

  • токопроводящей обмотки;
  • обмотки напряжения;
  • червячного механизма, приводящего в движение циферблат;
  • алюминиевого диска и магнита.

Стандартные индукционные приборы учёта энергии, используемые в сети 380В, такие как «Меркурий», оборудованы пластиковыми корпусами , которые защищают все механизмы от попадания влаги или различного рода загрязнений. Внутри корпуса размещены 2 сердечника вокруг одного из которых наматывается токовая обмотка, подключаемая параллельным способ в сеть. В свою очередь, вокруг другого элемента намотана обмотка напряжения, витки которой имеют увеличенный диаметр по сравнению с токовым налогом. Посредине между катушками в образованном пространстве, расположен диск из алюминия, вращение которого происходит посредством полей создаваемых обмотками.

Для обеспечения демонстрации показаний в счётчике расположен механизм червячного типа , через который подключается механическая стрелка либо электронное табло для вывода данных. В свою очередь, магнит предназначен для регулировки функционирования контролирующего прибора. Все обмоточные выводы подключаются к клеммным контактам учётного устройства и выводятся к фазе. Чтобы предотвратить вмешательство в работу электросчётчика со стороны потребителя, выходы пломбируются представителями компании-поставщика электроэнергии.

Важным правилом покупки любого типа устройства контроля потребления электрической энергии является обязательная проверка наличия на приборе всех необходимых пломб, установленных на заводе производителе. Если таких защитных элементов не обнаружено, то счётчик непригоден для использования по прямому назначению и его установка не имеет никакого практического значения.

Разновидности схем подключения

В первую очередь, выбор подходящей схемы подключения электросчётчика на 380В зависит от типа контролирующего прибора. Хочется отметить, что трёхфазные счётчики способны работать в стандартных электрических сетях 220В. При этом все бытовые приборы учёта потребления электроэнергии различаются по следующим схемам подсоединения:

  • приборы учёта с непосредственным включением;
  • электросчётчики с полукосвенным типом подключения;
  • контролирующие приборы с косвенным типом включения.

Устройство прямоточного типа учёта потребления энергоресурсов рассчитано на пропускание токов не выше 100 А . Из-за этого происходит ограничение использования такого аппарата по мощности, которая составляет не более 60 кВт. Клеммные контакты таких электросчётчиков и отверстия под проводку рассчитаны на подключение проводов небольшого сечения. В большинстве случаев это проводка, сечение которой варьируется в пределах от 16 до 25 мм квадратных. Приборы прямого включения имеют стандартную схему подключения, указанную на задней части крышки электрического счётчика, которая не вызывает особых затруднений.

Трёхфазные счётчики с полукосвенным подключением

Электросчётчики «Меркурий» с полукосвенным принципом подключения включаются в сеть переменного тока 380В через трансформатор. Благодаря этому появляется возможность осуществления учёта электричества с высокой мощностью сети. При этом в процессе подсчёта использованных ресурсов в обязательном порядке учитывают коэффициент трансформации. На сегодняшний день существует достаточно много схем с полукосвенным включением, наиболее востребованными из которых считаются следующие варианты:

  • схема включения трансформатора по принципу «звезды»;
  • подключение по десяти проводной схеме;
  • схема включения с использованием испытательных клеммных коробок;
  • посредством совмещения цепей тока и напряжения.

Рассматривая недостатки схемы с полукосвенным подключением, хочется отметить сложность проведения плановых проверок контролирующими органами энергосбыта.

Прямое включение трёхфазного прибора

Наиболее простым способом подключения, который напоминает стандартную схему установки счётчика однофазного типа является прямое включение прибора контроля потребления электроэнергии. Основной отличительной чертой таких устройств является наличие большего количества клеммных контактов, чем в однофазных аналогах. В свою очередь, сам монтажный процесс трёхфазного прибора «Меркурий» заключается в определённой последовательности действий .

Если запланирована установка нескольких потребителей однофазного типа, то они должны равномерно распределяться, для чего подключаются через автоматы с разных фазных проводников, взятых сразу после электросчётчика.

Косвенный способ подключения счётчиков

Если параметры потребляемых нагрузок всех приборов превышают номинальные показатели тока проходящего через электрический счётчик, то дополнительно выполняется установка разделительного токового трансформатора. Установка такого прибора осуществляется в разрыв силового токонесущего провода.

На токовом трансформаторе присутствуют две основных обмотки . Первичный контур выполняется из мощной токопроводящей шины, которая продевается сквозь центр устройства и подсоединяется в разрыв проводников питания потребителей электрической энергии. В свою очередь, на вторичной обмотке намотано намного больше витков проводов, но меньшего сечения. Подключение данной обмотки выполняется непосредственно к прибору учёта потребляемого электричества.

Такой способ намного сложнее от прямого варианта и требует от человека определённых навыков. Поэтому если у человека нет уверенности в собственных талантах электрика при подключении трёхфазного электросчётчика через трансформатор, то целесообразно задуматься о вызове специалиста. В остальных ситуациях данная проблема вполне решаемая .

  1. Выполняется подключение трёх трансформаторов для каждого отдельно взятого провода. Их крепление осуществляется на задней части вводного шкафчика. Подключение первичных обмоток выполняется сразу за вводным рубильником в разрыве фазных силовых проводников. Монтаж трёхфазного счётчика также выполняется в шкафчике.
  2. К фазной жиле до трансформатора выполняется подключение проводника диаметром 1.5 мм², свободный конец заводится на второй клеммный контакт электросчётчика.
  3. По аналогии выполняется подключение 2 оставшихся трансформаторов к соответствующим фазным жилам на электросчётчике «Меркурий» на клеммных контактах 5 и 8.
  4. От вторичной обмотки трансформаторного устройства проводниками, сечением 1.5 мм² выполняется подключение к клеммным контактам 1 и 3 на счётчике. Очень важно соблюсти правильную фазировку включения обмоток. В противном случае показания прибора контроля потребления электричества будут неправильными.
  5. По аналогии выполняется подсоединение оставшихся обмоток трансформаторов к соответствующим контактам на счётчике.
  6. Оставшийся 10-й клеммный контакт предназначен для подключения нейтральной шины зануления.

Однако, рассматривая счётчики с косвенным включением, хочется отметить, что они чаще используются для учёта потребления электрического тока в мощных высоковольтных сетях , а не в бытовых целях.

Правильный выбор трёхфазного счётчика

При выборе электросчётчика трёхфазного типа важно основываться на надёжности точности и долговечности прибора – основных критериях качественного аппарата учёта потребления электричества. В данном плане отлично зарекомендовали себя счётчики «Меркурий», которые выпускаются как с включением через трансформатор, так и напрямую.

Производителем представлена линейка как бюджетных аппаратов с системой электромеханического контроля электричества, так и функциональные счётчики с внутренним тарификатором способным вести учёт разных тарифов одновременно. Современные счётчики «Меркурий» оснащаются самодиагностикой и возможностью подключения к персональному компьютеру. Все приборы имеют электронные пломбы и обладают длительным сроком службы до 16 лет. Также современные аппараты контроля «Меркурий» имеют следующие возможности:

  • измерение активного типа энергии;
  • учёт реактивного типа энергии;
  • возможность контроля до 4 разных тарифов;
  • наличие функции, ведения журнала событий;
  • контроль качества электрической энергии;
  • дополнительные интерфейсы.

Важность экономии электроэнергии понятна абсолютно всем, и счётчики трёхфазного типа вполне справляются с поставленными перед ними задачами. В новых приборах имеется функция задания программ , определённых режимов работы. Если в дневное время суток тарификация идёт по одной цене, а в ночное по другой стоимости, то современный прибор контроля электроэнергии ведёт учёт в автоматическом режиме.

Естественно, просто выбрать качественный трёхфазный счётчик, далеко не достаточно. Каждый добросовестный хозяин должен разбираться в различных схемах подключения таких приборов. Ведь каждый человек знает, что неправильно подключённый электросчётчик в трёхфазную сеть переменного тока будет показывать неправильные данные и ни о какой экономии речь идти не может.

В этой статье решил подробно рассмотреть схемы подключения однофазных и трехфазных счетчиков.

Для начала надо сразу сказать, что электросчетчики могут быть нескольких типов подключения — прямого (непосредственного) включения, через трансформаторы тока, через трансформаторы тока и измерительные трансформаторы напряжения. В быту подавляющее большинство счетчиков, будь то однофазных или трехфазных, имеют схему прямого включения. Это обусловлено тем, что величина тока нагрузки не превышает 100 А. В случае, если величина протекающего тока более 100 А используется схема полукосвенного включения с трансформаторами тока. Схема косвенного включения с трансформаторами тока и измерительными трансформаторами напряжения применяется в сетях 6 (10) кВ и выше, поэтому в данной статье не рассматривается.

Подключение однофазного электросчетчика

Самая распространенная и простая схема прямого подключения однофазного счетчика. Практически все однофазные счетчики подключаются именно по этой схеме, очень редко может использоваться схема полукосвенного включения.

На первую клемму счетчика приходит фазный провод. Со второй клеммы фаза уходит на нагрузку. На третью клемму подключен нулевой ввод, с четвертой нулевой провод идет на нагрузку.

Схема подключения счетчика всегда указывается на обратной стороне крышки, закрывающей клеммную колодку.

Подключение трехфазного электросчетчика

Схема подключения трехфазного счетчика прямого включения не сильно отличается от схемы однофазного.


На клемму 1 приходит фаза А (желтый). Со 2 клеммы фаза А (желтый) уходит на нагрузку. На 3 клемму приходит фаза B (зеленый). С 4 клеммы фаза B (зеленый) уходит в нагрузку. На 5 клемму приходит фаза С (красный). С 6 клеммы фаза С (красный) уходит. 7 и 8 клеммы — нулевой провод.

При подключении важно соблюдать правильное чередование фаз и цветовую маркировку.

Как я уже сказал выше, полукосвенное подключение через трансформаторы тока применяется в случае, если величина тока нагрузки превышает 100 А. В данной схеме трансформаторы тока предназначены для преобразования первичного тока нагрузки до значений, безопасных для его измерений. Такие схемы сложнее, чем прямого включение и требуют определенных знаний и навыков.

При подключении счетчика через трансформаторы тока необходимо соблюдать полярность начала и конца обмоток трансформатор, как первичной (Л1, Л2), так и вторичной (И1, И2). Общую точку вторичных обмоток трансформаторов необходимо заземлять.

Схема с подключением трансформаторов тока в «звезду»


Фазы А, B, C приходят на клеммы Л1 первичной обмотки трансформаторов тока ТТ1, ТТ2 и ТТ3. От Л1 ТТ1 подключается клемма 2 счетчика, от Л1 ТТ2 — клемма 5 счетчика и от Л1 ТТ3 — клемма 8 счетчика. Клеммы Л2 всех ТТ подключаются к нагрузке.

Клемма 1 счетчика подключается к началу вторичной обмотки И1 ТТ1, клемма 4 — к контакту И1 ТТ2 и клемма 7 — к контакту И1 ТТ3. Клеммы 3, 6, 9 и 10 соединены между собой перемычкой и подключены к нейтральному проводу. Все концы вторичной обмотки И2 также соединены между собой и подключаются на 11 клемму.

В цепях с изолированной нейтралью применяется схема с двумя трансформаторами тока (неполная «звезда»).

Десятипроводная схема подключения

Такая схема визуально более наглядная, чем схема соединения «звездой».


В данной схеме фазы А, B, C приходят на клеммы Л1 первичной обмотки трансформаторов тока ТТ1, ТТ2 и ТТ3. Клеммы Л2 всех ТТ подключены к нагрузке. От Л1 ТТ1 подключается клемма 2 счетчика, от Л1 ТТ2 — клемма 5 счетчика и от Л1 ТТ3 — клемма 8 счетчика.

На 1 клемму счетчика заходит начало вторичной обмотки И1 ТТ1, а конец обмотки И2 на 3 клемму счетчика. На 4 клемму приходит начало вторичной обмотки трансформатора И1 ТТ2, конец И2 — на 6 клемму счетчика. На 7 клемму — начало И1 трансформатора ТТ3, на 9 — конец И2 ТТ3. Нулевой проводник отдельным проводом заходит на 10 клемму счетчика, а с 11 клемму уходит на нагрузку.

Схема подключения трехфазного счетчика через испытательную клеммную коробку

В соответствии с действующими Правилами устройства электроустановок — ПУЭ (раздел 1, п.1.5.23) цепи учета электрической энергии необходимо выводить на специальные зажимы или испытательные коробки.

Коробка испытательная переходная применяется для подключения трехфазных индукционных и электронных счетчиков, обеспечивая закорачивание вторичных цепей измерительных трансформаторов тока, отключение токовых цепей и цепей напряжения в каждой фазе счетчиков при их замене, а также включение образцового счетчика для поверки без отключения нагрузки потребления.

Схема подключения через испытательную клеммную коробку


Выбор трансформаторов тока

Номинальный ток вторичных обмоток трансформатора обычно выбирается 5А. Номинальный ток первичной обмотки выбирается по расчетной нагрузке с учетом работы в аварийном режиме.

Согласно ПУЭ 1.5.17 допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Например электроустановка в нормальном режиме потребляет 140А, минимальная нагрузка 14А. Выбираем измерительный трансформатор 200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Из расчета видно, что 3,5А >2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100=35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Из этого делаем вывод, что трансформатор тока с коэффициентом трансформации 200/5 для нагрузки 140А выбран правильно.

При снятии показаний со счетчика с токовыми трансформаторами 200/5 необходимо умножить показания счетчика на 40 (коэффициент трансформации) и получаем реальный расход электроэнергии.

Выбор класса точности ТТ определяется согласно ПУЭ п 1.5.16 — для систем технического учета допускается применение ТТ с классом точности не более 1,0, для расчетного (коммерческого) учета — не более 0,5.

Электрик от плоскогубцев недалеко падает!

Представьте себе, что у вас оказался трансформатор. Вы о нем совершенно ничего не знаете. Именно поэтому мы поместили эту статью, в которой расскажем, как подключить трансформатор. Подключение трансформатора – это достаточно сложный процесс, который выполнять должны только профессионалы. Здесь вы узнаете, какие операции необходимо проделать перед подключением трансформатора.

Для начала вам необходимо знать, что собою представляет это устройство. Трансформатор – это достаточно сложное устройство, которое необходимо для того, чтобы преобразовывать напряжение. Обычно он имеет две или более обмоток. По назначению эти устройства могут быть как понижающими, так и повышающими.
Существуют также и автотрансформаторы. Основной их особенностью считается то, что первичная и вторичная обмотка должна подключаться вместе. Их особенность заключается в том, что они преобразовывают величину тока. Обычно их используют для подключения контрольно-измерительных приборов.

Определяем трансформатор

Например, если у вас имеется трансформатор, но вы не знаете какой именно тогда вам следует знать, на что нужно обратить внимание? Для того чтобы определить что это за устройство необходимо посмотреть на количество выводов обмоток. Трехфазные устройства могут иметь 4 вывода, а однофазные трансформаторы два вывода. Если устройство вы желаете использовать в квартире, тогда вам подойдет однофазный трансформатор. Подключение трехфазного трансформатора осуществляется только на предприятиях.


После этого вам необходимо определить тип трансформатора. Основной особенностью этого трансформатора считается мощный проводник вокруг, которого располагается обмотка. К особенности автотрансформаторов относятся небольшие габариты и наличие регулятора. В быту эти трансформаторы встретить можно достаточно редко.

Определяем обмотку

Для того чтобы определить обмотку вам необходимо использовать мультиметр. Если трансформатор будет понижающим, тогда сопротивление в первичной обмотке будет больше чем у вторичной. Обычно размер первичной обмотки немного больше чем во вторичной. Если трансформатор содержит в себе несколько обмоток, тогда необходимо измерить сопротивление каждой из них.


Сейчас мы вам расскажем, как подключить понижающий трансформатор. Для начала вам необходимо определить, какой параметр тока необходим потребителю. Для бытовых приборов необходим постоянный ток. В электрической сети обычно течет переменный ток и поэтому вам потребуется выпрямитель. В зависимости от вашего прибора вторичную обмотку необходимо подключить через выпрямитель. Перед тем как подключать трансформатор вам необходимо узнать

Схема подключения трехфазного электросчетчика к сети

Способы и схемы подключения различных типов трёхфазных электросчётчиков.

 

Предварительный этап

Подключение электрического счетчика (ЭС) является заключительным этапом электромонтажных работ. Перед установкой трехфазного ЭС необходимо прежде всего иметь монтажную схему. Прибор необходимо проверить на наличие пломб на винтах кожуха. На этих пломбах должен быть указан год и квартал последней проверки и печать поверителя.

При подсоединении проводов к зажимам лучше сделать запас 70-80 мм. В дальнейшем подобная мера позволит произвести замер потребляемой мощности/тока и перемонтаж, в случае если схема была собрана неверно.

Каждый провод необходимо зажимать в клеммной коробке двумя винтами (на фото ниже их хорошо видно). Верхний винт затягивается первым. Перед затягиванием нижнего нужно убедиться, что верхний провод зажат, предварительно подергав его. Если при подключении счетчика используется многожильный провод, то его наконечники необходимо предварительно опрессовать.

Далее будут рассмотрены типовые схемы подключения трехфазного счетчика в электросеть.

Прямое (непосредственное) включение

Это наиболее простая схема монтажа. При непосредственном включении ТС включается в сеть без измерительных трансформаторов (рисунок 2). Чаще всего такой метод монтажа используется в бытовых сетях для учета электроэнергии, где присутствуют мощные установки с номинальным током от 5 до 50 А, в зависимости от типа проводки (от 4 до 100 мм2). Рабочее напряжение здесь, как правило, 380 В. При подключении провода к трехфазному счетчику необходимо соблюдать цветовой порядок: 1-я фаза А должна быть на проводе желтого цвета, фаза В – на зеленом, С – на красном. Нулевой провод N должен быть синего цвета, а заземляющий РЕ – желто-зеленого. Для защиты от перегрузок на входе устанавливаются автоматы.

Включение в однофазную цепь

Прежде чем описывать эту схему подключения счетчика к сети 380 Вольт необходимо дать краткое описание отличий трехфазного напряжения от однофазного. В обоих видах используется один нулевой проводник N. Разность потенциалов между каждым фазовым проводом и нулем равна 220 В, а по отношению этих фаз друг к другу – 380 В. Такая разность получается из-за того, что колебания на каждом проводе сдвинуты на 120 градусов (рисунки 3 и 4).

Однофазное напряжение используется в частных домах, на даче, а также в гаражах. В таких местах потребляемая мощность редко превышает 10 кВт. Это также позволяет использовать на участке более дешевые провода с сечением 4 мм.кв., т. к. потребляемый ток ограничен 40 А.

В случае если потребляемая мощность в сети превышает 15 кВт, то использование 3-х фазовых проводов обязательно даже, если отсутствуют трехфазные потребители, в частности, электродвигатели. В этом случае происходит распределение нагрузки по фазам, что позволяет снизить нагрузку, если бы такая же мощность забиралась от одной фазы. Поэтому в офисных зданиях и магазинах, как правило, применяют именно трехфазное питание.

Принципиальная схема подключения трехфазного счетчика в однофазную сеть (ОС) встречается не так часто, поскольку в таких случаях используются однофазные измерители. В большинстве случаев схема аналогична электросхеме прямого включения, но фазы 2 и 3 не подключаются (подсоединение происходит на одну фазу). Кроме того, после монтажа могут возникнуть проблемы с поверяющими организациями.

Подключение через трансформаторы тока

Максимальный ток счетчика электроэнергии, как правило, ограничен значением 100 А, поэтому применить их в мощных электроустановках невозможно. В этом случае подключение к трехфазной сети идет не напрямую, а через трансформаторы. Это также позволяет расширить диапазон измерения приборов учета по току и напряжению. Однако, основная задача входных трансформаторов – уменьшить первичные токи и напряжения до безопасных значений для ЭС и защитных реле.

Полукосвенное

При подключении счетчика через трансформатор необходимо следить за полярностью начала и конца обмоток трансформатора тока, как первичной (Л1, Л2), так и вторичной (И1, И2). Аналогично нужно следить за полярностью при использовании трансформатора напряжения. Общую точку вторичных обмоток трансформаторов необходимо заземлять.

Назначение контактов трансформатора тока:

  • Л1 — вход фазной (силовой) линии.
  • Л2 — выход фазной линии (нагрузка).
  • И1 — вход измерительной обмотки.
  • И2 — выход измерительной обмотки.

Такой тип включения электросчетчика в сеть 380 Вольт позволяет разделить цепи тока и напряжения, что повышает электробезопасность. Минусом данной электрической схемы трехфазного подсоединения счетчика является большое количество проводов, необходимых для подключения ЭС.

Звезда

Такой тип подключения счетчика электроэнергии с заземлением к сети 380 В требует меньшего количества проводов. Включение по схеме звезда достигается объединением вывода И2 всех обмоток ТТ в одну общую точку и подсоединением к нулевому проводу

Недостатком этого способа подключения электросчетчика в сеть 380 Вольт является ненаглядность схемы соединений, что может усложнить проверку включения для представителей энергоснабжающих компаний.

Косвенное

Такая схема подключения трехфазного счетчика используется на высоковольтных присоединениях. Такой тип непрямого присоединения используется в большинстве случае лишь на крупных предприятиях и приведен лишь для ознакомления

В этом случае используются не только высоковольтные трансформаторы тока, но и трансформаторы напряжения. Для трехфазного подключения необходимо заземлять общую точку трансформаторов тока и напряжения. Для минимизации погрешности измерений если присутствует несимметрия фазовых напряжений необходимо, чтобы нулевой проводник сети был связан с нулевым зажимом счетчика.

Все действия описанные в данной статье, можно выполнить и самому, но, как мы уже говорили, будет лучше, если их произведут квалифицированные электрики, которые знают все правила проведения монтажных работ, а также технику безопасности  

Использование трансформаторов напряжения — Continental Control Systems, LLC

Обзор

Счетчики

WattNode ® доступны в семи диапазонах напряжения до 600 В переменного тока между фазой и нейтралью, а также в моделях с широким диапазоном, которые работают от 100 до 600 В переменного тока. Для рабочего напряжения выше 600 В переменного тока используются трансформаторы напряжения или напряжения (ТН или ТН) для понижения напряжения до более низкого диапазона, который будет работать с измерителем WattNode. Трансформаторы используются для сетей среднего напряжения выше 600 В переменного тока, но иногда также и для трехфазных трехпроводных схем, соединенных треугольником, 575-600 В переменного тока.

WattNode ® для счетчиков BACnet ® , LonWorks и Modbus поддерживает соотношение PT и может масштабировать измерения внутри. Для более старых моделей и импульсных моделей потребуется внешнее масштабирование данных системой сбора данных.

Если вы используете WattNode ® для измерителя LonWorks ® , мы предлагаем вариант PT, который добавляет свойство конфигурации UCPTptRatio , которое настраивает коэффициент внешнего PT, позволяя измерителю автоматически масштабировать напряжение, показания мощности и энергии.

Масштабирование

Добавление трансформаторов напряжения снижает измеряемое линейное напряжение на коэффициент PT (скажем, 35: 1 для этого примера). Таким образом, напряжение 4200 В переменного тока становится 120 В переменного тока. Поскольку измеритель видит 120 В перем. Тока, многие измерения, которые он сообщает, будут низкими в 35 раз, если их не увеличить в 35 раз.

В частности, следующие величины масштабируются с помощью счетчика или извне (если применимо к вашему счетчику):

  • Напряжение
  • Мощность — поскольку мощность рассчитывается из напряжения и тока.Сюда входят все значения реальной, реактивной и полной мощности.
  • Требование — это средняя мощность за интервал
  • Энергия — Включает все значения реальной, реактивной и полной энергии. При использовании счетчика импульсов умножьте масштабный коэффициент кВтч на коэффициент PT.

PT не влияют на измерения тока, частоты и коэффициента мощности.

Оборудование

CCS поставляет измеритель WattNode, рассчитанный на напряжение до 600 В переменного тока, и трансформаторы тока, рассчитанные на использование в цепях до 600 В переменного тока.Компания CCS не поставляет трансформаторы напряжения, предохранители или трансформаторы тока, рассчитанные на использование в цепях среднего напряжения, поэтому вам придется искать других поставщиков для этих компонентов.

Трансформаторы тока

Continental Control Systems не продает трансформаторы тока, рассчитанные на напряжение свыше 600 В переменного тока, поэтому необходимо использовать трансформаторы тока, рассчитанные на работу со средним напряжением. Большинство трансформаторов тока среднего напряжения выдают 5 ампер при полном номинальном токе. Например, вторичная обмотка трансформатора тока с соотношением 500: 5 будет выдавать 5 ампер, когда 500 ампер проходят через оконное отверстие трансформатора тока (первичное).Выходной сигнал трансформатора тока с коэффициентом усиления 5 ампер можно измерить с помощью одного из наших трансформаторов тока, чтобы преобразовать выходной сигнал трансформатора тока с коэффициентом усиления 5 ампер в сигнал 0,333 В переменного тока. Типичные трансформаторы тока для этого приложения включают:

  • ACTL-0750-005 — Accu-CT ® с разъемным сердечником CT
  • CTT-0300-005 — одножильный (тороид) CT

Мы называем эту технику совмещением. Счетчики LonWorks (–FT10) показаны на следующих рисунках, но эта комбинированная схема работает с любыми типами счетчиков.

При совмещении ТТ трудно определить, в каком направлении должны быть обращены дополнительные ТТ, поэтому просто угадайте и установите их все в одном направлении. Если показания мощности отрицательные или светодиоды состояния мигают красным, поменяйте местами трансформаторы тока, поменяйте местами черный и белый провода или используйте регистр CtDirections (модели Modbus) для эффективного реверсирования трансформатора тока.

Когда вы используете два ТТ вместе, как это (ТТ с коэффициентом усиления в сочетании с ТТ на выходе по напряжению), вы должны использовать первичный ток коэффициента трансформации CT в качестве номинального значения тока полной шкалы для измерителя WattNode.Например, если ТТ среднего напряжения имеет соотношение 500: 5, используйте 500 в качестве номинального тока полной шкалы ТТ.

Цепи трансформатора потенциала

В этом разделе описаны наиболее часто встречающиеся типы услуг и каналы системного телефона. В нем приведены рекомендуемые схемы подключения и информация об измерениях. В большинстве случаев трансформаторы тока используются в цепях среднего напряжения в диапазоне от 2400 до 35000 В переменного тока, поэтому здесь будут показаны примеры среднего напряжения. Те же схемы можно использовать для трансформаторов низкого или высокого напряжения.

Трехпроводное соединение Delta

Многие службы среднего напряжения представляют собой трехпроводную схему подключения по схеме «треугольник» без нейтрального проводника. В них используется одна из следующих схем заземления:

  • Плавающий: Во многих случаях трансформаторы с обмоткой треугольником остаются незаземленными. Это имеет то преимущество, что позволяет замыканию на землю на одной из фаз отключать выключатель и нарушать работу.

Рисунок 1: Сетевой трансформатор: треугольник с плавающей запятой

  • Заземление в углу: Один из углов, обычно фаза B, заземлен.

Рисунок 2: Сетевой трансформатор: треугольник-треугольник с угловым заземлением

  • Центр заземления: В этой конфигурации одна обмотка имеет центральный отвод, а центральная точка привязана к земле.
  • Другое: Возможны (хотя и редко) другие возможности, включая резистивное заземление и индуктивное заземление.

Все вышеперечисленные конфигурации заземления (включая плавающее) можно контролировать, как показано на Рис. 3 ниже.Здесь можно использовать двух- или трехэлементные ПП. Третий элемент PT является избыточным (ненужным) для этой конфигурации и показан на рисунке серым цветом. В результате заземления выхода фазы B ПТ измеритель WattNode будет регистрировать только напряжение, ток, мощность и энергию для двух фаз: фазы A и фазы C.

Теорема

Блонделя объясняет, что результаты суммы ( PowerSum и EnergySum ) являются точными для этой конфигурации. Однако заявленные мощность, реактивная мощность и коэффициент мощности для двух отдельных фаз могут оказаться несбалансированными, даже если фактическая нагрузка сбалансирована, поэтому в этой конфигурации значимы только суммы мощности и энергии.

Для моделей WattNode, которые не поддерживают схемы треугольника с линейным напряжением 120 В перем. Тока, вы должны подключить линию к нейтрали счетчика. Поэтому мы рекомендуем использовать фазу B в качестве опорной и подключать ее к земле и нейтрали. Это приведет к нулевым показаниям для фазы B на измерителе.

Примечание , первичные трансформаторы трансформатора тока контролируют межфазные напряжения среднего напряжения , , поэтому выберите коэффициент трансформации на основе межфазных напряжений.

Рисунок 3: Мониторинг цепи треугольника

Четырехпроводное соединение «звезда»

Это соединение звездой среднего напряжения с нейтральным проводом.Сетевой трансформатор может представлять собой трансформатор типа «звезда-треугольник» (показан ниже) или трансформатор «звезда-звезда».

Рисунок 4: Сетевой трансформатор: треугольник-звезда

Четырехпроводное соединение «звезда» контролируется с помощью трехэлементной конфигурации PT, показанной на Рис. 5 ниже. Измеритель будет предоставлять показания напряжения, тока, мощности и энергии по фазам, масштабированные для соответствия измерениям среднего напряжения. (здесь остановлено jb)

В этой конфигурации первичные и вторичные обмотки СТ подключены по схеме «звезда».Если одна из сторон трансформатора тока соединена треугольником, это вызовет сдвиг фазы напряжения на 30 ° и неправильные показания.

Примечание , первичные обмотки трансформатора тока контролируют напряжения между фазами среднего напряжения и , а не линейные напряжения. Поэтому будьте осторожны, чтобы выбрать правильное соотношение PT. Например, если цепь среднего напряжения составляет 4160 / 2400Y (2400 В перем. Тока между фазой и нейтралью), вам потребуется соотношение PT 20: 1 для понижения напряжения до 120 В перем.

Рисунок 5: Мониторинг четырехпроводной схемы звезды с нейтралью

Трехпроводное соединение «звезда» (без нейтрали)

Это то же самое, что и для четырехпроводной схемы «звезда», за исключением того, что нейтральный провод не выводится на нагрузку.V A на землю, V B на землю и V C на землю почти равны. Если используется нейтраль, потенциал земли такой же, как у нейтрали.

Рисунок 6: Сетевой трансформатор: треугольник-звезда без нейтрали

Трехпроводное соединение «звезда» можно контролировать с помощью двух различных конфигураций СТ.

  • Двухэлементный PT: См. Рисунок 3: Мониторинг дельта-цепи .
  • Трехэлементный датчик температуры (выход «звезда»): Это предпочтительная конфигурация трансформатора тока, поскольку счетчик обеспечивает показания напряжения, тока, мощности и энергии по каждой фазе для всех трех фаз.
В этой конфигурации первичные и вторичные обмотки PT подключены по схеме «звезда». Если бы одна сторона трансформатора тока была подключена по схеме треугольника, это привело бы к сдвигу фазы напряжения на 30 ° и неправильным показаниям.

Рисунок 7: Мониторинг трехпроводной схемы звезды без нейтрали

Примечание , первичные обмотки трансформаторов тока контролируют напряжения между фазами среднего напряжения , , а не , а не , линейные напряжения.Поэтому убедитесь, что выбрали правильное соотношение PT. Например, если цепь среднего напряжения представляет собой треугольник с 4160 В переменного тока между фазами, то напряжение между фазой и землей будет 2400 В переменного тока, и вам потребуется соотношение PT 20: 1 для снижения до 120 В переменного тока.

Не используйте схему в Рисунок 7 , если сеть среднего напряжения не исходит от распределительного трансформатора со звездообразной вторичной обмоткой, поскольку первичные напряжения РТ могут быть неопределенными или несовместимыми.

Настройка PT Ratio

Трансформаторы потенциала преобразуют среднее (или высокое) напряжение сети в более низкое напряжение, совместимое с измерителями WattNode.PT описываются понижающим коэффициентом, как показано в следующей таблице общих коэффициентов.

PT Первичный
Напряжение
PT Вторичное напряжение
(фаза-нейтраль)
Pri: Sec = PT Ratio
2400 120 2400: 120 = 20
4200 120 4200: 120 = 35
4800 120 4800: 120 = 40
7200 120 7200: 120 = 60
8400 120 8400: 120 = 70
12000 120 12000: 120 = 100
14400 120 14400: 120 = 120

Значения PT Ratio — это просто первичное напряжение, деленное на вторичное напряжение.Например, 4200/120 = 35. В редких случаях также можно использовать обратный трансформатор тока для повышения более низкого напряжения, например, с 12 В переменного тока до 120 В переменного тока, чтобы измеритель WattNode мог контролировать потребление энергии 12 или 24 В переменного тока. Это приведет к таким отношениям PT, как 0,1 (от 12 до 120 перем. Тока) или 0,2 (от 24 до 120 перем. Тока). В Соединенных Штатах и ​​Канаде большинство трансформаторов тока имеют вторичное напряжение 120 В переменного тока, поэтому мы предположили, что для этого дополнения. Если ваш СТ имеет другое вторичное напряжение, вам необходимо убедиться, что номинальное напряжение измерителя WattNode соответствует вторичному напряжению.В следующей таблице показаны некоторые возможные вторичные напряжения СТ и соответствующие модели WattNode, которые вы могли бы использовать.

Модель
Вторичное напряжение PT
(между фазами)
PT Вторичное напряжение
(фаза-нейтраль)
WattNode
120 69 Не поддерживается
208 120 WNC-3Y-208-FT10
230 132 WNC-3Y-208-FT10
400 230 WNC-3Y-400-FT10

Примечание: Поскольку CCS не предлагает модели с источником питания, который может работать от линейного напряжения 120 В переменного тока или 69 В переменного тока между фазой и нейтралью, может потребоваться привязать выходное напряжение одного ПТ к нейтраль и земля, как показано на Рисунок 3 .

WattNode для LonWorks — опция PT

Если у вас есть или вы заказываете WattNode для LonWorks с опцией PT, вы можете указать коэффициент PT, чтобы измеритель автоматически масштабировал значения напряжения, мощности и энергии.

После того, как вы определили правильное соотношение PT, запрограммируйте его в UCPTptRatio с помощью LonMaker ® , подключаемого модуля WattNode LNS ® или другого инструмента LonWorks. UCPTptRatio ограничен диапазоном 0.От 05 до 300. Если вы попытаетесь настроить значение меньше 0,05 или больше 300, измеритель вернется к коэффициенту PT, равному 1,0 (фактически без PT).

Если вы знаете коэффициент PT на момент заказа измерителя, вы можете указать это соотношение как часть опции, чтобы коэффициент был предварительно запрограммирован на заводе. Например, для PT с соотношением сторон 4200: 120 вы должны заказать следующее:

WNC-3Y-208-FT10 Опция PT = 35

Значение после «PT =» должно быть отношением в виде единственного числа.Не указывайте первичное напряжение или два числа, разделенных двоеточием.

Если вы не знаете коэффициент PT при заказе измерителя, добавьте к модели « Opt PT ». Измеритель будет поставляться с коэффициентом PT, равным 1,0, и его необходимо будет настроить на месте.

Вт, узел Modbus

Для измерителя WattNode Modbus нет опции PT . Однако вы все равно можете подключить счетчик к трансформаторам напряжения. Вам просто нужно будет масштабировать значения напряжения, мощности и энергии после того, как вы прочитаете их со счетчика.Ток и коэффициент мощности не нужно масштабировать на коэффициент PT. Например:

Вт, чтение узла Коэффициент PT Масштабируемое значение
121,3 В перем. Тока 35 4245,5 В перем. Тока
4500 Вт 35 157 500 Вт (157,5 кВт)
100 кВтч 35 3500 кВтч

Вт, импульсный узел

Для измерителя импульсов WattNode нет опции PT .Однако вы все равно можете подключить счетчик к трансформаторам напряжения. Вам просто нужно будет отрегулировать масштабные коэффициенты по коэффициенту PT. Например:

импульсов на
киловатт-час
Коэффициент PT масштабированных импульсов
на киловатт-час
400 35 400/35 = 11,429
100 35 100/35 = 2,857
Ватт-часов
за импульс
Коэффициент PT ватт-часов
на импульс
2.5 35 2,5 * 35 = 87,5
10 35 10 * 35 = 350,0

Банкноты

Энергетический опрокидыватель

Модели WattNode для LonWorks и WattNode Modbus имеют внутреннюю точку восстановления энергии 100 ГВтч (100000000 кВтч). Когда энергия достигает точки опрокидывания, она сбрасывается до нуля (как показания счетчика пробега до нуля). Обычно для достижения этой точки опрокидывания требуются годы, но с Option PT опрокидывание может происходить гораздо чаще.

Например, в крайнем случае, при максимальном коэффициенте PT 300, трансформаторы тока на 5000 ампер и очень высокой продолжительной нагрузке 75% от максимальной, энергия может достичь 100 ГВт-ч всего за 30 дней.

Более реалистичным примером может служить коэффициент PT 60 (7200 В перем. Тока) и трансформаторы тока на 2000 ампер, что приводит к переключению примерно раз в год.

PT Бремя

Счетчик WattNode будет питаться от вторичных трансформаторов PT, поэтому вам нужно будет выбрать PT с достаточно высокой нагрузочной способностью.Модели WattNode потребляют от 2 до 4 ВА при коэффициенте мощности (PF) от 0,6 до 0,8, поэтому для них требуется трансформатор напряжения, рассчитанный на такую ​​нагрузку.

Существуют стандартные буквенные коды IEEE / ANSI C57.13 для ПК, рассчитанных на работу с различными нагрузками. Нестандартные ПТ уточняйте у производителя.

  • Вт: 12,5 ВА при 0,10 PF. Счетчики WattNode потребляют намного меньше 12,5 ВА, но коэффициент мощности измерителя намного выше 0,10, поэтому точность ПТ может быть снижена.
  • X: 25 ВА при 0,70 PF. Это может легко обеспечить измеритель WattNode.
  • M: 35 ВА при 0,20 пФ. Счетчики WattNode потребляют намного меньше 35 ВА, но коэффициент мощности измерителя выше 0,20, поэтому точность ПТ может быть снижена.
  • Y: 75 ВА при 0,85 PF. Это может легко обеспечить измеритель WattNode.
  • Z: 200 ВА при 0,85 PF. Это может легко обеспечить измеритель WattNode.

Ключевые слова: ПТ, ПТ, трансформатор напряжения, ТН, ТН, трансформатор напряжения, измерительный трансформатор

См. Также

Измерительные трансформаторы



ЗАДАЧИ

• объяснить работу измерительного трансформатора напряжения.

• объяснить работу измерительного трансформатора тока.

• схема соединений трансформатора напряжения и трансформатора тока в однофазной цепи.

• указать, как следующие величины определяются для однофазной цепи содержащие измерительные трансформаторы: первичный ток, первичное напряжение, первичное мощность, полная мощность и коэффициент мощности.

• описать подключение измерительных трансформаторов в трехфазной, трехпроводной схема.

• описать подключение измерительных трансформаторов к трехфазной, четырехпроводной система.

Измерительные трансформаторы используются для измерения и контроля переменного тока. токовые цепи. Прямое измерение высокого напряжения или сильных токов предполагает: большие и дорогие приборы, реле и другие схемные компоненты много дизайнов. Однако использование измерительных трансформаторов позволяет использовать относительно небольшие и недорогие приборы и устройства управления стандартизированные конструкции.Измерительные трансформаторы также защищают оператора, измерительные приборы и контрольное оборудование от опасностей высоких Напряжение. Использование измерительных трансформаторов повышает безопасность, точность и удобство.

Есть два различных класса инструментальных трансформаторов: инструментальные трансформаторы. трансформатор напряжения и измерительный трансформатор тока. (Слово «инструмент» обычно опускается для краткости.)

ПОТЕНЦИАЛЬНЫЕ ТРАНСФОРМАТОРЫ

Трансформатор напряжения работает по тому же принципу, что и питание или распределение. трансформатор.Основное отличие состоит в том, что мощность трансформатора напряжения мала по сравнению с силовыми трансформаторами. Потенциальные трансформаторы имеют номиналы от 100 до 500 вольт-ампер (ВА). Сторона низкого напряжения обычно намотка на 115 вольт или 120 вольт. Нагрузка на стороне низкого напряжения обычно состоит из потенциальных катушек различных инструментов, но может также включать потенциальные катушки реле и другого управляющего оборудования. В целом нагрузка относительно небольшая и нет необходимости в трансформаторах напряжения емкостью от 100 до 500 вольт-ампер.

Первичная обмотка высокого напряжения трансформатора напряжения имеет то же номинальное напряжение первичной цепи. Когда необходимо измерить напряжение однофазной линии на 4600 вольт, первичная обмотка потенциала трансформатор будет рассчитан на 4600 вольт, а низковольтная вторичная быть рассчитанным на 115 вольт. Соотношение первичной и вторичной обмоток это:

4,600/115 или 40/1

Вольтметр, подключенный к вторичной обмотке трансформатора напряжения. указывает значение 115 вольт.Для определения фактического напряжения на высоковольтной цепи, показание прибора 115 вольт необходимо умножить на 40. (115 х 40 = 4600 вольт). В большинстве случаев вольтметр откалиброван для индикации фактическое значение напряжения на первичной стороне. В результате оператор не требуется применять множитель к показаниям прибора, а возможность ошибок снижена.

ил 22-1 иллюстрирует соединения для трансформатора напряжения с первичный вход 4600 вольт и выход 115 вольт для вольтметра.Этот потенциал трансформатор имеет вычитающую полярность. (Все измерительные трансформаторы напряжения теперь производятся, имеют вычитающую полярность.) Один из вторичных выводов трансформатор, показанный на рисунке 22-1, заземлен, чтобы исключить опасность высокого напряжения.

Трансформаторы потенциала имеют высокоточное соотношение между значениями первичного и вторичного напряжения; как правило, ошибка составляет менее 0,5 процента. Власть трансформаторы не предназначены для высокоточного преобразования напряжения.


ил. 22-1 Подключение трансформатора напряжения

ТРАНСФОРМАТОР ТОКА

Трансформаторы тока используются для того, чтобы амперметры и катушки тока другие приборы и реле не нужно подключать напрямую к сильноточным линий. Другими словами, эти приборы и реле изолированы от высоких токи. Трансформаторы тока также понижают ток до известного коэффициента. Использование трансформаторов тока означает, что относительно небольшие и точные могут использоваться приборы, реле и устройства управления стандартизованной конструкции. в схемах.

Трансформатор тока имеет отдельные первичную и вторичную обмотки. В первичная обмотка, которая может состоять из нескольких витков толстого провода, намотанного на многослойный железный сердечник, последовательно соединенный с одним из линейных проводов. Вторичная обмотка состоит из большего количества витков меньшего размер проволоки. Первичная и вторичная обмотки намотаны на один сердечник.

Номинальный ток первичной обмотки трансформатора тока определяется по максимальному значению тока нагрузки.Вторичная обмотка рассчитана на на 5 ампер независимо от номинального тока первичных обмоток.

Например, предположим, что номинальный ток первичной обмотки трансформатор тока 100 ампер. Первичная обмотка имеет три витка, а вторичная обмотка — 60 витков. Вторичная обмотка имеет стандартную текущий рейтинг 5 ампер; следовательно, соотношение между первичным и вторичным токами составляет 100/5 или 20 к 1. Первичный ток в 20 раз больше. чем вторичный ток.Поскольку вторичная обмотка имеет 60 витков, а первичная обмотка — 3 витка, вторичная обмотка имеет в 20 раз больше витков. витки как первичная обмотка. Тогда для трансформатора тока отношение первичного и вторичного токов обратно пропорционально отношению первичные и вторичные витки.

В fgr22-2 трансформатор тока используется для понижения тока в Однофазная цепь на 4600 вольт. Трансформатор тока рассчитан на 100 до 5 ампер, а коэффициент понижения тока составляет 20 к 1.Другими словами, в первичной обмотке 20 ампер на каждый ампер вторичной обмотка. Если амперметр на вторичной обмотке показывает 4 ампера, фактический ток в первичной обмотке в 20 раз превышает это значение или 80 ампер.

Трансформатор тока на рисунке 22-2 имеет маркировку полярности в том смысле, что два высоковольтных первичных вывода имеют маркировку h2 и h3, а вторичные выводы помечены как X1 и X2. Когда h2 мгновенно положительно, X1 положительно в тот же момент.Некоторые производители трансформаторов тока маркируют только h2 и X1 или используйте метки полярности. При подключении трансформаторов тока в схемах вывод h2 подключается к проводу линии, питающемуся от источника, в то время как провод h3 подключен к линейному проводу, питающему нагрузку.


ил. 22-2 А трансформатор тока, используемый с амперметром

Вторичные провода подключаются непосредственно к амперметру. Обратите внимание, что один проводов вторичной обмотки заземлено в качестве меры предосторожности для устранения высокого напряжения опасности.

Осторожно: Вторичная цепь трансформатора никогда не должна открываться, когда в первичной обмотке есть ток. Если вторичная цепь разомкнута когда есть ток в первичной обмотке, то весь первичный ток ток возбуждения, который вызывает высокое напряжение во вторичной обмотке. Это напряжение может быть достаточно высоким, чтобы подвергнуть опасности жизнь человека.

Лица, работающие с трансформаторами тока, должны проверить, что вторичная обмотка цепь обмотки замкнута.Иногда может потребоваться отключить вторичная цепь прибора при наличии тока в первичной обмотке. Например, в измерительной цепи может потребоваться переустановка проводки или другой ремонт. быть нужным. Для защиты рабочего подключается небольшой короткозамыкающий выключатель. в цепь на вторичных выводах трансформатора тока. Этот переключатель замкнут, когда цепь прибора должна быть отключена на ремонт или переналадка.

Трансформаторы тока имеют очень точное соотношение между первичной и вторичной обмотками. текущие значения: погрешность большинства современных трансформаторов тока меньше 0.5 процентов.

Если первичная обмотка имеет большой номинальный ток, она может состоять из прямой проводник, проходящий через центр полого металлического сердечника. В вторичная обмотка намотана на сердечник. Эта сборка называется стержневой. трансформатор тока. Название происходит от конструкции первичного который на самом деле представляет собой прямую медную шину. Все стандартные трансформаторы тока с номиналом 1000 ампер и более являются трансформаторами стержневого типа. Некоторые текущие трансформаторы с более низкими номиналами также могут быть стержневыми.больной 22-3 показан трансформатор тока стержневого типа.

ill 22-4 показывает клещевой амперметр, который использует концепцию оконного типа. трансформатор тока. Открыв зажим, а затем закрыв его вокруг токопроводящий провод, ток в проводе измеряется на метр.


ил. Трансформатор тока 22-3 бар.

ил. 22-4 Зажимные амперметры / мультиметры.

ИНСТРУМЕНТНЫЕ ТРАНСФОРМАТОРЫ В ОДНОФАЗНОЙ ЦЕПИ


ил.22-5 Однофазные измерительные соединения

илл. 22-5 показывает нагрузку прибора, подключенную через прибор. трансформаторы на однофазную высоковольтную линию. Инструменты включают вольтметр (22-6), амперметр и ваттметр. Трансформатор потенциала рассчитано на напряжение от 4600 до 115 вольт; трансформатор тока рассчитан на 50 … 5 ампер. Катушки потенциала вольтметра и ваттметра соединены параллельно низковольтному выходу трансформатора напряжения.Следовательно, напряжение на потенциальных катушках каждого из этих инструментов является тем же. Катушки тока амперметра и ваттметра соединены в последовательно через вторичный выход трансформатора тока. Как результат, ток в токовых катушках обоих инструментов одинаков. Обратите внимание, что вторичная обмотка каждого измерительного трансформатора заземлена для обеспечения защиты от опасностей высокого напряжения, как это предусмотрено в статье 250 Национального электротехнического Код.

Вольтметр на рисунке 22-5 показывает 112,5 вольт, амперметр показывает 4 ампера, а ваттметр показывает 450 ватт. Чтобы найти первичное напряжение, первичный ток, первичная мощность, полная мощность в первичной цепи и коэффициент мощности, используются следующие процедуры:

Первичное напряжение

Множитель вольтметра = 4600/115 = 40

Первичное напряжение = 112,5 x 40

= 4500 вольт

Первичный ток

Множитель амперметра = 50 / S = 10

Первичный ток = 4 x 10

= 40 ампер


ил.22-6 Монтируемые на панели счетчики используют трансформаторы для контроля больших значений

Первичная мощность

Множитель ваттметра = множитель вольтметра x множитель амперметра

Множитель ваттметра = 40 x 10

= 400

Основная мощность = 450 x 400

= 180000 ватт или 180 киловатт

Полная мощность

Полная мощность первичной цепи, полученная путем умножения первичной значения напряжения и тока.

Полная мощность (вольт-амперы) = вольт x ампер

вольт-ампер = 4500 x 40

= 180000 Вт = 180000/1000 = 180 кВт

Коэффициент мощности

Коэффициент мощности = мощность в киловаттах / полная мощность в киловольт-амперах

= 180/180

= 1,00 или 100 процентов

ИНСТРУМЕНТНЫЕ ТРАНСФОРМАТОРЫ НА ТРЕХФАЗНЫХ СИСТЕМАХ

Трехфазная, трехпроводная система

В трехфазной трехпроводной системе два одинаковых трансформатора напряжения необходимы два трансформатора тока одинакового номинала.Это это обычная практика в трехфазном измерении для соединения вторичного схемы. То есть соединения выполняются так, что один провод или устройство проводит комбинированные токи двух трансформаторов в разных фазах.

Низковольтные подключения приборов для трехфазной трехпроводной системы проиллюстрированы на 22-7. Обратите внимание, что два трансформатора напряжения подключены в разомкнутом треугольнике к трехфазной линии на 4600 Вольт. Это приводит к трем значения вторичного напряжения 115 вольт каждое.Два трансформатора тока соединены так, чтобы первичная обмотка одного трансформатора была последовательно с линией А и первичная обмотка второго трансформатора включены последовательно с линией С.


ил. 22-7 Измерительные соединения для трехфазной, трехпроводной системы

Обратите внимание, что во вторичной цепи низкого напряжения используются три амперметра. Эта система подключения подходит для трехфазной трехпроводной системы, и все три амперметра дают точные показания.Другие инструменты, которые можно используемые в этой схеме включают трехфазный ваттметр, трехфазный ватт-час измеритель мощности и трехфазный измеритель коэффициента мощности. Когда трехфазные инструменты подключены во вторичных цепях, эти приборы должны быть подключены правильно, чтобы сохранялись правильные фазовые соотношения. Если это меры предосторожности не соблюдаются, показания прибора будут неверными. В проверка соединений для этой трехфазной трехпроводной системы учета, Обратите внимание, что соединенные между собой вторичные обмотки потенциала и тока заземлены. для обеспечения защиты от опасностей высокого напряжения.

Трехфазная, четырехпроводная система


ил. 22-8 Измерительные соединения для трехфазной, четырехпроводной системы

ил 22-8 иллюстрирует вторичные измерительные соединения для 2400/4152 вольт, трехфазная, четырехпроводная система. Подключены три трансформатора напряжения. в звезду, чтобы обеспечить трехфазный выход трех вторичных напряжений 120 вольт к нейтральному. Три трансформатора тока от 50 до 5 ампер используются в трех линейные проводники.Во взаимосвязанной вторичной обмотке используются три амперметра. схема. И взаимосвязанный потенциал, и текущие вторичные обмотки заземлен для защиты от возможных опасностей, связанных с высоким напряжением.

РЕЗЮМЕ

Измерительные трансформаторы

специально разработаны для преобразования напряжения и тока в очень точных соотношениях. Потенциальные трансформаторы используются для преобразования высокое напряжение до значений 115 или 120 вольт для использования со стандартными приборами. Трансформаторы тока (ТТ) используются для преобразования больших значений переменного тока. до уровня 5 ампер, чтобы его можно было использовать со стандартными инструментами.ОКРУГ КОЛУМБИЯ текущие уровни обычно снижаются до приемлемого уровня за счет использования шунты. Шунт имеет номинальный ток первичной нагрузки, и тогда измеритель подключен через шунт. Счетчик рассчитан на работу при 50 милливольтах.

ВИКТОРИНА

1. Какие бывают два типа измерительных трансформаторов?

а.

г.

2. Почему вторичная цепь трансформатора тока должна быть замкнута, когда есть ток в первичной цепи? __________

3.Трансформатор рассчитан на 4600/115 вольт. Вольтметр, подключенный поперек вторичная обмотка показывает 112 вольт. Какое первичное напряжение?

4. Трансформатор тока рассчитан на 150/5 ампер. Амперметр во вторичной обмотке схема читает 3,5 ампера. Что такое первичный ток? _______

5. Трансформатор напряжения 2300/115 В и трансформатор тока 100/5 А. подключены к однофазной сети. Вольтметр, амперметр и ваттметр включены во вторичные обмотки измерительных трансформаторов.Вольтметр показывает 110 вольт, амперметр показывает 4 ампера, а ваттметр показывает 352 Вт. Нарисуйте соединения для этой схемы. Марк ведет H X и так далее. Показать все значения напряжения, тока и мощности.

6. Замкните цепь, используя измерительные трансформаторы для измерения напряжения и силы тока. Включите термическую маркировку.

ОТ ИСТОЧНИКА ДО ЗАГРУЗКИ

7. Какое первичное напряжение данной однофазной цепи? 5?

8.Какой первичный ток в амперах приведен в однофазной цепи в вопросе 5?

9. Какая первичная мощность в ваттах дана в однофазной цепи? в вопросе 5?

10. Каков коэффициент мощности рассматриваемой однофазной цепи? 5?

Выберите правильный ответ для каждого из следующих утверждений.

11. Вторичная обмотка трансформатора напряжения обычно наматывается на

.

а. 10 вольт. c. 230 вольт.

г. 115 вольт. d. 500 вольт.

12. Вторичные обмотки трансформатора потенциала заземлены на

.

а. стабилизировать показания счетчика.

г. застраховать показания с точностью до 0,5 процента.

г. доделать систему с праймериз.

г. исключить опасности высокого напряжения.

13. Трансформатор, используемый для уменьшения значений тока до размера, равного малым счетчикам. может их зарегистрировать — это

а. автотрансформатор. c. трансформатор напряжения.

г. распределительный трансформатор. d. трансформатор тока.

14. Первичная обмотка большого трансформатора тока может состоять из

а. много витков тонкой проволоки.

г. несколько витков тонкой проволоки.

г. много витков тяжелой проволоки.

г. прямоточный проводник.

15. Стандартный номинальный ток вторичной обмотки трансформатора тока. это

а. 5 ампер. c. 15 ампер.

г. 50 ампер. d.15 ампер.

16. Вторичная цепь трансформатора тока никогда не должна открываться. когда ток присутствует в первичной обмотке, потому что

а. счетчик перегорит.

г. счетчик не работает.

г. может возникнуть опасное высокое напряжение.

г. первичные значения могут быть прочитаны на счетчике.

Одно- и трехфазные трансформаторы тока Технический бюллетень

Том Колелла, технический директор
Трансформаторы тока

(ТТ) представляют собой трансформаторы измерительного типа, которые принимают большие токи и снижают их до чрезвычайно низкого значения, обеспечивая простой и безопасный метод контроля цепей без разрыва проводки.Измерения обычно производятся с помощью стандартного цифрового или аналогового измерителя. Трансформатор тока может быть однофазным или многофазным. Трансформаторы тока имеют множество применений — от управления энергоснабжением до прецизионных измерений в медицине, автомобилестроении, авионике, телекоммуникационной промышленности и в военной сфере.

Существует три основных конфигурации трансформатора тока:

  • Тороидальный сердечник: Измеряйте токи от 50 до 5000 ампер с отверстием сердечника от 1 до 8 дюймов в диаметре.Этот тип не содержит первичных обмоток. Однако линия, по которой проходит ток, проходит через центральное отверстие в трансформаторе.
  • Split Core: Измерьте токи от 100 до 5000 ампер с отверстием сердечника от 1 до 13 дюймов в диаметре. Разъемный сердечник имеет один конец съемного, так что провод нагрузки не нужно отсоединять для установки трансформатора тока.
  • Обмотка первичной обмотки: Измерьте токи от 1 до 100 ампер, поскольку ток нагрузки проходит через первичные обмотки ТТ.

Трансформатор тока аналогичен силовому трансформатору, за исключением того, что первичная обмотка включена последовательно с проводником, по которому проходит сильный переменный ток. Этот тип трансформатора состоит всего из нескольких витков первичной обмотки. Первичная обмотка может представлять собой один виток сверхпрочной проволоки, намотанной вокруг сердечника. Вторичная обмотка трансформатора тока обычно представляет собой соотношение по сравнению с первичной обмоткой. Вторичная обмотка может состоять из большого количества витков, намотанных на магнитный сердечник с низкими потерями, в зависимости от того, насколько снижен ток, и обычно он рассчитан на ток от 1 до 5 ампер [см. Рисунок 1 ].

Трансформаторы тока могут понижать уровни тока с тысяч ампер до известного коэффициента. Первичный и вторичный токи выражаются в соотношении, например 100: 5. Это означает, что для 100 ампер, протекающих по первичному проводнику, вторичный будет показывать (протекать) 5 ампер тока. Или, для номинала 500: 1, будет ток 500 ампер в первичной обмотке и 1 ампер с потоком во вторичной обмотке.

Рисунок 1: Базовая конструкция трансформатора тока
Трехфазный трансформатор тока

Этот тип трансформатора, по сути, представляет собой три соединенных между собой однофазных трансформатора в одном корпусе, выполненных с использованием одного «трехфазного сердечника» или трех отдельных тороидальных сердечников.На рисунке 2 показан пример трехфазного трансформатора тока.

Рисунок 2: Трехфазный ток

Точность трансформаторов тока, а также точность измерения, указаны в IEC 61869-1, классы 0,1, 0,2 с, 0,2, 0,5, 0,5 с, 1 и 3. Причина в обозначении класса заключается в классификации точности трансформатора тока. Например, погрешность первичного и вторичного тока для трансформатора тока класса 1 составляет + 1% при полном номинальном токе, погрешность трансформатора тока класса 0,5 составляет + 0.5% и т. Д. Буква «s» после обозначения класса указывает на высокую точность и обычно используется при измерении тарифов. Другой параметр, который следует учитывать, — это ошибки фазы, которые также описаны в рейтинге каждого класса.

Другие факторы, влияющие на точность измерения: нагрузки, внешние электромагнитные поля, изменение фазы, емкостная связь между первичной и вторичной обмотками, сопротивление между первичной и вторичной обмотками, температура, нагрузка и ток намагничивания сердечника.

Трансформаторы тока предназначены для использования в качестве пропорциональных устройств.Следовательно, вторичная обмотка никогда не должна быть в разомкнутом состоянии, так как это может привести к повреждению устройства.

Сводка

Трансформатор тока преобразует высокие первичные токи во вторичные малоточные токи за счет использования магнитных сердечников. Трансформаторы тока могут быть неинвазивным способом контроля высоких токов в электроэнергетике, контрольно-измерительных приборах в авионике, автомобилестроении, военной и телекоммуникационной отраслях.

Измерение тока нагрузки двигателя с помощью трансформатора тока — FLEX-CORE®

Точное измерение тока нагрузки двигателя (чтобы определить, работает ли двигатель при малой нагрузке, полной нагрузке или перегрузке) является обычным требованием для конечного пользователя и может быть выполнено быстро с помощью трансформатора тока, предназначенного для измерительных приложений. .

Определение того, какой трансформатор тока использовать, требует, чтобы установщик знал ток полной нагрузки (FLC или FLA) двигателя. Чтобы узнать ток полной нагрузки, найдите на двигателе табличку с паспортными данными и запишите указанный коэффициент тока. Если паспортная табличка двигателя нечитаема или вообще отсутствует, обратитесь к таблице данных о нагрузке двигателя из Справочника NEC на основе номинальной мощности, номинального напряжения системы и того, является ли двигатель однофазным или трехфазным.

Например, если номинал трехфазного асинхронного двигателя с номинальным напряжением 460 В составляет 110 А, то, согласно руководству NEC, мы должны выбрать трансформатор тока с соотношением 150: 5 А.ВАЖНО — не забудьте убедиться, что внешний диаметр вашего проводника меньше внутреннего диаметра трансформатора тока.

Используя модель 180RL-151 (для приведенного выше примера) с номинальной мощностью 5 А (150: 5 А) и оконным проемом с внутренним диаметром 2,5 дюйма, мы получим:

  1. Предположим, что внешний диаметр проводника меньше 2,5 дюйма внутреннего диаметра трансформатора тока 180RL.
  2. Определите фактическую нагрузку двигателя, убедившись, что шкала измерителя соответствует коэффициенту передачи трансформатора тока.В этом случае шкала счетчика должна быть 0-150А.
  3. Выберите аналоговый панельный измеритель для отображения тока нагрузки. Если ток нагрузки трех фаз должен отслеживаться и считываться одновременно, можно использовать три отдельных трансформатора тока 180RL-151, каждый с аналоговым панельным измерителем. В качестве альтернативного варианта можно использовать три трансформатора тока (180RL-151), один аналоговый щитовой измеритель (HST905A150A) и селекторный переключатель (N25-61328-37S или N25-61325-37S) для получения показаний тока каждой фазы.

В случаях, когда кабели не могут быть удалены, как правило, в установках среднего напряжения, следует использовать трансформатор тока с разъемным сердечником, такой как модель FCL, для контроля тока нагрузки двигателя.

Обратите внимание, что трансформаторы тока оконного типа рассчитаны на 600 В, но могут использоваться на более высоких напряжениях с полностью изолированными кабелями. Следует проявлять осторожность при правильной установке оконного типа номинальным током 600 В на более высокие напряжения. Если ТТ оконного типа низкого напряжения предназначен для использования в приложениях с более высоким напряжением, покупатель несет ответственность за соблюдение рабочих условий и принятие необходимых мер предосторожности.Обычно это подтверждается проведением испытаний изоляции при соответствующем уровне напряжения системы с установленными трансформаторами тока низкого напряжения.

Для некоторых приложений, таких как установки для испытания двигателей под нагрузкой, которые требуют высокой точности измерения, рекомендуется использовать трансформатор тока более высокой точности (и более прочную конструкцию), такой как модели JAK-0C или JAK-0S. Эти модели имеют точность измерения уровня дохода 0,3% и 0,15%.

Для приложений, в которых измерительное устройство размещается отдельно от трансформатора тока, стандартный трансформатор тока 2RL, который имеет низкую нагрузку, не подходит, и потребуется трансформатор тока с более высокой нагрузкой для компенсации дополнительного импеданса длинного подводящие провода.Мы рекомендуем использовать трансформатор тока измерительного класса 60RBT.

Если расстояние между датчиком тока и измерительным устройством превышает 100 футов, подходящим вариантом является использование преобразователя тока с выходным сигналом 4–20 мА и измерительного устройства с входным сигналом 4–20 мА. Если вы оказались в такой ситуации, проконсультируйтесь с инженером по применению FLEX-CORE®.

% PDF-1.3 % 232 0 объект > эндобдж xref 232 947 0000000016 00000 н. 0000021015 00000 п. 0000021333 00000 п. 0000021462 00000 п. 0000047400 00000 п. 0000047450 00000 п. 0000047500 00000 п. 0000047549 00000 п. 0000047598 00000 п. 0000047647 00000 п. 0000047696 00000 п. 0000047745 00000 п. 0000047795 00000 п. 0000047846 00000 п. 0000047896 00000 п. 0000047945 00000 п. 0000047994 00000 н. 0000048043 00000 п. 0000048093 00000 п. 0000048143 00000 п. 0000048193 00000 п. 0000048243 00000 п. 0000048292 00000 н. 0000048342 00000 п. 0000048393 00000 п. 0000048442 00000 п. 0000048493 00000 п. 0000048542 00000 п. 0000048591 00000 п. 0000048640 00000 п. 0000048689 00000 н. 0000048738 00000 п. 0000048788 00000 н. 0000048837 00000 п. 0000048886 00000 н. 0000048936 00000 н. 0000048986 00000 п. 0000049035 00000 п. 0000049084 00000 п. 0000049133 00000 п. 0000049182 00000 п. 0000049231 00000 п. 0000049280 00000 п. 0000049329 00000 п. 0000049378 00000 п. 0000049427 00000 н. 0000049476 00000 п. 0000049527 00000 п. 0000049578 00000 п. 0000049629 00000 п. 0000049680 00000 п. 0000049730 00000 п. 0000049780 00000 п. 0000049829 00000 п. 0000049879 00000 п. 0000049928 00000 н. 0000049978 00000 н. 0000050028 00000 п. 0000050078 00000 п. 0000050127 00000 п. 0000050176 00000 п. 0000050225 00000 п. 0000050275 00000 п. 0000050326 00000 п. 0000050376 00000 п. 0000050490 00000 н. 0000050602 00000 п. 0000050686 00000 п. 0000051172 00000 п. 0000051263 00000 п. 0000051816 00000 п. 0000051866 00000 п. 0000051915 00000 п. 0000051965 00000 п. 0000052015 00000 н. 0000052065 00000 п. 0000052114 00000 п. 0000052164 00000 п. 0000052215 00000 п. 0000052265 00000 п. 0000052315 00000 п. 0000052366 00000 п. 0000052416 00000 п. 0000052466 00000 п. 0000052516 00000 п. 0000052566 00000 п. 0000052616 00000 п. 0000052666 00000 п. 0000052716 00000 п. 0000052766 00000 п. 0000052816 00000 п. 0000052865 00000 п. 0000052915 00000 п. 0000052964 00000 п. 0000053013 00000 п. 0000053062 00000 п. 0000053111 00000 п. 0000053160 00000 п. 0000053209 00000 п. 0000053258 00000 п. 0000053307 00000 п. 0000053356 00000 п. 0000053405 00000 п. 0000053454 00000 п. 0000053503 00000 п. 0000053552 00000 п. 0000053601 00000 п. 0000053650 00000 п. 0000053699 00000 п. 0000053748 00000 п. 0000053798 00000 п. 0000053848 00000 п. 0000053897 00000 п. 0000053946 00000 п. 0000053995 00000 п. 0000054717 00000 п. 0000055466 00000 п. 0000055515 00000 п. 0000055566 00000 п. 0000055616 00000 п. 0000055665 00000 п. 0000055715 00000 п. 0000055765 00000 п. 0000055815 00000 п. 0000055864 00000 п. 0000055913 00000 п. 0000055962 00000 п. 0000056011 00000 п. 0000056061 00000 п. 0000056111 00000 п. 0000056160 00000 п. 0000056210 00000 п. 0000056259 00000 п. 0000056308 00000 п. 0000056357 00000 п. 0000056406 00000 п. 0000056455 00000 п. 0000056504 00000 п. 0000056553 00000 п. 0000056602 00000 п. 0000056651 00000 п. 0000056700 00000 п. 0000056749 00000 п. 0000056798 00000 п. 0000056847 00000 п. 0000056896 00000 п. 0000056945 00000 п. 0000056994 00000 п. 0000057043 00000 п. 0000057092 00000 п. 0000057141 00000 п. 0000057190 00000 п. 0000057239 00000 п. 0000057288 00000 п. 0000057337 00000 п. 0000057386 00000 п. 0000057435 00000 п. 0000057484 00000 п. 0000057535 00000 п. 0000057584 00000 п. 0000057633 00000 п. 0000057682 00000 п. 0000057731 00000 п. 0000057780 00000 п. 0000057829 00000 п. 0000057878 00000 п. 0000057927 00000 н. 0000057976 00000 п. 0000058025 00000 п. 0000058074 00000 п. 0000058123 00000 п. 0000058172 00000 п. 0000058221 00000 п. 0000058270 00000 п. 0000058319 00000 п. 0000058368 00000 п. 0000058417 00000 п. 0000058466 00000 п. 0000058515 00000 п. 0000058564 00000 п. 0000058613 00000 п. 0000091774 00000 п. 0000125943 00000 н. 0000159655 00000 н. 0000193235 00000 н. 0000227477 00000 н. 0000261557 00000 н. 0000296017 00000 н. 0000331671 00000 н. 0000336991 00000 п. 0000337044 00000 н. 0000337097 00000 п. 0000342168 00000 н. 0000342628 00000 н. 0000342754 00000 н. 0000342807 00000 н. 0000342925 00000 н. 0000343065 00000 н. 0000343204 00000 н. 0000343286 00000 н. 0000343339 00000 н. 0000343409 00000 н. 0000343462 00000 н. 0000343678 00000 н. 0000343844 00000 н. 0000344078 00000 н. 0000344152 00000 п. 0000344222 00000 п. 0000344296 00000 н. 0000344370 00000 н. 0000344436 00000 н. 0000344489 00000 н. 0000344555 00000 п. 0000344621 00000 н. 0000344687 00000 н. 0000344744 00000 н. 0000344806 00000 н. 0000344888 00000 н. 0000344941 00000 н. 0000345019 00000 н. 0000345089 00000 н. 0000345163 00000 п. 0000345216 00000 н. 0000345282 00000 н. 0000345348 00000 п. 0000345401 00000 п. 0000345454 00000 п. 0000345507 00000 н. 0000345614 00000 п. 0000345725 00000 н. 0000345807 00000 н. 0000345881 00000 н. 0000345951 00000 п. 0000346017 00000 н. 0000346103 00000 п. 0000346169 00000 н. 0000346222 00000 п. 0000346284 00000 н. 0000346366 00000 н. 0000346436 00000 н. 0000346506 00000 н. 0000346588 00000 н. 0000346662 00000 н. 0000346732 00000 н. 0000346840 00000 н. 0000346922 00000 н. 0000346975 00000 п. 0000347045 00000 н. 0000347098 00000 п. 0000347155 00000 н. 0000347241 00000 н. 0000347319 00000 п. 0000347393 00000 п. 0000347467 00000 н. 0000347533 00000 п. 0000347586 00000 п. 0000347648 00000 н. 0000347701 00000 н. 0000347767 00000 н. 0000347833 00000 н. 0000347899 00000 н. 0000347965 00000 п. 0000348031 00000 н. 0000348101 00000 п. 0000348171 00000 п. 0000348241 00000 п. 0000348311 00000 н. 0000348381 00000 п. 0000348434 00000 н. 0000348504 00000 н. 0000348566 00000 н. 0000348628 00000 н. 0000348694 00000 н. 0000348747 00000 н. 0000348800 00000 н. 0000348853 00000 н. 0000349308 00000 п. 0000349361 00000 п. 0000349414 00000 н. 0000349496 00000 п. 0000349574 00000 н. 0000349656 00000 н. 0000349807 00000 н. 0000349881 00000 п. 0000349934 00000 н. 0000350085 00000 н. 0000350218 00000 н. 0000350271 00000 н. 0000350324 00000 н. 0000350432 00000 н. 0000350485 00000 н. 0000350538 00000 н. 0000350591 00000 н. 0000350644 00000 н. 0000350697 00000 н. 0000350750 00000 н. 0000350803 00000 н. 0000351163 00000 н. 0000351454 00000 н. 0000351684 00000 н. 0000351847 00000 н. 0000351933 00000 н. 0000351986 00000 н. 0000352039 00000 н. 0000352092 00000 н. 0000352145 00000 н. 0000352281 00000 н. 0000352678 00000 н. 0000352804 00000 н. 0000352866 00000 н. 0000352952 00000 н. 0000353014 00000 н. 0000353227 00000 н. 0000353419 00000 н. 0000353582 00000 н. 0000353720 00000 н. 0000353773 00000 н. 0000354005 00000 н. 0000354366 00000 н. 0000354474 00000 н. 0000354800 00000 н. 0000354925 00000 н. 0000355007 00000 н. 0000355194 00000 н. 0000355355 00000 н. 0000355491 00000 п. 0000355544 00000 н. 0000355659 00000 н. 0000355901 00000 н. 0000356029 00000 н. 0000356163 00000 н. 0000356499 00000 н. 0000356616 00000 н. 0000356732 00000 н. 0000356895 00000 н. 0000357039 00000 п. 0000357267 00000 н. 0000357474 00000 н. 0000357682 00000 н. 0000357861 00000 н. 0000358015 00000 н. 0000358068 00000 н. 0000358206 00000 н. 0000358648 00000 н. 0000358906 00000 н. 0000359108 00000 н. 0000359251 00000 н. 0000359333 00000 н. 0000359495 00000 н. 0000359565 00000 н. 0000359686 00000 н. 0000359833 00000 н. 0000359958 00000 н. 0000360066 00000 н. 0000360136 00000 н. 0000360189 00000 н. 0000360395 00000 н. 0000360668 00000 н. 0000360809 00000 н. 0000361227 00000 н. 0000365784 00000 н. 0000366393 00000 н. 0000366616 00000 н. 0000366845 00000 н. 0000367074 00000 н. 0000367303 00000 н. 0000367525 00000 н. 0000367748 00000 н. 0000367970 00000 н. 0000368194 00000 н. 0000368440 00000 н. 0000368662 00000 н. 0000368890 00000 н. 0000369112 00000 н. 0000369338 00000 п. 0000369571 00000 н. 0000369802 00000 н. 0000370025 00000 н. 0000370248 00000 н. 0000370471 00000 н. 0000370700 00000 н. 0000370952 00000 н. 0000371174 00000 н. 0000371400 00000 н. 0000371632 00000 н. 0000371921 00000 н. 0000372151 00000 н. 0000372382 00000 н. 0000372613 00000 н. 0000372901 00000 н. 0000373123 00000 н. 0000373352 00000 н. 0000373574 00000 н. 0000373799 00000 н. 0000374028 00000 н. 0000374257 00000 н. 0000374486 00000 н. 0000374716 00000 н. 0000374945 00000 н. 0000375177 00000 н. 0000375961 00000 н. 0000376188 00000 п. 0000376416 00000 н. 0000376638 00000 н. 0000377038 00000 п. 0000377267 00000 н. 0000377490 00000 н. 0000377547 00000 н. 0000377596 00000 н. 0000377776 00000 н. 0000378000 00000 н. 0000378368 00000 н. 0000378594 00000 н. 0000378816 00000 н. 0000379068 00000 н. 0000379297 00000 н. 0000379815 00000 н. 0000380044 00000 н. 0000380365 00000 н. 0000380587 00000 н. 0000380841 00000 н. 0000381125 00000 н. 0000381350 00000 н. 0000381575 00000 н. 0000381822 00000 н. 0000382051 00000 н. 0000382280 00000 н. 0000382510 00000 н. 0000383096 00000 н. 0000383347 00000 н. 0000383576 00000 н. 0000383871 00000 н. 0000384486 00000 н. 0000384709 00000 н. 0000384941 00000 н. 0000385173 00000 п. 0000385424 00000 н. 0000385975 00000 н. 0000386207 00000 н. 0000386492 00000 н. 0000386776 00000 н. 0000387048 00000 н. 0000387306 00000 н. 0000387587 00000 н. 0000387871 00000 н. 0000388154 00000 н. 0000388406 00000 п. 0000388684 00000 н. 0000388914 00000 н. 0000389143 00000 п. 0000389387 00000 н. 0000389999 00000 н. 00003

00000 н. 00003

00000 н. 00003

00000 н. 00003 00000 н. 0000391340 00000 н. 0000391588 00000 н. 0000391841 00000 н. 0000392205 00000 н. 0000392434 00000 н. 0000392656 00000 н. 0000392973 00000 н. 0000393339 00000 н. 0000393569 00000 н. 0000393851 00000 н. 0000394078 00000 н. 0000394305 00000 н. 0000394532 00000 н. 0000394782 00000 н. 0000395011 00000 н. 0000395240 00000 н. 0000395293 00000 н. 0000395342 00000 н. 0000395525 00000 н. 0000395759 00000 н. 0000396020 00000 н. 0000396247 00000 н. 0000396300 00000 н. 0000396349 00000 н. 0000396539 00000 н. 0000400330 00000 н. 0000403277 00000 н. 0000407328 00000 н. 0000412438 00000 н. 0000418258 00000 н. 0000423287 00000 н. 0000426808 00000 н. 0000428759 00000 н. 0000431692 00000 н. 0000431915 00000 н. 0000435079 00000 н. 0000437810 00000 п. 0000440543 00000 н. 0000443516 00000 н. 0000446245 00000 н. 0000450079 00000 п. 0000453149 00000 п. 0000455545 00000 н. 0000457135 00000 н. 0000460060 00000 н. 0000460321 00000 н. 0000463971 00000 н. 0000466742 00000 н. 0000469487 00000 н. 0000472709 00000 н. 0000484197 00000 н. 0000495086 00000 н. 0000501895 00000 н. 0000505705 00000 н. 0000509658 00000 н. 0000512837 00000 н. 0000518571 00000 н. 0000524173 00000 н. 0000530749 00000 н. 0000541246 00000 н. 0000549048 00000 н. 0000553281 00000 н. 0000572645 00000 н. 0000575236 00000 п. 0000577121 00000 н. 0000578650 00000 н. 0000578903 00000 н. 0000581689 00000 н. 0000584438 00000 н. 0000586663 00000 н. 0000588354 00000 н. 0000589573 00000 н. 0000591703 00000 н. 0000593305 00000 н. 0000594767 00000 н. 0000596384 00000 н. 0000597640 00000 н. 0000597915 00000 н. 0000599296 00000 н. 0000599888 00000 н. 0000600197 00000 п. 0000600821 00000 н. 0000601386 00000 н. 0000601670 00000 н. 0000602246 00000 н. 0000602469 00000 н. 0000602750 00000 н. 0000602979 00000 п. 0000603234 00000 н. 0000603595 00000 н. 0000603914 00000 н. 0000604197 00000 н. 0000604420 00000 н. 0000604649 00000 н. 0000604875 00000 н. 0000605141 00000 п. 0000605479 00000 н. 0000605738 00000 н. 0000605960 00000 н. 0000606226 00000 п. 0000606557 00000 н. 0000606851 00000 н. 0000607080 00000 п. 0000607503 00000 н. 0000607734 00000 н. 0000608123 00000 н. 0000608348 00000 п. 0000608699 00000 н. 0000609010 00000 н. 0000611458 00000 н. 0000611705 00000 н. 0000611934 00000 п. 0000612158 00000 н. 0000612444 00000 н. 0000612957 00000 н. 0000613667 00000 н. 0000613900 00000 н. 0000614146 00000 н. 0000614392 00000 н. 0000614664 00000 н. 0000615128 00000 н. 0000615507 00000 н. 0000615795 00000 н. 0000616051 00000 н. 0000616295 00000 н. 0000616527 00000 н. 0000616758 00000 н. 0000617005 00000 н. 0000617234 00000 н. 0000617466 00000 н. 0000617695 00000 н. 0000617922 00000 н. 0000618147 00000 н. 0000618456 00000 п. 0000618683 00000 п. 0000618941 00000 н. 0000619169 00000 н. 0000619396 00000 н. 0000619692 00000 п. 0000619917 00000 п. 0000620181 00000 п. 0000620404 00000 н. 0000620627 00000 н. 0000620861 00000 н. 0000621161 00000 н. 0000621430 00000 н. 0000621655 00000 н. 0000621906 00000 н. 0000622129 00000 п. 0000622361 00000 п. 0000622629 00000 н. 0000622896 00000 н. 0000623149 00000 п. 0000623378 00000 н. 0000623612 00000 н. 0000623899 00000 н. 0000624154 00000 н. 0000624381 00000 п. 0000624627 00000 н. 0000624856 00000 н. 0000625080 00000 н. 0000625475 00000 н. 0000625964 00000 н. 0000626250 00000 н. 0000626473 00000 н. 0000626751 00000 н. 0000627042 00000 н. 0000627290 00000 н. 0000627554 00000 н. 0000627801 00000 н. 0000628026 00000 н. 0000628277 00000 н. 0000628507 00000 н. 0000628788 00000 н. 0000629034 00000 н. 0000629319 00000 п. 0000629584 00000 н. 0000629828 00000 н. 0000630106 00000 п. 0000630359 00000 н. 0000630588 00000 н. 0000630825 00000 н. 0000631052 00000 н. 0000631280 00000 н. 0000631547 00000 н. 0000631784 00000 н. 0000632037 00000 н. 0000632269 00000 н. 0000632556 00000 н. 0000632847 00000 н. 0000633080 00000 н. 0000633358 00000 п. 0000633643 00000 п. 0000633866 00000 н. 0000634131 00000 п. 0000634376 00000 п. 0000634612 00000 п. 0000634854 00000 п. 0000635128 00000 п. 0000635364 00000 н. 0000635587 00000 н. 0000635813 00000 н. 0000636046 00000 н. 0000636273 00000 н. 0000636495 00000 н. 0000636719 00000 н. 0000636944 00000 н. 0000637180 00000 п. 0000637233 00000 н. 0000637282 00000 п. 0000637531 00000 н. 0000637761 00000 п. 0000638026 00000 н. 0000638306 00000 п. 0000638536 00000 п. 0000638782 00000 п. 0000639008 00000 н. 0000639237 00000 н. 0000639472 00000 н. 0000639744 00000 н. 0000639974 00000 н. 0000640220 00000 н. 0000640480 00000 н. 0000640994 00000 н. 0000641413 00000 н. 0000641636 00000 н. 0000641860 00000 н. 0000642181 00000 н. 0000642429 00000 н. 0000642654 00000 н. 0000642905 00000 н. 0000643164 00000 н. 0000643474 00000 н. 0000643700 00000 н. 0000643947 00000 н. 0000644176 00000 н. 0000644411 00000 н. 0000644658 00000 н. 0000644887 00000 н. 0000645114 00000 п. 0000645340 00000 п. 0000645733 00000 н. 0000646058 00000 н. 0000646287 00000 н. 0000646710 00000 н. 0000646936 00000 н. 0000647160 00000 н. 0000647386 00000 н. 0000647612 00000 н. 0000647850 00000 н. 0000648091 00000 н. 0000648380 00000 н. 0000648617 00000 н. 0000648846 00000 н. 0000649079 00000 н. 0000649304 00000 н. 0000649531 00000 н. 0000649759 00000 н. 0000650010 00000 н. 0000650285 00000 н. 0000650545 00000 н. 0000650801 00000 п. 0000651058 00000 н. 0000651313 00000 н. 0000651564 00000 н. 0000651798 00000 н. 0000652023 00000 н. 0000652282 00000 н. 0000652552 00000 н. 0000652803 00000 н. 0000653070 00000 н. 0000653320 00000 н. 0000653578 00000 н. 0000653839 00000 н. 0000654066 00000 н. 0000654304 00000 н. 0000654529 00000 н. 0000654765 00000 н. 0000654989 00000 н. 0000655220 00000 н. 0000655442 00000 н. 0000655695 00000 п. 0000655925 00000 н. 0000656189 00000 н. 0000656464 00000 н. 0000656721 00000 н. 0000656974 00000 н. 0000657204 00000 н. 0000657433 00000 н. 0000657659 00000 н. 0000657918 00000 п. 0000658168 00000 н. 0000658408 00000 н. 0000658659 00000 н. 0000658716 00000 н. 0000658765 00000 н. 0000658975 00000 н. 0000659218 00000 н. 0000659445 00000 н. 0000659685 00000 н. 0000659910 00000 н. 0000660145 00000 п. 0000660368 00000 н. 0000660604 00000 н. 0000660826 00000 н. 0000661985 00000 н. 0000662217 00000 н. 0000662448 00000 н. 0000662713 00000 н. 0000662993 00000 н. 0000663239 00000 н. 0000663499 00000 н. 0000663729 00000 н. 0000663979 00000 н. 0000664233 00000 н. 0000664486 00000 н. 0000664721 00000 н. 0000664972 00000 н. 0000665203 00000 н. 0000665460 00000 н. 0000665685 00000 н. 0000665913 00000 н. 0000666167 00000 н. 0000666421 00000 н. 0000666676 00000 н. 0000666918 00000 н. 0000667169 00000 н. 0000667433 00000 н. 0000667692 00000 н. 0000667963 00000 н. 0000668228 00000 п. 0000668453 00000 п. 0000668688 00000 н. 0000668965 00000 н. 0000669200 00000 н. 0000669460 00000 н. 0000669712 00000 н. 0000669938 00000 н. 0000670167 00000 н. 0000670440 00000 н. 0000670672 00000 н. 0000670895 00000 п. 0000671124 00000 н. 0000671398 00000 н. 0000671623 00000 н. 0000671856 00000 н. 0000672099 00000 н. 0000672347 00000 н. 0000672578 00000 н. 0000672826 00000 н. 0000673088 00000 н. 0000673362 00000 н. 0000673618 00000 н. 0000673876 00000 н. 0000674136 00000 п. 0000674361 00000 п. 0000674667 00000 н. 0000674889 00000 н. 0000675117 00000 н. 0000675374 00000 н. 0000675642 00000 н. 0000675896 00000 н. 0000676164 00000 н. 0000676389 00000 н. 0000676625 00000 н. 0000676860 00000 н. 0000677107 00000 н. 0000677337 00000 н. 0000677572 00000 н. 0000677803 00000 н. 0000678028 00000 н. 0000678282 00000 н. 0000678535 00000 н. 0000678782 00000 н. 0000679035 00000 н. 0000679293 00000 н. 0000679540 00000 н. 0000679777 00000 н. 0000680033 00000 н. 0000680286 00000 п. 0000680527 00000 н. 0000680764 00000 н. 0000680994 00000 н. 0000681245 00000 н. 0000681496 00000 н. 0000681748 00000 н. 0000682005 00000 н. 0000682234 00000 н. 0000682489 00000 н. 0000682743 00000 н. 0000683002 00000 п. 0000683254 00000 н. 0000683505 00000 н. 0000683759 00000 н. 0000684013 00000 н. 0000684260 00000 н. 0000684491 00000 н. 0000684746 00000 н. 0000684975 00000 п. 0000685225 00000 н. 0000685486 00000 н. 0000685739 00000 н. 0000685975 00000 н. 0000686211 00000 н. 0000686484 00000 н. 0000686728 00000 н. 0000686967 00000 н. 0000687200 00000 н. 0000688359 00000 н. 0000688662 00000 н. 0000688893 00000 н. 0000689146 00000 н. 0000689204 00000 н. 0000689255 00000 н. 0000689466 00000 н. 0000689719 00000 н. 0000689977 00000 н. 00006

00000 н. 00006 00000 н. 00006 00000 н. 00006 00000 п. 0000691169 00000 н. 0000691395 00000 н. 0000691639 00000 н. 0000691865 00000 н. 0000692109 00000 п. 0000692366 00000 н. 0000692595 00000 н. 0000692834 00000 п. 0000693060 00000 н. 0000693295 00000 н. 0000693518 00000 п. 0000693775 00000 п. 0000693999 00000 н. 0000694276 00000 н. 0000694511 00000 п. 0000694746 00000 н. 0000694978 00000 н. 0000695207 00000 н. 0000695433 00000 п. 0000695657 00000 н. 0000695894 00000 н. 0000696171 00000 п. 0000696404 00000 п. 0000696627 00000 н. 0000696859 00000 н. 0000697087 00000 п. 0000697310 00000 п. 0000697547 00000 н. 0000697782 00000 п. 0000698011 00000 п. 0000698237 00000 п. 0000698460 00000 н. 0000698689 00000 п. 0000698912 00000 н. 0000699159 00000 н. 0000699401 00000 п. 0000699644 00000 н. 0000699881 00000 н. 0000700118 00000 н. 0000700348 00000 н. 0000700577 00000 н. 0000700800 00000 н. 0000701023 00000 п. 0000701246 00000 н. 0000701583 00000 н. 0000701825 00000 н. 0000702073 00000 н. 0000702303 00000 н. 0000702537 00000 н. 0000702767 00000 н. 0000702995 00000 н. 0000703281 00000 н. 0000703507 00000 н. 0000703738 00000 п. 0000705230 00000 н. 0000705463 00000 п. 0000706857 00000 н. 0000707086 00000 п. 0000707339 00000 н. 0000707561 00000 п. 0000708393 00000 н. 0000708675 00000 н. 0000708902 00000 н. 0000709170 00000 н. 0000709397 00000 н. 0000709624 00000 н. 0000709849 00000 п. 0000710109 00000 н. 0000710333 00000 п. 0000019236 00000 п. трейлер ] / Назад 2444894 >> startxref 0 %% EOF 1178 0 объект > поток hV {LW? E 袙 f $ DQ.GkS * V6: uŭ jQ & J.] gC ߊ> t! D [7Vae7 {.z

Измерение трехфазной мощности с использованием 2 трансформаторов тока и 1 ваттметра

Tech-Wonders.com »Электрические

Для измерения мощности 3-фазного тока в сбалансированной цепи, Используемый здесь метод или основное устройство — это 2 трансформатора тока и один ваттметр. Детали устройства, необходимого для этого измерения, следующие:

  1. Ваттметр 600 В, 10 А, UPF -> 1 шт.
  2. Амперметр (0-10) A MI -> 1 шт.
  3. Вольтметр (0-600) В МИ -> 1 шт.
  4. Трансформатор тока (CT) 5 / 5A -> 2 шт.

В этом методе мощность, потребляемая в симметричной схеме с 3 фазами, измеряется с помощью одного ваттметра в сочетании с двумя трансформаторами тока. Обычно используется метод 2-ваттметра для измерения мощности 3-φ как для сбалансированной, так и для несбалансированной нагрузки, но для такого метода требуется только один ваттметр. КТ, используемые для этого метода, должны иметь соотношение 1: 1.

Первичные обмотки соединены последовательно с 2 фазами. Вторичные обмотки подключены к токовой катушке ваттметра, так что разница двух фазных токов будет проходить через токовую катушку.Катушка давления ваттметра подключена между двумя одинаковыми фазами.

Любой ваттметр измеряет произведение

  • Напряжение на катушке давления
  • Ток на катушке тока

Косинус фазового угла между напряжением и током равен φ.

Предполагается, что цепь соединена звездой, для соединения треугольником также действует процедура, и ваттметр непосредственно считывает общую потребляемую мощность.

Порядок действий

  1. Выполните подключения в соответствии с принципиальной схемой.
  2. Подайте питание 415 В, 3 фазы, 50 Гц, замыкая переключатель TPST.
  3. Изменяйте нагрузку подходящим шагом.
  4. При каждой нагрузке записывать показания ваттметра.
  5. Сведите результаты в таблицу. Ожидаемые результаты в таблице в качестве примера выглядят следующим образом:

= 2400
S.No V L (Вольт) I L (Амперы) Показания ваттметра (Ватт6) 9030 ω Расчетное (1.732V L I L Cosφ)
1. 415 2,4 480 x 4 = 1920 1725.12
2. 415 3 2156,2

Измерительные трансформаторы | Duquesne Light Company

Установка измерительного трансформатора

Если требуются измерительные трансформаторы, они обычно должны устанавливаться в шкафу измерительных трансформаторов или в отсеке распределительного устройства в металлической оболочке.Департамент энергетических технологий поможет выбрать место, если ограниченное пространство не позволяет установить обычную установку.

Трансформаторы тока и напряжения будут доставлены на место работы представителями компании. Заказчик должен установить измерительные трансформаторы, затем предоставить и установить 1,5-дюймовый жесткий или промежуточный оцинкованный металлический трубопровод от шкафа или отсека измерительного трансформатора до места расположения счетчика, указанного Департаментом энергетических технологий.Тонкостенные, гибкие трубы из ПВХ или цветных металлов не подходят для измерения. Длинные участки могут потребовать использования 2-дюймового кабелепровода, тяговых ящиков и тягового троса.

Шкафы измерительного трансформатора

Шкафы измерительного трансформатора не должны использоваться в качестве распределительных коробок. Подключения к другим счетчикам или трансформаторам тока не следует выполнять в шкафу измерительных трансформаторов. Однако при установке более чем одного проводника на линию допустимо, чтобы отдельные проводники питали разные цепи на стороне нагрузки трансформаторов тока.

Шкафы измерительного трансформатора должны быть достаточного размера, чтобы вмещать все измерительные трансформаторы и проводники, с учетом возможного удаления и замены трансформаторов в будущем. Факторами, определяющими размер шкафа, являются размер и количество проводников, точки входа и выхода проводников, а также размер, тип и количество измерительных трансформаторов. Рекомендуемые минимальные размеры шкафов измерительных трансформаторов показаны в Таблице III. По всем установкам с напряжением выше 480 В и по любым вопросам, касающимся конкретной установки относительно минимально допустимого размера шкафа измерительного трансформатора, обращайтесь в отдел энергетических технологий.См. Рисунок 15.

Шкафы КИП должны иметь распашные двустворчатые двери. Шкафы размером 10 x 24 x 32 дюйма или меньше могут иметь распашную одинарную дверцу. Все двери шкафа КИП должны быть запечатаны с помощью запорных устройств с замком навесного типа. Перед шкафом должен быть предусмотрен и сохранен достаточный зазор, чтобы дверцы шкафа могли быть полностью открыты, а также для снятия и установки измерительных трансформаторов.

Измерительные трансформаторы в шкафах

Измерительные трансформаторы не должны устанавливаться непосредственно на задней поверхности шкафов измерительных трансформаторов, а должны устанавливаться на фанерной панели толщиной 3/4 дюйма или на монтажных пластинах или кронштейнах.Знаки полярности (красная точка) должны быть обращены к стороне линии. Измерительные трансформаторы должны быть установлены таким образом, чтобы их можно было легко снять или заменить. Если используются линейные трансформаторы тока, соединения должны быть на задней стороне первичной шины трансформаторов тока, а гайки болтов — на передней стороне. Если используются проходные трансформаторы тока, проводники должны быть разорваны со стороны линии трансформатора тока и повторно подключены с помощью соответствующих соединителей с болтовым соединением. См. Рисунок 18.

Измерительные трансформаторы в распределительном устройстве

Когда измерительные трансформаторы устанавливаются в распределительном устройстве заказчика в металлической оболочке, заказчик должен обеспечить предоставление поставщиком подробных чертежей устройства распределительного устройства и измерительного трансформатора. Эти чертежи должны быть отправлены в Департамент энергетических технологий для принятия и утверждения перед строительством распределительного устройства. Департамент энергетических технологий по запросу предоставит информацию о размере, типе и количестве измерительных трансформаторов, которые будут поставляться.

Отсек КИП должен быть полностью отделен от остальной части распределительного устройства жесткой перегородкой. Он должен иметь распашные двери, которые закрываются запечатывающими устройствами типа навесного замка. Он должен быть достаточно большим, чтобы вмещать необходимое количество проходных трансформаторов тока и трансформаторов напряжения для сетей 277/480 В и выше. Конструкция должна быть такой, чтобы трансформаторы можно было легко установить или заменить после установки распределительного устройства. Съемные секции сборной шины должны использоваться в качестве первичного проводника трансформаторов тока и иметь ту же допустимую нагрузку, что и токопроводящая шина, входящая в отсек и выходящая из нее.Также может потребоваться параллельная установка более узких стержней для размещения трансформаторов тока, поставляемых Компанией.

Измерительные трансформаторы устанавливаются заказчиком. Они должны быть расположены со стороны сети главного выключателя или автоматического выключателя. Рабочие входные проводники должны быть полностью закрыты кабелепроводом или кабельным каналом от точки обслуживания до того места, где они входят в отсек трансформатора КРУЭ. Все рабочие и измерительные провода, выходящие из отсека КИП, в отсек не возвращаются.В отсеке должны быть предусмотрены электрические соединения для измерения. Эти соединения должны быть на каждой фазной шине со стороны линии трансформаторов тока, а для трехфазных, четырехпроводных сетей также должны быть на нейтрали. В установках, где обслуживание четырехпроводное, а нагрузка трехпроводная, нейтральный провод должен быть протянут до отсека ТТ.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *