Подключения трехфазного двигателя к однофазной сети: Подключение трехфазного двигателя к однофазной сети

Содержание

Подключение трехфазного двигателя к однофазной сети

Здравствуйте,  дорогие читатели и гости сайта «Заметки электрика».

Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.

А в наличии имеется только источник однофазного напряжения.

Как быть в данной ситуации?

Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.

Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.

Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.

Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье.

 

 

Выбор емкости конденсаторов

1. Выбор емкости рабочего конденсатора

Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:

Полученное значение емкости рабочего конденсатора получается в (мкФ).

Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.

Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.

При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.

2. Выбор емкости пускового конденсатора

Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.

Что случится, если забыть отключить пусковые конденсаторы?

Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.

Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.

В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.

Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.

Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.

Выбор типа конденсаторов

Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.

Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.

Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.

Кое-что я нашел у себя в запасе.

Практически все они имеют прямоугольную форму.

На самом корпусе можно увидеть их параметры:

  • емкость (мкФ)
  • рабочее напряжение (В)

Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».

Также вместо бумажных конденсаторов  можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.

Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!

У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).

Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.

Вот например, СВВ60 в круглом корпусе.

Или СВВ61 в прямоугольном корпусе.

В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.

 

 

Выбор напряжения конденсаторов

Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.

Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.

Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).

Принято выбирать рабочее напряжение конденсаторов  для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).

Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.

Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).

 

Пример подключения трехфазного двигателя к однофазной сети

Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.

Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).

Данные двигателя АОЛ 22-4:

Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.

Определим емкость рабочего конденсатора:

Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).

Для эксперимента я буду использовать емкость 10 (мкФ).

Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.

Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.

Теперь нам необходимо, применив навыки электротехники

, собрать из этих конденсаторов необходимую нам емкость.

Емкость одного конденсатора составляет 10 (мкФ).

При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.

Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.

Дальнейшие итоги нашего эксперимента смотрите на видео.

Эксперимент завершился УДАЧНО!!!

И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!

При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора  практически равна номинальной.

Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.

Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.

Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.

P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Трехфазный двигатель в однофазной сети

Трехфазные асинхронные электродвигатели не требуют дополнительных устройств для запуска и работы. Нужны лишь контакторы или иные устройства подачи трехфазного напряжения. Однако при включении двигателя в однофазную сеть используются другие способы запуска.

Фазосдвигающий конденсатор

Существует простой способ, позволяющий запитать трехфазный двигатель от бытовой однофазной сети с напряжением 220 В. Трехфазное напряжение получают путем сдвига фаз с помощью фазосдвигающего конденсатора. Делается это так.

В однофазной сети имеются два провода (фаза и ноль), между которыми существует сдвиг фаз 180 градусов. Для включения трехфазного двигателя нужны три проводника, напряжения на которых должны иметь сдвиг фаз 120 градусов. Поэтому, если подключить один из выводов двигателя к фазному проводнику напрямую, а другой – через фазосдвигающий конденсатор, то в совокупности с нулевым проводником и обмотками такая система будет трехфазной. Другими словами, будет обеспечен нужный режим питания.

Для расчета номинала фазосдвигающего конденсатора можно воспользоваться приближенной формулой:

С = k*I / U,

где k – коэффициент, равный 4800 для схемы подключения «треугольник», 2800 – для «звезды», I – номинальный ток двигателя (указывается на шильдике), U – фазное напряжение (в нашем случае – 220 В).

Рабочее напряжение конденсатора следует выбирать не менее 400 В, при этом желательно использовать специальные конденсаторы для электродвигателей, на частоту 50 – 60 Гц.

Пусковой конденсатор

Приведенная выше формула справедлива для номинального тока. Но двигатель работает не только на номинале. При пуске его ток может превышать номинальное значение в 5-7 раз, а при работе – быть ниже в 2-3 раза (холостой ход). В результате момент на валу при включении будет мал, и двигатель будет разгоняться очень долго либо вообще не сможет запуститься. Поэтому для запуска используют дополнительный пусковой конденсатор, который подключают к рабочему (фазосдвигающему) на время разгона (3-5 секунд). Обычно емкость пускового конденсатора выбирают в 2-5 раз больше, в зависимости от требуемого момента при пуске и времени разгона.

Для подключения пускового конденсатора используют специальные ручные пускатели, в которых время пуска равно времени нажатия на двухпозиционную кнопку «Пуск». Пока оператор держит «Пуск» в позиции без фиксации, подключаются рабочий и пусковой конденсаторы. Как только оператор отпускает кнопку, она переходит в фиксированную позицию, и в схеме остается лишь рабочий конденсатор. Остановка двигателя производится кнопкой «Стоп». Кроме ручных пускателей могут использоваться релейные и электронные схемы.

Данный способ не применяется на практике для двигателей более 2,2 кВт из-за низкого КПД и большой емкости конденсаторов.

Двигатель с пусковой обмоткой

Конденсатор также используется в случае, когда двигатель имеет две обмотки – рабочую и пусковую. Рабочая обмотка подключается к питающему однофазному напряжению (220 В) напрямую. Пусковая обмотка имеет меньший ток и подключается через фазосдвигающей конденсатор. Совместно обе обмотки имеют такую конфигурацию, что формируют внутри статора вращающееся магнитное поле.

Емкость фазосдвигающего конденсатора обычно указывается на шильдике двигателя. На время пуска и разгона может применяться дополнительный конденсатор. Такой двигатель называют конденсаторным, и он предназначен для работы только в однофазной сети.

Другие полезные материалы:
Как определить параметры двигателя без шильдика?
Основные неисправности электродвигателя и способы их устранения
Преимущества векторного управления электродвигателем

Как осуществить однофазное подключение трехфазного двигателя к электрической сети

Как осуществить однофазное подключение трехфазного двигателя к электрической сети

Трёхфазный двигатель — электродвигатель, конструктивно предназначенный для питания от трехфазной сети переменного тока.

Асинхронные электродвигатели широко применяются в промышленности благодаря относительной простоте конструкции, хорошим рабочим характеристикам, удобству управления.

Подобные устройства часто попадают в руки домашнего мастера и он, пользуясь знанием основ электротехники, подключает такой электродвигатель для работы от однофазной сети 220 вольт. Чаще всего его используют для наждака, обработки древесины, измельчения зерен и выполнения других простых работ.

Даже на отдельных промышленных станках и механизмах с приводами встречаются образцы различных двигателей, способных работать от одной или трех фаз.

Чаще всего у них используется конденсаторный запуск, как наиболее простой и приемлемый, хотя это не единственный способ, известный большинству грамотных электриков.

Принцип работы трехфазного двигателя

Промышленные асинхронные электрические устройства систем 0,4 кВ выпускаются с тремя обмотками статора. К ним прикладываются напряжения, сдвинутые по углу на 120 градусов и вызывающие токи аналогичной формы.

Для запуска электродвигателя токи направляют таким образом, чтобы они создали суммарное вращающееся электромагнитное поле, оптимально воздействующее на ротор.

Конструкция статора, используемая для этих целей, представлена:

1. корпусом;

2. магнитопроводом сердечника с уложенными в него тремя обмотками;

3. клеммными выводами.

В обычном исполнении изолированные провода обмоток собраны по схеме звезды за счет установки перемычек между винтами клемм. Кроме этого способа еще существует подключение, называемое треугольником.

В обоих случаях обмоткам назначено направление: начало и конец, связанное со способом монтажа — навивки при изготовлении.

Обмотки нумеруются арабскими цифрами 1, 2, 3. Их концы обозначаются К1, К2, К3, а начала — Н1, Н2, Н3. У отдельных типов двигателей подобный способ маркировки может быть изменен, например, С1, С2, С3 и С4, С5, С6 или другими символами либо вообще не применяться.

Правильно нанесенная маркировка упрощает подключение проводов питания. При создании на обмотках симметричной схемы расположения напряжений, обеспечивается создание номинальных токов, осуществляющих оптимальную работу электродвигателя. В этом случае их форма в обмотках полностью соответствует подводимому напряжению, повторяет его без каких-либо искажений.

Естественно, следует понимать, что это чисто теоретическое заявление, ибо на практике токи преодолевают различные сопротивления, незначительно отклоняются.

Наглядному восприятию происходящих процессов помогает изображение векторных величин на комплексной плоскости. Для трехфазного двигателя токи в обмотках, создаваемые приложенным симметричным напряжением, изображаются следующим образом.

При питании электродвигателя системой напряжений с тремя равномерно разнесенными по углу и одинаковыми по величине векторами в обмотках протекают такие же симметричные токи.

Каждый из них образует электромагнитное поле, сила индукции которого наводит в обмотке ротора собственное магнитное поле. В результате сложного взаимодействия трех полей статора с полем ротора создается вращательное движение последнего, обеспечивается создание максимальной механической мощности, вращающей ротор.

Принципы подключения однофазного напряжения к трехфазному двигателю

Для полноценного подключения к трем одинаковым статорным обмоткам, разнесенных по углу на 120 градусов, два вектора напряжения отсутствуют, имеется только один из них.

Можно подать его всего в одну обмотку и заставить ротор вращаться. Но, эффективно использовать такой двигатель не получится. Он будет обладать очень малой выходной мощностью на валу.

Поэтому возникает задача подключения этой фазы таким образом, чтобы она в разных обмотках создавала симметричную систему токов. Другими словами, нужен преобразователь напряжения однофазной сети в трехфазную. Подобная задача решается разными методами.

Если отбросить сложные схемы современных инверторных установок, то можно реализовать следующие распространенные способы:

1. использование конденсаторного запуска;

2. применение дросселей, индуктивных сопротивлений;

3. создание различных направлений токов в обмотках;

4. комбинированный способ с выравниванием сопротивлений фаз для образования одинаковых амплитуд у токов.

Кратко разберем эти принципы.

Отклонение тока при прохождении через емкость

Наиболее широко практикуется конденсаторный запуск, позволяющий отклонять ток в одной из обмоток за счет подключения емкостного сопротивления, когда создается опережение тока от вектора приложенного напряжения на 90 градусов.

В качестве конденсаторов обычно используются металлобумажные конструкции серий МБГО, МБГП, КБГ и подобные. Электролиты не приспособлены для пропускания переменного тока, быстро взрываются, а схемы, предусматривающие их использование, отличаются сложностью, низкой надежностью.

В этой схеме ток отличается по углу от номинальной величины. Он отклоняется всего на 90 градусов, не доходя на 30о (120-90=30).

Отклонение тока при прохождении через индуктивность

Ситуация аналогична предыдущей. Только здесь ток отстает от напряжения на те же 90 градусов, а тридцати недобирает. Кроме того, конструкция дросселя не такая простая, как у конденсатора. Его надо рассчитать, собрать, настроить под индивидуальные условия. Этот способ не получил широкого распространения.

При использовании конденсаторов или дросселей токи в обмотках электродвигателя не доходят до требуемого угла на тридцатиградусный сектор, показанный красным цветом на картинке, что уже создает повышенные потери энергии. Но, с ними приходится мириться.

Они мешают созданию равномерного распределения сил индукции, создают тормозящий эффект. Точно оценить его влияние сложно, но при простом подходе деления углов получается (30/120=1/4) потеря 25%. Однако, можно ли так считать?

Отклонение тока подачей напряжения обратной полярности

В схеме звезды принято фазный провод напряжения подключать на вход обмотки, а нулевой — на ее конец.

Если в две разнесенные на 120о фазы подать одно и то же напряжение, но разделить их, а во второй изменить полярность, то токи сдвинутся по углу относительно друг друга. Они станут формировать электромагнитные поля разного направления, влияющего на вырабатываемую мощность.

Только при этом способе по углу получается отклонение токов на небольшое значение — 30о.

Этим методом пользуются в отдельных случаях.

Способы комплексного применения конденсаторов, индуктивностей, изменения полярности обмоток

Первые три перечисленных метода не позволяют поодиночке создавать оптимально симметричное отклонение токов в обмотках. Всегда возникает их перекос по углу относительно стационарной схемы, предусмотренной для трехфазного полноценного питания. За счет этого происходит образование противодействующих моментов, тормозящих раскрутку, снижающих КПД.

Поэтому исследователи провели многочисленные эксперименты, основанные на разных сочетаниях этих способов с целью создания преобразователя, обеспечивающего наибольшую эффективность работы трехфазного двигателя. Эти схемы с подробным разбором электротехнических процессов приводятся в специальной учебной литературе. Их изучение повышает уровень теоретических знаний, но в своем большинстве они редко применяются на практике.

Хорошая картина распределения токов создается в схеме, когда:

1. на одну обмотку подается фаза прямого включения;

2. на вторую и третью обмотки напряжение подключают через конденсатор и дроссель, соответственно;

3. внутри схемы преобразователя осуществляется выравнивание амплитуд токов за счет подбора реактивных сопротивлений с компенсацией дисбаланса активными резисторами.

Хочется обратись внимание на третий пункт, которому многие электрики не придают значения. Просто посмотрите на следующую картинку и сделайте вывод о возможности равномерного вращения ротора при симметричном приложении к нему сил одинаковых и разных по величине.

Комплексный метод позволяет создать довольно сложную схему. Она очень редко применяется на практике. Один из вариантов ее реализации для электродвигателя мощностью в 1кВт показан ниже.

Для изготовления преобразователя необходимо создать непростой дроссель. Это требует затрат времени и материальных средств.

Также трудности возникнут при поиске резистора R1, который будет работать с токами, превышающими 3 ампера. Он должен:

  • обладать мощностью, превышающей 700 ватт;
  • хорошо охлаждаться;
  • надежно изолироваться от токоведущих частей.

Существует еще несколько технических сложностей, которые придется преодолеть для создания такого преобразователя трехфазного напряжения. Однако, он довольно универсален, позволяет подключать двигатели с мощностью до 2,5 киловатт, обеспечивает их устойчивую работу.

Итак, технический вопрос подключения трехфазного асинхронного двигателя в однофазную сеть решен посредством создания сложной схемы преобразователя. Но, он не нашел практического применения по одной простой причине, от которой невозможно избавиться — завышенное потребление электроэнергии самим преобразователем.

Мощность, затрачиваемая на создание схемы трехфазных напряжений подобной конструкцией, превышает минимум в полтора раза потребности самого электродвигателя. При этом суммарные нагрузки, создаваемые на подводящую питание электропроводку, сравнимы с работой старых сварочных аппаратов.

Электрический счетчик, к радости продавцов электроэнергии, очень быстро начинает перечислять деньги из кошелька домашнего мастера на счет энергоснабжающей организации, а это хозяевам совсем не нравится. В итоге сложное техническое решение создания хорошего преобразователя напряжения оказалось ненужным для практического применения в домашнем хозяйстве, да и на промышленных предприятиях тоже.

Допонительно

Схемы включения трехфазных асинхронных двигателей для работы от однофазных сетей:

Схемы а — е применяются в том случае, когда фазы обмотки статора жестко соединены в звезду или треугольник и у двигателя имеется только три выводных конца. Наилучшими из этих схем следует считать схемы в и е. При включении двигателя по этим схемам в случае правильного подбора емкости конденсатора он обладает вполне удовлетворительными пусковыми и рабочими свойствами.

Схемы ж и з применяются в случае, когда у двигателя имеется шесть выходных концов — начала и концы всех фаз. При таком соединении обмоток двигатель практически не отличается от обычного однофазного асинхронного двигателя с пусковым сопротивлением или емкостью.

Обмотки двух его фаз, соединенные последовательно, образуют рабочую обмотку, а обмотка третьей фазы — пусковую обмотку. Рабочая обмотка, как и в обычном однофазном двигателе с пусковым сопротивлением или емкостью, занимает 2/3 пазов статора, пусковая обмотка — 1/3 пазов.

При правильном выборе активного сопротивления или емкости этот двигатель может иметь примерно такие же пусковые и рабочие свойства, как и специально рассчитанный однофазный асинхронный двигатель с пусковой обмоткой. (Ю. М. Юферов. Электрические двигатели автоматических устройств)

4 заключительных вывода

1. Технически использовать однофазное подключение трехфазного двигателя можно. Для этого создано много разнообразных схем с различной элементной базой.

2. Практически применять этот способ для длительной работы приводов в промышленных станках и механизмах нецелесообразно из-за больших потерь энергии потребления, создаваемых посторонними процессами, ведущими к низкому КПД системы, повышению материальных затрат.

3. В домашних условиях схему можно использовать для выполнения кратковременных работ на неответственных механизмах. Длительно работать подобные устройства могут, но при этом оплата электроэнергии значительно возрастает, а мощность работающего привода не обеспечивается.

4. Для эффективной эксплуатации асинхронного двигателя лучше использовать полноценную трехфазную сеть питания. Если такой возможности нет, то лучше отказаться от этой затеи и приобрести специальный однофазный электродвигатель соответствующей мощности. 

Ранее ЭлектроВести писали, что британская компания Swindon Powertrain предложила вариант преобразования любого топливного автомобиля в электрический, выпустив компактную и готовую к установке силовую установку High Power Density (HPD) мощностью 80 кВт.

По материалам: electrik.info.

схемы соединения обмоток и конденсаторы, емкость, реверс

Подключение трёхфазного двигателя к однофазной цепи может потребоваться просто потому, что другого нет под рукой, или нужно сэкономить, или просто захотелось смастерить что-то своими руками из старых запасов. Тем более асинхронники (это практически все 3-фазные электромоторы, могущие встретиться на жизненном пути Самоделкина) имеют одно очень важное конструкционное преимущество: у них нет электрических щёток — лишней расходной детали.

Подключение двигателя 380 на 220

380в — это напряжение между фазами в трёхфазной цепи (линейное), а 220в — напряжение между фазой и нулём (фазное) в той же самой цепи. В обычной однофазной цепи: дома, на даче или в гараже есть только два провода — ноль и фаза; сейчас в новых постройках появился защитный ноль (заземление) — провод жёлто-зелёного цвета, он подходит к «рогам» розетки, его в расчёт не принимаем, о заземлении разговор совсем другой.

Возникает вопрос о том, где взять недостающие фазы. Применение фазорасщепителя или инвертора (устройство, преобразующее однофазный электрический ток в трёхфазный) рассматривать не будем, не стоит принимать во внимание и индукционный с помощью катушек индуктивности способ сдвига фаз. Пойдём другим путём, ёмкостным — подключение электродвигателя 380 В на 220 В через конденсатор. Этот метод является самым простым и оптимальным, легким в реализации.

То, что имеется сам трёхфазный электродвигатель, ясно по умолчанию, нужно только определить схему подключения его обмоток и как подключить двигатель 380 на 220. Для этого надо вскрыть клеммную коробку электродвигателя и если в ней только три клеммы, стало быть, обмотки статора соединены звездой и для переделки на треугольник, а когда на шильдике движка указано рабочее напряжение 380 В, то это нужно, придётся открывать заднюю крышку мотора, искать выводы обмоток, переключать их. Тут рекомендуется позвать опытного электрика.

В коробке шесть клемм, расположенных двумя рядами — по три штуки в каждом. Рассмотрим возможные варианты

  1. Три клеммы ОДНОГО ряда соединены между собой — звезда.
  2. МЕЖДУРЯДНОЕ соединение клемм попарно — треугольник.

Какую схему соединения обмоток выбрать

Читаем информацию о рабочем напряжении на табличке:

  • 380В — только треугольник.
  • 380В/220В — треугольник или звезда.
  • 220/127 — только звезда. Очень редкий вариант.

Нужно иметь в виду, что при соединении треугольником на обмотку попадает напряжение в 1,7 раза больше, чем при соединении звездой, а значит и реализуемая мощность будет выше, но звезда обеспечивает плавный пуск.

Подбираем конденсатор

В цепи переменного тока — а это как раз наш случай — не стоит пользоваться полярными, имеющими плюсовой и минусовой контакты (анод и катод) конденсаторами. Но при необходимости эту проблему обойти можно путём использования диодного моста или двух полярных конденсаторов, объединённых в один соединением одноимённых контактов, но тут опять лучше позвать опытного электрика.

Существует формула потребной ёмкости рабочего конденсатора, но рассчитав по ней, равно потребуется проверять работу устройства на практике. Если есть какие-то конденсаторы лучше сразу перейти к методу вдумчивого подбора, но именно вдумчивого, а не совсем бездумного. Конденсаторы должны быть неполярными, обладать одинаковым рабочим напряжением никак не менее 300 В, но лучше 400 В и выше.

  • Рабочее напряжение конденсаторов должно быть ОДИНАКОВЫМ, иначе тот, где оно меньше, выйдет из строя.

Начните со значения 30 микрофарад (μF) на 1 киловатт паспортной мощности мотора при соединении обмоток статора звездой, при треугольнике можно пробовать с 50−70 μF. Электродвигатель на холостом ходу (без нагрузки) должен запуститься и набрать обороты не особо нагреваясь, продолжительная работа на холостом ходу нежелательна, двигатель может сгореть. Если холостой запуск происходит нормально, без перегрева и запаха гари, то рабочий конденсатор подобран, на нём и будет работать, подключайте нагрузку и продолжайте испытания уже в рабочем состоянии.

А если подключение электродвигателя 380 В на 220 В через конденсатор происходит сразу под серьёзной нагрузкой? Тут потребуется стартовый конденсатор, его ёмкость нужно начинать подбирать со значений в полтора раза больше, чем рабочий. Пример: рабочий 60 μF, тогда стартовый первоначально ставим на 90 μFи, если нормального запуска нет, то добавляем ёмкость пусковой цепи конденсаторов (примерная ёмкость пусковой цепи составляет до трёх рабочей, в нашем примере до 180 μF). После выхода на рабочие обороты пусковые конденсаторы выключаются, остаётся только рабочий. Цепи рабочего и пускового конденсаторов параллельны, в каждую можно поставить отдельный выключатель.

В бытовой сети не нужно использовать устройства мощностью более 3 квт — сработает защита или сгорит проводка.

Подсчет итоговой ёмкости

При параллельном соединении конденсаторов их ёмкости складываются, а вот при последовательном — наоборот, суммарная ёмкость будет меньше, тут равна сумма обратных значений. Когда два одинаковых конденсатора соединяются параллельно суммарная ёмкость удваивается, а если последовательно, то уменьшается в два раза. То есть сумма ёмкости двух конденсаторов по 100 микрофарад может быть и 200 μF, и 50 μF. Всё зависит от типа их соединения между собой.

Другой пример: суммарная ёмкость конденсаторов 60 μF и 90 μF при параллельном соединении будет 150 μF, при последовательном — 36 μF. Это можно творчески использовать при подборе из того, что есть, или при покупке подешевле.

Реверс

Для изменения направления вращения ротора нужно переключить ёмкостную цепь на другой провод или клемму коробки электродвигателя. На одну клемму подаётся фаза, на другую ноль, включение конденсаторной группы производим к третьей. Теперь при подключении второго провода конденсатора к фазе мотор крутится в одну сторону, к нулю — в другую.

Этого достаточно, чтобы разобраться в том как подключить трёхфазный двигатель на 220, но если всё получилось и вроде работает правильно крутит, не греется, не горит окончательно убедиться в правильности собранной схемы поможет нехитрая и в этом случае необязательная проверка. Во время работы с постоянной, одинаковой нагрузкой с помощью токоизмерительных клещей померьте токи в фазном, нулевом и конденсаторном проводах. В идеале они должны быть равны между собою, если и есть небольшие различия (процентов 30), то это не идеал, но всё-таки хорошо.

А исправляется различие токов просто — путём изменения ёмкости рабочего конденсатора. Нужно не делать резких движений и не сжечь обмотку, установив слишком большую ёмкость рабочего конденсатора.

Подробное описание и схема подключения трехфазного двигателя к однофазной сети

Современный рынок предлагает однофазные и трехфазные электродвигатели. Но, как известно, бытовая сеть – однофазная, отсюда закономерный вопрос: осуществимо ли подключение трехфазного двигателя к однофазной сети?

Приведем несколько вариантов решения обозначенной задачи. Чаще предпочтение отдается методу подключение трехфазного двигателя через конденсатор – один из элементов является рабочим, другой – пусковым. Обозначения Ср и Сп. На схеме рассмотрены варианты включения «звезда» (а) и «треугольник» (б).

Рис.1

За счет действия элемента схемы Сп достигается увеличение пускового момента. После того, как двигатель запущен, Сп отключают. В ситуациях, когда пуск электродвигателя выполняется без нагрузки, необходимость включать в цепь конденсатор Сп отпадает.

Для успешной реализации задачи важно правильно определить емкость рабочего конденсатора. Используется закономерность:

Ср=К(1ном/U), где

Ср – рабочая емкость (мкФ), 1ном – сила тока по номиналу (А), U – напряжение в однофазной цепи (В), К – коэффициент, который зависит от того, какая схема подключения трехфазного двигателя выбрана. Показатель «К» для «звезды» — 2800, «треугольника» — 4800.

Показатели номинального тока и напряжения можно найти в технической документации (паспорте) к каждому виду электрических двигателей.

Подключение трехфазного двигателя через конденсатор чаще предусматривает применение недорогого электролитического конденсатора ЭП. После каждого включения такой конденсатор крайне важно разряжать.

Как показывает практика, подключение трехфазного двигателя к однофазной сети с помощью конденсаторов оправдано. Такая схема дает мощность в 65-85% от приведенных в паспорте данных. Проблемы могут возникнуть только с подбором нужного типа конденсатора. Чтобы не решать подобных задач, большое распространение получила схема подключения трехфазного двигателя с применением активных сопротивлений. 

Рис.2

Но необходимо учесть, что при помощи метода сопротивления часто не получается получить мощность силовой установки больше, чем половина ее номинала. 

Выполняя подключение трехфазного двигателя в однофазную сеть через конденсатор важно понимать, что номинал конденсаторов модификаций КБГ-МН и БГТ приводится на постоянном токе. При работе в условиях переменного тока, величины допустимых напряжений не должны превышать приведенных в таблице ниже показателей.

Номинальное напряжение постоянного тока, ВДопустимое напряжение переменного тока, В, при частоте 50Гц и емкости конденсатора, мкФ:
до 24-10
400

600

1000

1500

250

300

400

500

200

250

350

Определить величину пусковых активных сопротивлений можно, опираясь на величины, приведенные в таблице ниже. За основу принимаются мощности электрического двигателя в трехфазном режиме.

Мощность двигателя, кВтПусковое сопротивление, Ом
при включении по схеме Рис.2 (а)

0,6

1,0

1,7

2,8

4,5; 7,0

25-30

20-25

10-15

4-10

3-5

при включении по схеме Рис.2 (б)

0,6; 1,0

1,7; 2,8

4,5

8-15

3-4

1,5-3

В информационном разделе Дельта Привод вы также можете подробнее ознакомиться с вопросом включения двигателя постоянного тока в сеть 110/220 вольт.

Как подключить электродвигатель 380В на 220В

Бывают ситуации, когда мы вынуждены использовать двигатель, который не адаптирован к данному источнику питания. Примером этого является подключение трехфазного двигателя к однофазной сети. Может быть, не все знают, но это возможно и даже и не так сложно осуществить. Но стоит учитывать, что трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности. В сети 220 В двигатели мощностью более 3 кВт включать не имеет смысла – бытовая электропроводка не выдержит нагрузки.

Подключение с помощью фазосдвигающего конденсатора (искусственный фазовый метод)

Наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. 

Существуют пусковые и так называемые рабочие конденсаторы, которые постоянно задействованы во время работы двигателя. Основной задачей рабочих конденсаторов является обеспечение оптимальной нагрузочной способности двигателя. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.

Как правильно подобрать конденсаторы

Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:

  • звездой – 2800
  • треугольником — 4800

Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.

Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости. Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой. Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.

Таких схем несколько, это и самодельные пусковые устройства на тиристорах с транзисторным управлением и подключение двигателя через индукционные катушки или сопротивления. На практике, эти способы сложнореализуемые и малоэффективные.

Подключение трехфазного асинхронного двигателя через преобразователь частоты

Для подключения трехфазных двигателей к сети 220В применяются однофазные ПЧ. Хотя, это не самый бюджетный вариант, но частотник позволяет преобразовывать переменное напряжение частотой 50 Гц в напряжение с частотой от 0 Гц до 1 кГц, к тому же импульсное. Благодаря этому появляется возможность осуществить плавный пуск двигателя и регулировать частоту оборотов.

В некоторых ПЧ есть функция построения модели двигателя и преобразователь сам выставляет нужные параметры для работы. 

Для подключения частотного преобразователля к двигателю применяют экранированные кабели, рекомендованным производителем марок, сечением, отвечающем мощности выбранного ПЧ. Подключение осуществляется через емкостные входы преобразователя, внешние конденсаторы при этом не нужны.

Заключение

При включении трехфазного двигателя в однофазную сеть существенно изменяются характеристики агрегата. Из-за значительных недостатков такой метод в массово в промышленности не применяется, и допускается только как исключительная мера. Такое подключение допустимо только для маломощных электродвигателей.

Типовые схемы подключения трехфазного двигателя к однофазной сети

Начала и концы обмоток (различные варианты) Схемы подключения трехфазного двигателя в однофазную сеть

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора.

В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку.

Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

Подключение трехфазного двигателя по схеме треугольникРаспределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник

  • В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

Положение контактов в распределительной коробке трехфазного двигателяПодключение трехфазного двигателя по схеме звездаРаспределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть.

К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора.

Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д.

Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника».

В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Таблички трехфазных электродвигателей

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода).

В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме «звезда». При подключении 220В по схеме «треугольник», двигатель сгорит.

Начала и концы обмоток (различные варианты)

Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник».

В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов.

В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю.

В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления).

Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой.

Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Определение пар проводов относящихся к одной обмотке

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

Нахождение начала и конца обмоток

К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону.

Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В.

Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B.

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов.

Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Табличка разбираемого электродвигателяКлеммная колодка

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода.

Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5).

Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто.

Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Статор электродвигателяПрипаянные проводаПрипаянные проводаВывод проводов в клеммную коробкуПодключение проводов к клеммной колодке

Схемы подключения трехфазного двигателя в однофазную сеть

Подключение по схеме «треугольник». В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме «треугольник». При этом их мощность может достигать 70% от номинальной.

Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий — через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.Подключение трехфазного двигателя к однофазной сети по схеме треугольникПодключение трехфазного двигателя к однофазной сети по схеме треугольник

Обеспечение пуска.

Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже).

Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Подключение трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Выключатель

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Реверс трехфазного двигателя

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Подключение трехфазного двигателя к однофазной сети по схеме звезда

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Cр = 2800•I/U

  1. Для соединения «треугольником»:

Cр = 4800•I/U

  • Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73•U•n•cosф)

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой.

Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким.

Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется.

Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Клиноременная передача мотоблока Салют 5

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя.

Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения.

Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + … + Сn.

Параллельное соединение конденсаторов

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

Конденсаторы При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами. Литература

Схемы подключения электродвигателя к электропитанию

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?» Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.

В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока: 1. Однофазная сеть 220 В,
2.

Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода. Как определить напряжение в вашей сети?
Очень просто.

Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.

В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными.

В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

  • Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.

2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4.

Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах.

Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:

— использование автоматического выключателя или автомата защиты электродвигателя

Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты. — использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида). Устройство электромагнитного пускателя: Магнитный пускатель устроен достаточно просто и состоит из следующих частей: (1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания). При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5). Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.

Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя.

При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к.

для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт. Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В. Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В.

То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения: — регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях), — при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток. Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя. Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя. Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя. Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях. Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

Технический директор
ООО «Насосы Ампика»

Моисеев Юрий.

Подключение трехфазного двигателя к однофазной сети

Здравствуйте,  дорогие читатели и гости сайта «Заметки электрика».

Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.

А в наличии имеется только источник однофазного напряжения.

Как быть в данной ситуации?

Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.

Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.

Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.

Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье. 

Выбор емкости конденсаторов

1. Выбор емкости рабочего конденсатора

Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:

Полученное значение емкости рабочего конденсатора получается в (мкФ).

Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.

Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.

При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.

2. Выбор емкости пускового конденсатора

Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.

Что случится, если забыть отключить пусковые конденсаторы?

Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.

Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.

В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.

Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.

Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.

Выбор типа конденсаторов

Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.

Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.

Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.

Кое-что я нашел у себя в запасе.

Практически все они имеют прямоугольную форму.

На самом корпусе можно увидеть их параметры:

  • емкость (мкФ)
  • рабочее напряжение (В)

Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».

Также вместо бумажных конденсаторов  можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.

Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!

  • У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).
  • Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.
  • Вот например, СВВ60 в круглом корпусе.

Или СВВ61 в прямоугольном корпусе.

В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.

Выбор напряжения конденсаторов

Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.

Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.

Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).

Принято выбирать рабочее напряжение конденсаторов  для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).

Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.

Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).

Пример подключения трехфазного двигателя к однофазной сети

Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.

Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).

Данные двигателя АОЛ 22-4:

Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.

  1. Определим емкость рабочего конденсатора:
  2. Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).

Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.

Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.

  • Теперь нам необходимо, применив навыки электротехники , собрать из этих конденсаторов необходимую нам емкость.
  • Емкость одного конденсатора составляет 10 (мкФ).

При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.

  1. Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.

Дальнейшие итоги нашего эксперимента смотрите на видео.

Эксперимент завершился УДАЧНО!!!

И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!

При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора  практически равна номинальной.

Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.

Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.

Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.

P.S. Задавайте вопросы по данной теме в х, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Как использовать трехфазный двигатель в однофазном источнике питания

На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал при возникновении аварийной или критической ситуации. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?

Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном питании с помощью постоянного КОНДЕНСАТОРА. Эта маленькая вещь (конденсатор) очень полезна для работы трехфазного двигателя в однофазном питании. поставлять.

Согласно нашему последнему обсуждению трехфазного двигателя, обычно у него есть две (2) общие обмотки, соединение ЗВЕЗДА или ТРЕУГОЛЬНИК. В этом посте я объяснил, как подключить конденсатор в трехфазном двигателе, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.

Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием?

1) Подключение конденсатора для вращения ВПЕРЕД

-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

2) Подключение конденсатора для ОБРАТНОГО вращения

— Для ОБРАТНОГО вращения мы должны установить конденсатор в любые две фазы обмотки в соединении ЗВЕЗДА (Y), как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

Мощность двигателя

Мы должны учитывать выходную мощность двигателя при переходе с трехфазного источника питания на однофазный, чтобы соответствовать и подходить для нашего приложения. Но мы не можем получить фактическое значение из-за множества аспектов, которые мы должны рассчитать, и это так сложно. можно оценить приблизительное значение мощности двигателя в процентах (%) ниже: —

Как выбрать подходящий конденсатор?

Это очень важное решение, которое мы должны учитывать относительно размера конденсатора при планировании работы трехфазного двигателя от однофазного источника питания.При неправильном выборе это может повлиять на состояние двигателя, а его производительность также может повредить обмотку двигателя.

Ниже приводится приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS напряжение сети, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации.Трехфазный двигатель переменного тока использует трехфазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. Д.) .), особенно в бытовой технике. В случае, если трехфазные машины работают от однофазных источников питания, есть 3 способа сделать это:

  1. Перемотка мотора
  2. Купить GoHz VFD
  3. Купить преобразователь частота / фаза

I: Перемотка двигателя
Необходимо выполнить некоторые работы, чтобы преобразовать работу трехфазного двигателя в однофазное питание.Здесь вы узнаете, как преобразовать трехфазный двигатель 380 В для работы от однофазного источника питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120 ° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, переводимого для работы от однофазного источника питания, мы должны пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, поскольку однофазный двигатель может быть запущен только после установления вращающегося магнитного поля. .Причина, по которой у него нет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он фиксирован относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может генерировать крутящий момент, потому что нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный угол наклона. Если он пытается произвести ток другой фазы, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через разный ток, чтобы установить вращающееся магнитное поле, чтобы управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от исходной.

Метод перемотки
Чтобы использовать трехфазный двигатель на однофазном источнике питания, мы можем последовательно соединить любые двухфазные катушки обмотки, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотки подключены к одному источнику питания, поэтому ток одинаковый. Поэтому последовательно подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке, чтобы ток имел разность фаз.Для увеличения пускового момента соединения можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на Рисунке 1.

Малогабаритные двигатели общего назначения имеют Y-образное соединение. В трехфазном асинхронном двигателе Y-типа клемма обмотки конденсатора C подключается к клемме пуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите повышать напряжение, источник питания 220 В также может использовать это.Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для источника питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рисунок 3 Слишком низкий крутящий момент проводки. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.

На рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .

Магнитный момент после того, как две обмотки соединены последовательно (одна из которых является обратной струной), складывается из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем магнитный момент 120 ° (показан на Рисунке 6), поэтому пусковой момент проводки на Рисунке 5 больше, чем на Рисунке 6.

Значение резистора доступа R (рисунок 7) на обмотке пускателя должно быть замкнуто на сопротивление фазы обмотки статора и должно выдерживать пусковой ток, равный 0.1-0,12 пускового момента.

Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микрозакон), Ie, ue, cosφ — это исходный номинальный ток двигателя, номинальное напряжение и значения мощности.
Обычный рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используются 4-6 микроконденсаторы. Пусковой конденсатор может быть выбран в соответствии с пусковой нагрузкой, обычно в 1–4 раза превышающей рабочий конденсатор.Когда двигатель достигает 75% ~ 80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель перегорит.

Емкость конденсатора должна быть правильно выбрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, то есть 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. При нормальном запуске отключите пусковой конденсатор.

Есть много преимуществ в использовании трехфазного двигателя от однофазного источника питания, работа по перемотке проста.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применить только к двигателю мощностью 1 кВт или менее.

II: Купите частотно-регулируемый привод GoHz.
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим с регулируемой скоростью. Однофазный преобразователь частоты в трехфазный — лучший вариант для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устраняет пусковой ток во время запуска двигателя, заставляя двигатель работать от нулевой скорости до полной. скорость плавная, плюс цена абсолютно доступная.Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 до 7,5 л.с., более мощные частотно-регулируемые приводы могут быть настроены в соответствии с конкретными двигателями.

Видео с подключением однофазного и трехфазного частотно-регулируемого привода с частотой ГГц

Преимущества использования частотно-регулируемого привода с частотой дискретизации 1 ГГц для трехфазного двигателя:

  1. Плавный пуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время пуска может быть установлено на несколько секунд или даже десятки.
  2. Функция бесступенчатого регулирования скорости для обеспечения наилучшей работы двигателя.
  3. Переведите двигатель с индуктивной нагрузкой на емкостную нагрузку, которая может увеличить коэффициент мощности.
  4. ЧРП
  5. имеет функцию самодиагностики, а также функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.
  6. Можно легко запрограммировать с клавиатуры для автоматического управления.

III: Купите преобразователь частоты / фазы.
Преобразователь частоты GoHz или преобразователь фазы также можно использовать для таких ситуаций, он может преобразовывать однофазный (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазный (0- 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем форма волны ШИМ VFD, они предназначены для лабораторных испытаний, самолетов, военных и других приложений, где требуются высококачественные источники питания, это очень дорого.

Статья по теме: Воздействие двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)

Трехфазная электрическая мощность | Передача электроэнергии

Трехфазная электроэнергия — распространенный метод передачи электроэнергии. Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока. Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки.Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя. Наконец, трехфазные системы могут создавать магнитное поле, вращающееся в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства.

Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите.

На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора. Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы.В трехфазной системе фазы расположены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но более подробную информацию см. В разделе «Системы электроснабжения»).

Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до другого, пригодного для передачи.

После многочисленных дополнительных преобразований в передающей и распределительной сети мощность окончательно преобразуется в стандартное сетевое напряжение ( i.е. «бытовое» напряжение). Электропитание может быть уже разделено на одну фазу на этом этапе или все еще может быть трехфазным. При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением. Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль.Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). быть доступным из того же источника.

В большом оборудовании для кондиционирования воздуха и т. Д. Используются трехфазные двигатели из соображений эффективности, экономии и долговечности.

Нагревательные нагрузки сопротивления, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам.Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением. Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.

Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя.Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.

Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

В большинстве стран Европы печи рассчитаны на трехфазное питание. Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.

Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, например, жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование. Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.

Поскольку однофазная мощность стремится к нулю в каждый момент, когда напряжение пересекает ноль, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.

Один из методов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения. При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания.В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Второй метод, который был популярен в 1940-х и 50-х годах, был методом, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов. Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня.Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.

Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может вызвать перегрев нагрузок двигателя, а в некоторых случаях и перегрев. Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного или выпрямительного типа.

Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается за счет создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.

Преобразователи частоты (также известные как твердотельные инверторы) используются для точного управления скоростью и крутящим моментом трехфазных двигателей. Некоторые модели могут питаться от однофазной сети.Преобразователи частоты работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.

Цифровые фазовые преобразователи — это последняя разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.

  • Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
  • Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что вопреки теории двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Генераторы на Ниагарском водопаде, установленные в 1895 году, были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазное питание может быть получено от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
  • Моноциклическая мощность — это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивали Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было трудно анализировать, и его хватило на недостаточное время для разработки удовлетворительного учета энергии.
  • Созданы и испытаны системы высокого порядка фаз для передачи энергии. Такие линии передачи используют 6 или 12 фаз и конструктивные решения, характерные для линий передачи сверхвысокого напряжения. Линии передачи высокого фазового порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.

Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений.

Один цикл напряжения трехфазной системы

На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы.Основным преимуществом этого было то, что конфигурация обмотки была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту.

Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют разделенной фазой.

Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — ранее все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.

Были использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с шагом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Они позволяют применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволяют увеличить передачу мощности в коридоре той же ширины линии электропередачи.

Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; Напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.

В Северной Америке в многоквартирных домах может быть распределено напряжение 120 В (между фазой и нейтралью) и 208 В (между фазой). Основные однофазные приборы, такие как духовки или варочные панели, предназначенные для системы с разделением фаз на 240 вольт, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 вольт; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при подаче напряжения на 13% ниже.

Разница между однофазным и трехфазным источником питания переменного тока

Источник переменного тока (переменный ток) — это вид электричества, при котором направление тока часто меняется. В начале 1900 года источники питания переменного тока использовались как на предприятиях, так и в домах, а теперь их расширили до. Система электропитания подразделяется на два типа: однофазный источник питания и трехфазный источник питания. Для большинства промышленных и деловых предприятий трехфазный источник питания используется для работы с высокими нагрузками, тогда как дома, как правило, питаются от однофазного источника питания, поскольку бытовая техника требует меньше энергии.В этой статье обсуждается разница между однофазными и трехфазными источниками питания, а — как определить однофазный или трехфазный .


Что такое фаза в электричестве?

Обычно подведенное электричество — это ток или напряжение в существующем проводе, а также в нейтральном кабеле. Фаза означает распределение нагрузки, если используется один провод, на нем будет возникать дополнительная нагрузка, а если используются три провода, то нагрузки будут разделены между ними.Это можно назвать меньшей мощностью для 1 фазы и большей мощностью для 3 фазы.

Если это однофазная система, она включает в себя два провода, а когда это трехфазная система, то она состоит либо из трех (или) четырех проводов. Обе системы питания, такие как однофазные и трехфазные, используют питание переменного тока для обозначения блоков. Потому что ток, протекающий с использованием переменного тока, всегда является переменным. Основное отличие этих двух поставок — надежность доставки.


Однофазное питание

Во всей области электроснабжения однофазное питание — это подача переменного тока системой, в которой происходит одновременное изменение всех напряжений питания.Этот тип разделения источника питания используется, когда нагрузки (бытовые приборы), как правило, нагреваются и освещаются огромными электродвигателями.

Когда однофазный источник питания подключен к двигателю переменного тока, он не генерирует вращающееся магнитное поле, вместо этого однофазные двигатели требуют дополнительных цепей для работы, но такие электродвигатели редко имеют номинальную мощность почти 10 кВт. В каждом из циклов однофазное системное напряжение достигает пикового значения два раза; прямая мощность нестабильна.

Однофазный сигнал

Однофазная нагрузка может приводиться в действие от трехфазного разделяющего трансформатора двумя способами. Первый — это соединение между двумя фазами или соединение между одной фазой и нейтралью. Эти два будут давать разное напряжение от данного источника питания. Этот тип фазового питания обеспечивает выходное напряжение около 230 В. Применения этого источника питания используются для управления небольшими бытовыми приборами, такими как кондиционеры, вентиляторы, обогреватели и многие другие.


Преимущества

Преимущества выбора однофазного источника питания объясняются следующими причинами.

  • Конструкция менее сложная
  • Стоимость конструкции меньше
  • Повышенная эффективность, обеспечивающая мощность переменного тока почти 1000 Вт
  • Она способна обеспечить максимальную мощность 1000 Вт
  • Используется в различных отраслях промышленности и Приложения

Приложения

Приложения однофазного питания включают следующее.

  • Этот блок питания подходит как для дома, так и для бизнеса.
  • Используется для подачи большого количества электроэнергии в дома, а также в непромышленные предприятия.
  • Этого блока питания достаточно для работы двигателей мощностью до 5 лошадиных сил (л.с.).

Трехфазный источник питания

Трехфазный источник питания включает четыре провода, которые состоят из одной нейтрали и трех проводов. Три проводника удалены от фазы и пространства и имеют фазовый угол 120º друг от друга.Трехфазные блоки питания используются как однофазные блоки питания переменного тока.

Для работы с малой нагрузкой можно выбрать однофазный источник питания переменного тока вместе с нейтралью из системы трехфазного переменного тока. Это предложение является постоянным и не будет снижено до нулевого значения. Мощность этой системы можно проиллюстрировать в двух конфигурациях, а именно в соединении звездой (или) соединением треугольником. Соединение по схеме «звезда» используется для связи на большие расстояния, так как оно включает нейтральный кабель для тока ошибки.

Трехфазный сигнал

Преимущества

Преимущества трехфазного источника питания над однофазным обусловлены следующими причинами:

  • Трехфазный источник питания требует меньше меди
  • Это показывает минимальный риск для работающих сотрудников с этой системой
  • Он имеет более высокий КПД проводника
  • Рабочие, которые работают в этой системе, также получают заработную плату
  • Он даже имеет возможность работать с расширенным диапазоном силовых нагрузок

Трехфазные приложения питания

Приложения трехфазного питания включают следующее.

  • Эти типы источников питания используются в электрических сетях, вышках мобильной связи, центрах обработки данных, самолетах, кораблях, беспилотных системах, а также в других электронных нагрузках мощностью более 1000 Вт.
  • Применимо к промышленным, производственным и крупным предприятиям.
  • Они также используются в энергоемких центрах обработки данных и центрах обработки данных с высокой плотностью размещения.

Ключевые различия между однофазными и трехфазными источниками питания

Ключевые различия между однофазными и трехфазными источниками питания включают следующее.

9032
Характеристика Однофазный Трехфазный
Определение Однофазный источник питания работает с использованием одного провода Трехфазный источник питания 6
Волновой цикл Он имеет только один отчетливый волновой цикл Он имеет три различных волновых цикла
Подключение цепи Требуется только один провод для соединения с цепью Эта фаза питания требует три провода для подключения к цепи
Уровни выходного напряжения Обеспечивает уровень напряжения почти 230 В Обеспечивает уровень напряжения почти 415 В
Имя фазы Имя фазы одиночного фаза — разделенная фаза Нет спецификаций IC имя для этой фазы
Способность передачи энергии Она имеет минимальную пропускную способность для передачи энергии Эта фаза имеет максимальную пропускную способность для передачи энергии
Сложность цепи 1 фаза источник питания может быть сконструирован просто Его конструкция сложна
Возникновение сбоя питания Частое отключение питания Отсутствие сбоя питания
Потери Потери в одной фазе максимальны Потери в 3 фазах минимальны
КПД Минимальный КПД Максимальный КПД
Стоимость Не дорого, чем Трехфазный источник питания Немного дороже, чем однофазный e
Приложения Используется в домашних условиях Трехфазный источник питания используется в огромных отраслях промышленности для работы с большими нагрузками.

Самая запутанная концепция, с которой сталкиваются здесь люди, — это «, как определить однофазный и трехфазный» ?

Ответ заключается в определении ширины главного выключателя. Однофазные блоки питания имеют ширину в один полюс, а трехфазные блоки питания — в три полюса.

Как преобразовать однофазное в трехфазное?

Поскольку это наиболее важная концепция, которую необходимо знать, следующие пункты объясняют преобразование одной фазы в три фазы.

Когда существует крупногабаритный компрессор без какого-либо трехфазного источника питания, соответствующего системе, в которой построена локальная сеть, существует несколько путей для решения этой проблемы и обеспечения надлежащей мощности для компрессора. Известное решение — преобразовать трехфазный двигатель в однофазный.

Для этого преобразования существует в основном три типа трехфазных преобразователей.

  • Статический преобразователь — Когда трехфазный двигатель не запускается с помощью однофазной мощности, он может работать от владельца одной фазы после запуска.Это происходит с поддержкой конденсаторов. Но у этого метода не такая уж большая эффективность и меньший временной промежуток.
  • Поворотный преобразователь фазы — Он работает как интеграция генератора и трехфазного двигателя. Он состоит из двигателя холостого типа, который, когда он находится в движении, вырабатывает мощность и благодаря всей этой настройке может должным образом стимулировать трехфазную систему.
  • Преобразователь частотно-регулируемого привода — Он работает с использованием инверторов, которые генерируют переменный ток на любых уровнях частоты и воспроизводят почти все внутренние условия трехфазного двигателя.

Итак, это все о разнице между однофазными и трехфазными источниками питания и сравнительной таблице. Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что при правильном подходе к проектированию источника питания разработчик может дать подходящий совет для максимальной эффективности и экономии средств вашего проекта.

Выбор однофазной (или) трехфазной системы в основном зависит от требований к мощности конкретного приложения. В любом случае хорошо спроектированный компонент обеспечит как надежное, так и надежное распределение энергии.Вот вам вопрос, каковы основные функции трехфазных и однофазных источников питания?

Электрическое преобразование, однофазное, трехфазное питание

В дополнение к обеспечению того, чтобы частота генератора соответствовала частоте сети или устройств, также должны быть выполнены следующие условия:

(a) Выходное напряжение генератора должно соответствовать рабочему напряжению сети или устройств, питаемых от сети. генератор.
(b) Не должно быть разности фаз между напряжением сети и напряжением генератора.

Чтобы понять преобразование трехфазного генератора в однофазный и наоборот, давайте сначала кратко рассмотрим внутреннюю конфигурацию этих двух типов генераторов.

Однофазные генераторы:
В однофазном генераторе статор имеет ряд обмоток, соединенных последовательно, чтобы сформировать единую цепь, по которой генерируется выходное напряжение.

• Равное напряжение на всех обмотках статора синфазно друг с другом
Например, в 4-полюсном генераторе четыре полюса ротора равномерно распределены по раме статора.В любой момент времени каждый полюс ротора находится в том же положении относительно обмоток статора, что и любой другой полюс ротора. Следовательно, напряжения, индуцированные во всех обмотках статора, имеют одинаковое значение и амплитуду, а также в каждый момент времени находятся в фазе друг с другом.

• Последовательное соединение обмоток статора
Кроме того, поскольку обмотки соединены последовательно, напряжения, создаваемые в каждой обмотке, в сумме создают конечное выходное напряжение генератора, которое в четыре раза превышает напряжение на каждой из отдельных обмоток статора.

Однофазное распределение электроэнергии обычно используется в жилых районах, а также в сельской местности, где нагрузки небольшие и редкие, а затраты на создание трехфазной распределительной сети высоки.

Трехфазные генераторы:
В трехфазном генераторе три однофазных обмотки разнесены таким образом, что между напряжениями, наведенными в каждой из обмоток статора, существует разность фаз 120 °. Эти три фазы независимы друг от друга.

• Конфигурация «звезда» или «Y»
При соединении звездой или Y по одному выводу каждой обмотки соединяется с нейтралью. Противоположный конец каждой обмотки, известный как конечный конец, соединен с линейным выводом каждой. Это создает линейное напряжение, превышающее индивидуальное напряжение на каждой обмотке.

• Дельта-конфигурация
В дельта-конфигурации начальный конец одной фазы соединен с конечным концом соседней фазы.Это создает линейное напряжение, равное фазному напряжению. Электроэнергетические предприятия и коммерческие генераторы вырабатывают трехфазную энергию.

Преобразование фазы в генераторах:
(1) Изменение конфигурации подключения катушки
Трехфазный генератор можно преобразовать в однофазный, изменив соединение между его обмотками статора внутри или снаружи головки генератора. Например, в случае трехфазного генератора у вас будет 6 выводов. Генераторы большего размера обычно имеют 12 выводов от шести катушек, и все провода выходят из генератора, что упрощает настройку генератора различными способами, как показано ниже —

• Последовательное соединение катушек преобразует генератор в однофазный. один.
• Последовательно соединив противоположные катушки, вы можете удвоить выходное напряжение.
• Параллельное соединение удвоит ток.

Сложная часть перенастройки генератора заключается в сопоставлении проводов, выходящих из генератора, с катушками, к которым они подключены. Необходимо наличие документов производителя. В противном случае вам нужно будет изучить, как ваш генератор в настоящее время подключен, и работать в обратном направлении.

(2) Однофазные нагрузки с центральным врезанием к трехфазным генераторам
Трехфазный генератор можно рассматривать как комбинацию трех однофазных блоков.Однофазные нагрузки могут быть подключены к трехфазному генератору одним из следующих способов —

• Подключить нагрузку между фазным проводом и нейтралью системы. Обычно это делается для маломощных нагрузок.
• Подключите нагрузку к двум токоведущим проводам в межфазном соединении. Обычно это делается для мощных нагрузок, таких как кондиционеры или обогреватели, и обеспечивает 208 В. Однако это может привести к снижению производительности, поскольку приборы, требующие для работы 240 В, будут работать при 75% своей номинальной мощности при 208 В.

(3) фазовых преобразователя:
Поворотный фазовый преобразователь (RPC) может быть напрямую подключен к однофазному генератору для создания трехфазного источника питания. Для этого требуется простая конфигурация, состоящая из двух входных соединений, известных как входы холостого хода от однофазного генератора. Напряжение создается на третьем выводе, который не подключен к однофазной сети. Индуцированное напряжение отличается по фазе от напряжения на двух других клеммах на 120 °.

(4) Приводы с регулируемой скоростью (VSD) / частотно-регулируемые приводы (VFD) / инверторы
Они похожи на поворотные фазовые преобразователи.Комбинация частотно-регулируемого привода с однофазным генератором наиболее эффективна в случаях, когда требуется менее 20 лошадиных сил.

Выбор между однофазными и трехфазными генераторами
Мощность однофазных генераторов обычно ограничивается 25 кВА. При более высоких номиналах дешевле получить однофазное питание от трехфазного генератора, чем покупать специальные однофазные блоки для более высоких нагрузок. Прочтите следующую статью «Советы по покупке бывших в употреблении генераторов», чтобы найти подходящий генератор для любой ситуации.

Выбор между однофазным и трехфазным выходом зависит исключительно от типа приложения, на которое будет подаваться питание. Однофазные генераторы лучше всего подходят для однофазного выхода, тогда как трехфазный генератор может легко обеспечивать как однофазное, так и трехфазное питание. Если все ваши приборы работают от однофазного питания, имеет смысл выбрать однофазный генератор. Если вам нужно управлять приборами, которые работают на разных фазах, лучше всего подойдет трехфазный генератор.Однако важно учитывать баланс нагрузки при переходе от однофазного генератора к трехфазному агрегату.

Однофазное и трехфазное питание Объяснение

В электричестве фаза относится к распределению нагрузки. В чем разница между однофазным и трехфазным блоками питания? Однофазное питание — это двухпроводная силовая цепь переменного тока. Обычно это один провод питания — фазный провод — и один нейтральный провод, при этом ток течет между силовым проводом (через нагрузку) и нейтральным проводом.Трехфазное питание — это трехпроводная силовая цепь переменного тока, в которой каждый фазный сигнал переменного тока разнесен на 120 электрических градусов.

Жилые дома обычно питаются от однофазного источника питания, в то время как коммерческие и промышленные объекты обычно используют трехфазное электроснабжение. Одно из ключевых различий между однофазным и трехфазным состоит в том, что трехфазный источник питания лучше подходит для более высоких нагрузок. Однофазные источники питания чаще всего используются, когда типичными нагрузками являются освещение или обогрев, а не большие электродвигатели.

Однофазные системы могут быть производными от трехфазных систем. В США это делается через трансформатор для получения нужного напряжения, а в ЕС — напрямую. Уровни напряжения в ЕС таковы, что трехфазная система может также служить в качестве трех однофазных систем.

Однофазное и трехфазное питание

Еще одним важным отличием трехфазного питания от однофазного является постоянство подачи питания. Из-за пиков и провалов напряжения однофазный источник питания просто не обеспечивает такой стабильности, как трехфазный источник питания.Трехфазный источник питания обеспечивает постоянную подачу питания.

По сравнению с однофазным питанием и трехфазным, трехфазные источники питания более эффективны. Трехфазный источник питания может передавать в три раза больше мощности, чем однофазный источник питания, при этом требуется только один дополнительный провод (то есть три провода вместо двух). Таким образом, трехфазные источники питания, независимо от того, имеют ли они три провода или четыре, используют меньше проводящего материала для передачи заданного количества электроэнергии, чем однофазные источники питания.

Разница между трехфазной и однофазной конфигурациями

В некоторых трехфазных источниках питания действительно используется четвертый провод, который является нейтральным проводом. Две наиболее распространенные конфигурации трехфазных систем известны как звезда и треугольник. Конфигурация треугольника имеет только три провода, в то время как конфигурация звезды может иметь четвертый, нейтральный, провод. Однофазные блоки питания также имеют нейтральный провод.

Как однофазные, так и трехфазные системы распределения электроэнергии имеют функции, для которых они хорошо подходят.Но эти два типа систем сильно отличаются друг от друга.

Статьи по теме

Узнайте больше об анализаторах качества электроэнергии.

Трехфазное питание, значения напряжения и тока

Трехфазное соединение звездой: линия, фазный ток, напряжения и мощность в конфигурации Y

Что такое соединение звездой (Y)?

Star Connection ( Y ) Система также известна как Трехфазная четырехпроводная система ( 3-фазная 4-проводная ) и является наиболее предпочтительной системой для распределения мощности переменного тока, а для передачи — Delta соединение обычно используется.

В системе соединения Star (также обозначается как Y ) начальные или конечные концы (аналогичные концы) трех катушек соединяются вместе, образуя нейтральную точку. Или

Звездное соединение получается путем соединения вместе одинаковых концов трех катушек, либо «Пуск», либо «Завершение». Остальные концы присоединяются к линейным проводам. Общая точка называется нейтральной или звездной точкой , которая представлена ​​ N .(Как показано на рис. 1)

Звездное соединение также называется трехфазной 4-проводной (3-фазной, 4-проводной) системой.

Также читайте:

Если балансная симметричная нагрузка подключена к трехфазной системе параллельно, то три тока будут течь по нейтральному проводу, количество которых будет одинаковым, но они будут отличаться на 120 ° (не в фазе) , следовательно, векторная сумма этих трех токов = 0. т.е.

I R + I Y + I B = 0 …………….Victorially

Напряжение между любыми двумя клеммами или напряжение между линией и нейтралью (точка звезды) называется фазным напряжением или напряжением звезды, обозначаемым V Ph . И напряжение между двумя линиями называется линейным напряжением или линейным напряжением и обозначается V L .

Соединение звездой (Y) Трехфазное питание, значения напряжения и тока

Значения напряжения, тока и мощности при соединении звездой (Y)

Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока, фазы Напряжения и мощность в трехфазной системе переменного тока звездой.

Линейные напряжения и фазные напряжения при соединении звездой

Мы знаем, что линейное напряжение между линией 1 и линией 2 (из рис. 3а) составляет

В RY = В R — В Y …. (Разность векторов)

Таким образом, чтобы найти вектор V RY , увеличьте вектор V Y в обратном направлении, как показано пунктирной линией на рисунке 2 ниже. Аналогичным образом на обоих концах вектора V R и Vector V Y образуют перпендикулярные пунктирные линии, которые выглядят как параллелограмм, как показано на рис. (2).Диагональная линия, разделяющая параллелограмм на две части, показывает значение V RY . Угол между векторами V Y и V R составляет 60 °.

Следовательно, если

V R = V Y = V B = V PH

, то

V RY = 2 x V PH x Cos (60 ° / 2)

= 2 x V PH x Cos 30 °

= 2 x V PH x (√3 / 2) …… Так как Cos 30 ° = √3 / 2

V RY = √3 V PH

Аналогично,

V YB = V Y — V B

V YB = √3 V PH

и

= V B — V R

V BR = √3 V PH

Следовательно, доказано, что V RY = V YB = V BR является линейные напряжения (V L ) при соединении звездой , следовательно, при соединении звездой;

V L = √3 V PH или V L = √3 E PH

Линейные и фазовые напряжения при соединении звездой

Из рисунка 2 видно, что;

  • Линейные напряжения отстоят друг от друга на 120 °
  • Линейные напряжения на 30 ° выше соответствующих фазных напряжений
  • Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30 ° + Ф), т.е.е. каждый линейный ток отстает (30 ° + Ф) от соответствующего сетевого напряжения.

Связанный пост: Осветительные нагрузки, соединенные звездой и треугольником

Линейные токи и фазные токи при соединении звездой

Из рис (3a) видно, что каждая линия соединена последовательно с отдельной фазной обмоткой, поэтому значение Линейный ток такой же, как и в фазных обмотках, к которым подключена линия. т.е.

  • Ток в линии 1 = I R
  • Ток в линии 2 = I Y
  • Ток в линии 3 = I B

Поскольку текущие токи во всех трех линиях одинаковы, и поэтому индивидуальный ток в каждой строке равен соответствующему фазному току;

I R = I Y = I B = I PH ….Фазный ток

Линейный ток = Фазный ток

I L = I PH

Проще говоря, значения линейных токов и фазных токов одинаковы в Star Connection .

Соединение звездой (Y): значения линейных токов и напряжений и фазных токов и напряжений
Мощность при соединении звездой

В трехфазной цепи переменного тока полная истинная или активная мощность является суммой трехфазной мощности.Или сумма всех трех фазных мощностей — это полная активная или истинная мощность.

Следовательно, полная активная или истинная мощность в трехфазной системе переменного тока;

Общая истинная или активная мощность = 3-фазная мощность

Или

P = 3 x V PH x I PH x CosФ … .. уравнение… (1)

Мы знаем, что значения фазного тока и фазного напряжения при соединении звездой;

I L = I PH

V PH = V L / √3 ….. (От В L = √3 В PH )

Ввод этих значений в уравнение мощности ……. (1)

P = 3 x (V L / √3) x I L x CosФ …….…. (V PH = V L / √3)

P = √3 x√3 x (V L / √3) x I L x CosФ….… {3 = √3x√3 }

P = √3 x V L x I L x CosФ

Следовательно, доказано;

Питание звездой ,

P = 3 x V PH x I PH x CosФ или

P = √3 x V L x I L x CosФ

То же самое объясняется в MCQ трехфазной цепи с пояснительным ответом (MCQ No.1)

Аналогично,

Общая реактивная мощность = Q = √3 x V L x I L x SinФ

Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током, а не между линейным током и линейным напряжением.

Полезная информация : Реактивная мощность индуктивной катушки принимается как положительная (+), а реактивная мощность конденсатора — как отрицательная (-).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *