Полевой транзистор фото: Как выглядят транзисторы фото — Инженер ПТО

Содержание

Как выглядят транзисторы фото — Инженер ПТО

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные).

Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N.

Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода

Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников — это германий и кремний, а также соединение галлия и мышьяка — арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector — «сборщик» (глагол Collect — «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base — «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter — «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента — VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

Здравствуйте, дорогие читатели. В данной статье рассмотрим виды транзисторов и область их применения. И так…

Транзистор, это радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи. Это позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Виды транзисторов

О том что такое транзистор, читайте в статье «Что означает слово транзистор? Назначение и устройство.» Здесь лишь отметим, в большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.

Устройство и принцип действия полевых и биполярных транзисторов — это так же темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.

Полевые и биполярные транзисторы

По технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.

Виды транзисторов, p –n–p и n–p–n проводимость

Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.

2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3

Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.

Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.

КТ315 — легенда среди отечественных биполярных транзисторов малой мощности

Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.

При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.

Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92.

КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором

Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.

Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.

irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET

Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.

Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.

FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор)

Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.

Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.

Рекомендации по эксплуатации транзисторов

Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.

Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым. Например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.

Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.

Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.

Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей. Документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.

Видео, виды транзисторов

Как выглядят транзисторы фото

Внешний вид и обозначение транзистора на схемах

На фото справа вы видите первый работающий транзистор, который был создан в 1947 году тремя учёными – Уолтером Браттейном, Джоном Бардином и Уильямом Шокли.

Несмотря на то, что первый транзистор имел не очень презентабельный вид, это не помешало ему произвести революцию в радиоэлектронике.

Трудно предположить, какой бы была нынешняя цивилизация, если бы транзистор не был изобретён.

Транзистор является первым твёрдотельным устройством, способным усиливать, генерировать и преобразовывать электрический сигнал. Он не имеет подверженных вибрации частей, обладает компактными размерами. Это делает его очень привлекательным для применения в электронике.

Это было маленькое вступление, а теперь давайте разберёмся более подробно в том, что же представляет собой транзистор.

Сперва стоит напомнить о том, что транзисторы делятся на два больших класса. К первому относятся так называемые биполярные, а ко второму – полевые (они же униполярные). Основой как полевых, так и биполярных транзисторов является полупроводник. Основной же материал для производства полупроводников – это германий и кремний, а также соединение галлия и мышьяка – арсенид галлия (GaAs).

Стоит отметить, что наибольшее распространение получили транзисторы на основе кремния, хотя и этот факт может вскоре пошатнуться, так как развитие технологий идёт непрерывно.

Так уж случилось, но вначале развития полупроводниковой технологии лидирующее место занял биполярный транзистор. Но не многие знают, что первоначально ставка делалась на создание полевого транзистора. Он был доведён до ума уже позднее. О полевых MOSFET-транзисторах читайте здесь.

Не будем вдаваться в подробное описание устройства транзистора на физическом уровне, а сперва узнаем, как же он обозначается на принципиальных схемах. Для новичков в электронике это очень важно.

Для начала, нужно сказать, что биполярные транзисторы могут быть двух разных структур. Это структура P-N-P и N-P-N. Пока не будем вдаваться в теорию, просто запомните, что биполярный транзистор может иметь либо структуру P-N-P, либо N-P-N.

На принципиальных схемах биполярные транзисторы обозначаются вот так.

Как видим, на рисунке изображены два условных графических обозначения. Если стрелка внутри круга направлена к центральной черте, то это транзистор с P-N-P структурой. Если же стрелка направлена наружу – то он имеет структуру N-P-N.

Маленький совет.

Чтобы не запоминать условное обозначение, и сходу определять тип проводимости (p-n-p или n-p-n) биполярного транзистора, можно применять такую аналогию.

Сначала смотрим, куда указывает стрелка на условном изображении. Далее представляем, что мы идём по направлению стрелки, и, если упираемся в «стенку» – вертикальную черту – то, значит, «Прохода Нет»! «Нет» – значит p-n-p (П-Н-П ).

Ну, а если идём, и не упираемся в «стенку», то на схеме показан транзистор структуры n-p-n. Похожую аналогию можно использовать и в отношении полевых транзисторов при определении типа канала (n или p). Про обозначение разных полевых транзисторов на схеме читайте тут.

Обычно, дискретный, то есть отдельный транзистор имеет три вывода. Раньше его даже называли полупроводниковым триодом. Иногда у него может быть и четыре вывода, но четвёртый служит для подключения металлического корпуса к общему проводу. Он является экранирующим и не связан с другими выводами. Также один из выводов, обычно это коллектор (о нём речь пойдёт далее), может иметь форму фланца для крепления к охлаждающему радиатору или быть частью металлического корпуса.

Вот взгляните. На фото показаны различные транзисторы ещё советского производства, а также начала 90-ых.

А вот это уже современный импорт.

Каждый из выводов транзистора имеет своё назначение и название: база, эмиттер и коллектор. Обычно эти названия сокращают и пишут просто Б (База), Э (Эмиттер), К (Коллектор). На зарубежных схемах вывод коллектора помечают буквой C, это от слова Collector – «сборщик» (глагол Collect – «собирать»). Вывод базы помечают как B, от слова Base (от англ. Base – «основной»). Это управляющий электрод. Ну, а вывод эмиттера обозначают буквой E, от слова Emitter – «эмитент» или «источник выбросов». В данном случае эмиттер служит источником электронов, так сказать, поставщиком.

В электронную схему выводы транзисторов нужно впаивать, строго соблюдая цоколёвку. То есть вывод коллектора запаивается именно в ту часть схемы, куда он должен быть подключен. Нельзя вместо вывода базы впаять вывод коллектора или эмиттера. Иначе не будет работать схема.

Как узнать, где на принципиальной схеме у транзистора коллектор, а где эмиттер? Всё просто. Тот вывод, который со стрелкой – это всегда эмиттер. Тот, что нарисован перпендикулярно (под углом в 90 0 ) к центральной черте – это вывод базы. А тот, что остался – это коллектор.

Также на принципиальных схемах транзистор помечается символом VT или Q. В старых советских книгах по электронике можно встретить обозначение в виде буквы V или T. Далее указывается порядковый номер транзистора в схеме, например, Q505 или VT33. Стоит учитывать, что буквами VT и Q обозначаются не только биполярные транзисторы, но и полевые в том числе.

Далее узнаем, как найти транзисторы на печатной плате электронного прибора.

В реальной электронике транзисторы легко спутать с другими электронными компонентами, например, симисторами, тиристорами, интегральными стабилизаторами, так как те имеют такие же корпуса. Особенно легко запутаться, когда на электронном компоненте нанесена неизвестная маркировка.

В таком случае нужно знать, что на многих печатных платах производится разметка позиционирования и указывается тип элемента. Это так называемая шелкография. Так на печатной плате рядом с деталью может быть написано Q305. Это значит, что этот элемент транзистор и его порядковый номер в принципиальной схеме – 305. Также бывает, что рядом с выводами указывается название электрода транзистора. Так, если рядом с выводом есть буква E, то это эмиттерный электрод транзистора. Таким образом, можно чисто визуально определить, что же установлено на плате – транзистор или совсем другой элемент.

Как уже говорилось, это утверждение справедливо не только для биполярных транзисторов, но и для полевых. Поэтому, после определения типа элемента, необходимо уточнять класс транзистора (биполярный или полевой) по маркировке, нанесённой на его корпус.


Полевой транзистор FR5305 на печатной плате прибора. Рядом указан тип элемента – VT

Любой транзистор имеет свой типономинал или маркировку. Пример маркировки: КТ814. По ней можно узнать все параметры элемента. Как правило, они указаны в даташите (datasheet). Он же справочный лист или техническая документация. Также могут быть транзисторы этой же серии, но чуть с другими электрическими параметрами. Тогда название содержит дополнительные символы в конце, или, реже, в начале маркировки. (например, букву А или Г).

Зачем так заморачиваться со всякими дополнительными обозначениями? Дело в том, что в процессе производства очень сложно достичь одинаковых характеристик у всех транзисторов. Всегда есть определённое, пусть и, небольшое, но отличие в параметрах. Поэтому их делят на группы (или модификации).

Строго говоря, параметры транзисторов разных партий могут довольно существенно различаться. Особенно это было заметно ранее, когда технология их массового производства только оттачивалась.

В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.

Транзистор в разрезе

На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:

Внешний вид советских транзисторов

Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности




На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор

Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.

Пример усилителя по схеме с общим эмиттером

Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

А так выглядит один из фототранзисторов:

Полевые транзисторы


Строение полевого транзистора

Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.

Изображение на схемах полевых транзисторов с изолированным затвором

Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) – это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком



Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


Схематическое изображение однопереходных транзисторов

Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи – AKV.

В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния. И полевые и биполярные транзисторы имеют по 3 вывода. На приведенном ниже рисунке мы можем видеть устройство советского биполярного низкочастотного транзистора типа МП39-МП42.

Транзистор в разрезе

На следующем рисунке изображены транзисторы, также выпущенные в советское время, слева небольшой мощности, в центре и справа рассчитанные на среднюю и большую мощность:

Внешний вид советских транзисторов

Рассмотрим схематическое изображение биполярного транзистора:

Структура биполярных транзисторов

Транзисторы по своей структуре делятся на два типа, n-p-n и p-n-p. Как нам известно из предыдущей статьи, диод представляет собой полупроводниковый прибор с p-n переходом способным пропускать ток в прямом включении и не пропускающий в обратном. Транзистор же представляет собой, условно говоря, два диода соединенных либо катодами, либо анодами, что мы и можем видеть на рисунке ниже.

Транзистор как два диода

Кстати, многие отечественные транзисторы в советское время выпускали с некоторым содержанием золота, так что эту деталь можно назвать драгоценной в прямом смысле слова! Подробнее о содержании драгметаллов смотрите тут. Но для радиолюбителей ценность данного радиоэлемента заключается прежде всего в его функциях.

Золото в транзисторах СССР

Приведу ещё несколько фотографий распространённых транзисторов:


Малой мощности




На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:

Фото SMD транзистор

Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току:

Схема включения с общим коллектором, это дает нам усиление только по току:

Схема с общим коллектором

И схема включения с общей базой, усиление только по напряжению:

Схема с общей базой

Далее приведен практический пример схемы усилителя на одном транзисторе собранного по схеме с общим эмиттером. Наушники для этого усилителя нужно брать высокоомные Тон–2 с сопротивлением обмотки приблизительно 2 кОм.

Пример усилителя по схеме с общим эмиттером

Биполярные транзисторы могут использоваться в ключевом и усилительном режимах. Выше на схеме пример работы транзистора в усилительном режиме. На приведенном ниже рисунке изображена схема включения транзистора в ключевом режиме:

Схема транзистора в ключевом режиме

Существуют транзисторы, действие которых основано на фотоэлектрическом эффекте, называются они фототранзисторы. Они могут быть в исполнении как с выводом от базы, так и без него. Его схематическое изображение на рисунке:

Схематическое изображение фототранзисторов

А так выглядит один из фототранзисторов:

Полевые транзисторы


Строение полевого транзистора

Привожу первый вариант схематического обозначения полевого транзистора:

Схематическое изображение полевого транзистора

На следующем рисунке изображено современное схематическое изображение (второй вариант) полевых транзисторов с изолированным затвором, слева с каналом n–типа и справа с каналом p-типа.

Изображение на схемах полевых транзисторов с изолированным затвором

Определяют какого типа канал следующим образом, если стрелка направлена в сторону канала, то такой транзистор с каналом n–типа, если же стрелка направлена в обратную, то p-типа. Транзисторы MOSFET (metal-oxide-semiconductor field effect transistor) – это английское название полевых транзисторов МДП (металл-диэлектрик-полупроводник). Дальше на рисунке приведено обозначение и изображен внешний вид мощного полевого Mosfet транзистора:

Схематическое изображение мощного полевого транзистора

Полевые транзисторы имеют высокое входное сопротивление. Они находят все большее применение в современной технике, особенно приёмо-передатчиках. Полевые транзисторы широко применяются и в аналоговых, и в цифровых схемах. Выпускаются современные полевые транзисторы, как и биполярные, в SMD исполнении:

Фото SMD полевой транзистор

Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:


С общим истоком



Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.

Однопереходные транзисторы


Схематическое изображение однопереходных транзисторов

Применяются однопереходные транзисторы, в устройствах автоматики и импульсной технике. А также находят применение в измерительных устройствах. Автор статьи – AKV.

Обсудить статью ТРАНЗИСТОРЫ

Приведены таблицы с условным обозначением на схемах наиболее распространённых радиодеталей.

ПОДСЛУШИВАЮЩИЙ ЖУЧОК

Пошаговое изготовление простого подслушивающего жучка – подробная фотоинструкция для начинающих.

РАДИОУПРАВЛЕНИЕ НА МИКРОКОНТРОЛЛЕРЕ

Аппаратура 10-ти командного блока радиоуправления устройствами – схема, фото модулей, прошивка.

Полевые транзисторы IRFP250, обзор и немного о применении.

Не так давно я публиковал пару обзоров, где описывал усилитель сигнала с датчика тока и маленький блок питания.
Этот обзор является логическим продолжением мой эпопеи по конструированию самодельной электронной нагрузки. Я уже описывал такое устройство, но данный вариант планировался еще до него и планировался мощнее, с электронным управлением и прочими фишками. Но сами «мозги» я опишу скорее всего уже в следующем месяце, а вот про силовую часть расскажу сегодня.

Мощность силового модуля я запланировал на уровне 200-300 Ватт, максимальное напряжение до 60 Вольт, ток до 15 Ампер.
В устройстве используется нестандартное напряжение питания управляющей электроники в 8 Вольт. Так же напряжение сигнала управление в 0-250мВ. Это не моя прихоть, это то, что может давать блок управления, потому модуль я подстраивал под него.

Изначально конструкция подразумевала один канал с максимальным током в 5 Ампер и шунтом с сопротивлением 50мОм. Но в описании устройства была возможность навесить еще пару таких же каналов и перекалибровать устройство под ток 15 Ампер.
Я решил пойти немного по другому пути. Для начала я задумал не три, а восемь каналов.
При этом я исходил из модульной конструкции, это упрощает построение и расчет.
Задумывалось 8 каналов, при этом получалось по 2 канала на плату, по 2 платы на радиатор и 2 радиатора на устройство.

Сначала приведу схему силовой части.
Номиналы многих деталей можно менять в широких пределах, так же можно применять разные полевые транзисторы.
У меня получалось что надо получить напряжение с шунта одного канала до 250мВ в полном диапазоне регулировки тока.
Значит выходило 15/8=1.875 Ампера на канал. Соответственно номинал шунта для получения 250мВ составляет 0.25/1.875=0.133(3) Ома. Лучше когда номинал шунта чуть чуть меньше, но не больше, иначе не хватит напряжения регулировки (макс 250мВ).
Я решил не заморачиваться с шунтами и просто купил сотню точных резисторов номиналом 1.33 Ома 1%. При монтаже я использовал 10 штук параллельно, 2х5шт.

По схеме страссировал печатную плату, правда потом выяснилось что площадки для подключения силовых проводов немного мелковаты, лучше их увеличить.
При трассировке я старался делать силовую часть максимально симметричной в месте подключения земляного проводника и измерительного шунта.

После изготовил печатные платы, я сразу сделал 4 штуки на одной заготовке, описание процесса здесь.

Список примененных компонентов.
Резисторы:
1.33 Ома 1% — 80шт (1206)
22 Ома — 8шт (1206)
560 Ом — 4шт (0805)
6.2 КОм — 8шт (1206)
22 КОм — 8 шт (1206)
3 МОм — 8шт (0805)

Конденсатор 220мкФ х 16Вольт 105 градусов. Samwha RD.
Операционный усилитель LM358 — 4шт (SO-8)
Регулируемый стабилитрон TL431 — 4шт (SOT23)
Полевые транзисторы — IRFP250 — 8шт

Платы спаяны. Как я писал, резисторы шунта смонтированы в два слоя по 5 штук в слое.

С обратной стороны присутствует только электролитический конденсатор. Так как платы устанавливаются вблизи элементов с большим выделением тепла, то лучше применять конденсаторы рассчитанные на работу при температуре до 105 градусов.

Так как транзисторы при работе активно выделяют тепло (сама суть электронной нагрузки это переводить все в тепло), то я приготовил пару радиаторов. Эти радиаторы у меня уже мелькали в некоторых обзорах, например в этом, теперь придется искать им замену.
С радиаторов были удалены транзисторы и почти раритетные микросхемы стабилизаторов.
После этого радиаторы были очищены при помощи ватки и спирта 🙂
В конце я немного укоротил их, это был один из самых сложных этапов. Радиаторы имели в высоту 88мм, а корпус имел высоту 84мм. Чтобы удобно было использовать вентиляторы размером 80мм я отрезал по 3мм с каждой стороны. Вот самое сложное и было отрезать эти 3мм в длину и постараться сделать это ровно 🙂
Длина радиаторов 100мм, высота ребра 25мм, тело 4.5мм, радиаторы черненые и имеют 9 ребер.

Разметил крепежные отверстия под вентиляторы, думаю из этого фото уже понятная планируемая конструкция силового модуля.

Разметил и нарезал кучу резьб. Я не стал разбираться где будет верх, где низ, а просто нарезал все симметрично, чтобы потом при сборке не задумываться об этом. Т.е. модуль можно ставить хоть вверх ногами, закрепиться получится в любом случае и крепежные отверстия будут на тех же местах. Для сверления и нарезания резьбы я давно пользуюсь небольшим шуруповертом, очень удобно.

Платы подготовлены к установке. На фото понятен принцип установки. Я долго думал, ставить платы параллельно или перпендикулярно к радиатору, но решил остановиться на параллельном варианте установки как на более компактном.

Радиаторы и все что будет устанавливаться на них, ну или почти все. планируются еще элементы термоконтроля и т.п…
Кстати насчет термоконтроля. Так как устройство выделяет много тепла, то в целях безопасности я установил на каждый радиатор по биметаллическому размыкателю. Температура уставки 90 градусов, ток контактов 10 Ампер, но так как один размыкатель обслуживает только половину общего тока, то думаю что при 7.5 Ампера они будут работать нормально.
Выводы у терморазмыкателей разные, к одному можно припаяться нормально, ко второму нет, для меня это было новостью. Но так получилось, что я случайно разместил их одинаково, потому одноименные контакты припаяны, для вторых я использовал клеммы, к которым уже припаивал провод. Будьте внимательны.

Первая примерка. Еще без термопасты, просто посмотреть как оно получается вместе.
При креплении транзисторов я использовал родные отверстия оставшиеся от предыдущих элементов. у меня получилось так, что каждый транзистор стоит примерно в центре своей четверти радиатора, при повторении лучше стремиться именно к такому расположению транзисторов.

Для соединения я взял кучку разных проводов. попались даже какие то аудиофилские, вроде как посеребренные, но при этом мне было удобно то, что они свиты из очень большой кучи тоненьких жилок и соответственно очень мягкие и имеют при этом сечение в 2.5мм.
Этот кабель я использовал для соединения земляной цепи.

При соединении я использовал принцип «звезда», т.е. все земляные провода сводятся в одну точку, расположенную так, чтобы сопротивление до каждой из плат было идентичным, это позволит равномерно распределить ток между модулями.

Модуль почти собран. Для разводки проводов я использовал отверстия оставшиеся от старых элементов.

В качестве нагнетающего вентилятора использован вентилятор фирмы Sunon EE80251S1-A99, вентилятор подбирался исходя из небольшой цены и большой производительности.

Вытяжной вентилятор фирмы Thermaltake, S0801512M, был в наличии и используется потому, что требовалась небольшая толщина. Корпус очень маленький, потому с местом проблемы.
В работе планирую использовать питание до 15 Вольт, но проверял и при 20, работали нормально.

Соединение земляных проводников располагается между радиаторами. Это далеко не самое лучшее решение, как и размещение каких либо проводов там вообще. Но вариантов у меня не было, в обход пускать провода было слишком далеко. Снизу или сверху нереально вообще. Буду рад предложениям по улучшению конструкции.
Верхняя и нижняя щель между радиаторами будет конечно закрыта, опять же, еще не решил чем, думаю пока просто заклеить парой слове скотча.

Силовой модуль собран, спаян, осталось только проверить 🙂

На всякий случай (вдруг кто то решится повторить) более детальное фото.

Ну и как же без проверки 🙂
В эксперименте я настроил нагрузку на ток в 5 Ампер и подал 40 Вольт (на самом деле 41).
Рассеиваемая мощность составила 204 Ватта. Больше давать пока не стал так как в эксперименте работал всего один вентилятор (тот что виден на фото, кажется что он стоит), который был включен от 8 Вольт и не были закрыты щели между радиаторами.
Управляющее напряжение я подавал с переменного резистора.
Получилось по 25 Ватт на каждый из транзисторов. Кстати, пускай вас не вводит в заблуждение указанная в даташите максимальная рассеиваемая мощность транзисторов. В линейном режиме лучше стараться не превышать 25-30% от заявленной так как может начаться выход из строя ячеек кристалла транзистора (полевые транзисторы как бы набраны из большого количества мелких).

Я считаю что данный этап проекта закончился успешно, планирую в ближайшем времени продолжить или вернее полностью закончить данное устройство. Описание этого процесса будет в одном из обзоров следующего месяца.

Как полевой транзистор может выдерживать ток стока в 250 Ампер? | Электронные схемы

полевые мосфет транзисторы как читать даташит характеристики

На характеристиках полевых транзисторов,в даташитах,указывают ток стока и он может равняться сотни Ампер.На транзистор IRFB7437 этот ток указан 250 Ампер.Но ведь выводы транзистора явно не могут коммутировать такой большой ток,так в чем же дело,какой ток указывает производитель?

ток стока полевого транзистора

В даташитах,характеристики транзистора указаны в таблицах,там про вид тока особо не указывают.Вслед за таблицами есть графики,вот это как раз то что надо.На графиках можно прочесть слово пульс и указывают время в микро или миллисекундах.Для того что понять что это за пульс и время,надо посмотреть на импульсный прямоугольный сигнал,с которым в основном и работают мосфеты.

прямоугольный сигнал для работы полевого транзистора

Этот сигнал импульсный (пульс),есть положительный и отрицательный полупериоды.На положительном транзистор работает,на отрицательном не работает.Есть у сигнала время или ширина импульса,на фото это горизонтальная короткая полоска, и это время равно 40мкС.

Транзистор может работать с током 250А,только если этот ток будет импульсным и время этого импульса должно соответствовать указанным характеристикам.При работе на постоянный или переменный ток,ток стока будет меньше.

импульсный и постоянный ток полевого транзистора

Чтобы узнать на каких токах и с каким временем импульса может работать транзистор,надо найти график Maximum Safe Operating Area(максимальная безопасная рабочая область).Транзистор IRFB7437 может коммутировать импульсный ток в 1000 Ампер,при напряжении сток-исток 3В и время импульса 100 микросекунд.

При времени 10 миллисекунд,при напряжении сток-исток 30В,ток стока около 1.5А,больше транзистор не потянет.

Постоянный ток стока указан как DC.При постоянном напряжении сток-исток 1В,ток стока может достигать в единственном импульсе 200 Ампер.При 10В,ток стока примерно 13А, при 30В ток стока 2А,а при 40В всего около 700мА.

Характеристики могут еще изменяться,это все зависит от производителя.Один и тот-же транзистор могут выпускать разные фирмы.Поэтому когда скачиваете даташиты,смотрите от какого он производителя и от кого ваш транзистор.

описание, типы, устройство, маркировка, применение.

В  этой статье рассказывается об важно элементе радиоэлектронике — транзисторах. Про принцип действия диодов и их характеристики читайте по ссылке — http://www.radioingener.ru/diody-i-ix-primenenie/

Что такое транзистор.

Термин «транзистор» образован из двух английских слов: transfer — преобразователь и resistor — сопротивление.

В большую «семью» полупроводниковых приборов, называемых транзисторами, входят два вида: биполярные и полевые. Первые из них, чтобы как — то отличить их от вторых, часто называют обычными транзисторами.

Биполярный (обычный) транзистор

Биполярные транзисторы используются наиболее широко. Именно с них мы пожалуй и начнем.  В упрощенном виде биполярный транзистор представляет собой пластину полупроводника с тремя (как в слоеном пироге) чередующимися областями разной электропроводности (рис. 1), которые образуют два р — n перехода.

Две крайние области обладают электропроводностью одного типа, средняя — электропроводностью другого типа. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p — n — р. У транзистора структуры n — p — n, наоборот, по краям расположены области с электронной электропроводностью, а между ними — область с дырочной электропроводностью (рис. 1, б).

Рис. 1 Схематическое устройство и графическое обозначение на схемах транзисторов структуры p — n — p и n — p — n.

Устройство и структура.

Если мысленно прикрыть любую из крайних областей транзисторов, изображенных схематически на (рис.1). Что получилось? Оставшиеся две области есть не что иное, как плоскостной диод. Если прикрыть другую крайнюю область, то тоже получится диод. Значит, транзистор можно представить себе как два плоскостных диода с одной общей областью, включенных навстречу друг другу.

Общую (среднюю) область транзистора называют базой, одну крайнюю область — эмиттером, вторую крайнюю область — коллектором.

Это три электрода транзистора. Во время работы эмиттер вводит (эмитирует) в базу дырки (в структуре p — n — р) или электроны (в структуре n — p — n), коллектор собирает эти электрические заряды, вводимые в базу эмиттером.

Различие в обозначениях транзисторов разных структур на схемах заключается лишь в направлении стрелки эмиттера: в p — n — р транзисторах она обращена в сторону базы, а в n — p — n — от базы.

Электронно — дырочные переходы в транзисторе могут быть получены так же, как в плоскостных диодах. Например, чтобы изготовить транзистор структуры p — n — р, берут тонкую пластину германия с электронной электропроводностью и наплавляют на ее поверхность кусочки индия. Атомы индия диффундируют (проникают) в тело пластины, образуя в ней две области типа р — эмиттер и коллектор, а между ними остается очень тонкая (несколько микрон) прослойка полупроводника типа n — база. Транзисторы, изготовляемые по такой технологии, называют сплавными.

Запомни наименования р — n переходов транзистора: между коллектором и базой — коллекторный, между эмиттером и базой — эмиттерный.

Схематическое устройство и конструкция сплавного транзистора показаны на (рис. 2).

Изготовление транзисторов.

Прибор собран на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу — ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проволочкам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Цельнометаллический колпак защищает прибор от механических повреждений и влияния света. Так устроены наиболее распространенные маломощные низкочастотные транзисторы серий МП39, МП40, МП41, МП42 и их разновидности. Буква (М) в обозначении говорит о том, что корпус прибора холодносварной, буква (П)- первоначальная буква слов «плоскостной», а цифры — порядковые заводские номера приборов. В конце обозначения могут быть буквы А, Б, В (например, МП39Б), указывающие разницу в параметрах данной серии. Существуют другие способы изготовления, например, диффузионно — сплавной (рис. 3). Коллектором транзистора, изготовленного по такой технологии, служит пластина исходного полупроводника. На поверхность пластины наплавляют очень близко один от другого два маленьких шарика примесных элементов. Во время нагрева до строго определенной температуры происходит диффузия примесных элементов в пластинку полупроводника. При этом один шарик (на рис. 3 — правый) образует в коллекторе тонкую базовую область, а второй (на рис. 3 — левый) эмиттерную область.

Рис. 2 — Устройство и конструкция сплавного слева и диффузионно — сплавного справа транзистора структуры p — n — p.

В результате в пластине исходного полупроводника получаются два р — n перехода, образующие транзистор структуры р — n — р. По такой технологии изготовляют, в частности, наиболее массовые маломощные высокочастотные транзисторы серий П401-П403, П422, П423, ГТ308. В настоящее время действует система обозначения, по которой выпускаемые серийно приборы имеют обозначения, состоящие из четырех элементов, например: ГТ109А, КТ315В, ГТ403И.

  • Первый элемент этой системы обозначения — буква Г, К или А (или цифра 1, 2 и 3) — характеризует полупроводниковый материал и температурные условия работы прибора. Буква Г (или цифра 1) присваивается германиевым транзисторам, буква К (или цифра 2) — кремниевым, буква А (или цифра 3) — транзисторам, полупроводниковым материалом которых служит арсенид галлия. Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах (германиевый — выше 4- 60°С, кремниевый — выше +85°С).
  • Второй элемент — буква Т — начальная буква слова «транзистор».
  • Третий элемент — трехзначное число от 101 до 999 — указывает порядковый номер разработки и назначение прибора. Это число присваивается транзистору по признакам, приведенным в таблице.
  • Четвертый элемент обозначения — буква, указывающая разновидность прибора данной серии.

Вот некоторые примеры расшифровки обозначений по этой системе :

ГТ109А — германиевый маломощный низкочастотный транзистор, разновидность А;

ГТ404Г — германиевый средней мощности низкочастотный транзистор, разновидность Г;

КТЗ15В — кремниевый маломощный высокочастотный транзистор, разновидность В.

Применение транзисторов

Наряду с такой системой продолжает действовать и прежняя система обозначения, например П27, П401, П213, МП39 и т.д. Объясняется это тем, что такие или подобные транзисторы были разработаны до введения современной маркировки полупроводниковых приборов. Внешний вид некоторых биполярных транзисторов, наиболее широко используемых радиолюбителями, показан на (рис. 4). Маломощный низкочастотный транзистор ГТ109 (структуры р — n — р) имеет в диаметре всего 3, 4 мм. Транзисторы этой серии предназначены для миниатюрных радиовещательных приемников. Их используют также в слуховых аппаратах, в электронных медицинских приборах т.д.

Диаметр транзисторов ГТ309 (р — n — р) 7,4 мм. Такие транзисторы применяют в различных малогабаритных электронных устройствах для усиления и генерирования колебаний высокой частоты.

Транзисторы КТЗ15 (n — p — n) выпускают в пластмассовых корпусах. Эти маломощные приборы предназначены для усиления и генерирования колебаний высокой частоты. Транзисторы МП39 — МП42 (р — n — р) — самые массовые среди маломощных низкочастотных транзисторов. Точно так выглядят и аналогичные им, но структуры n — p — n, транзисторы МП35 — МП38. Диаметр корпуса любого из этих транзисторов 11,5 мм. Наиболее широко их используют в усилителях звуковой частоты.

Так выглядят и маломощные высокочастотные р — n — р транзисторы серий П401 — П403, П416, П423, используемые для усиления высокочастотных сигналов как в промышленных, так и любительских радиовещательных приемниках. Транзистор ГТ402 (р — n — р) — представитель низкочастотных транзисторов средней мощности. Такую же конструкцию имеет его «близнец» ГТ404, но он структуры (n — p — n). Их, обычно используют в паре, в каскадах усиления мощности колебаний звуковой частоты.

Транзистор П213 (германиевый структуры р — n — р) — один из мощных низкочастотных транзисторов, широко используемых в оконечных каскадах усилителей звуковой частоты. Диаметр этого, а также аналогичных ему транзисторов П214 — П216 и некоторых других, 24 мм. Такие транзисторы крепят на шасси или панелях при помощи фланцев. Во время работы они нагреваются, поэтому их обычно ставят на специальные теплоотводящие радиаторы, увеличивающие поверхности охлаждения.

КТ904 — сверхвысокочастотный кремниевый n — p — n транзистор большой мощности. Корпус металлокерамический с жесткими выводами и винтом М5, с помощью которого транзистор крепят на теплопроводящем радиаторе. Функцию радиатора может выполнять массивная металлическая пластина или металлическое шасси радиотехнического устройства. Высота транзистора вместе с выводами и крепежным винтом чуть больше 20 мм. Транзисторы этой серии предназначаются для генераторов и усилителей мощности радиоаппаратуры, работающей на частотах выше 100 МГц, например диапазона УКВ.

Рис. 4 Внешний вид некоторых транзисторов.

Советую просмотреть обучающий фильм:

Схемы включения и основные параметры биполярных транзисторов

 

Итак, биполярный транзистор, независимо от его структуры, является трехэлектродным прибором. Его электроды — эмиттер, коллектор и база. Для использования транзистора в качестве усилителя напряжения, тока или мощности входной сигнал, который надо усилить, можно подавать на два каких — либо электрода и с двух электродов снимать усиленный сигнал. При этом один из электродов обязательно будет общим. Он — то и определяет название способа включения транзистора: по схеме общего эмиттера (ОЭ), по схеме общего коллектора (ОК), по схеме общей базы (ОБ).

 

  • Включение p-n-р транзистора по схеме ОЭ показано на (рис. 5, а). Напряжение источника питания на коллекторе V подается через резистор Rк, являющийся нагрузкой, на эмиттер — через общий «заземленный» проводник, обозначаемый на схемах специальным знаком. Входной сигнал через конденсатор связи Ссв. подается к выводам базы и эмиттера, т.е. к участку база — эмиттер, а усиленный сигнал снимается с выводов эмиттера и коллектора. Эмиттер, следовательно, при таком включении является общим для входной и выходной цепей. Транзистор, по схеме с ОЭ, в зависимости от его усилительных свойств может дать 10 — 200 — кратное усиление сигнала по напряжению и 20 — 100 — кратное усиление сигнала по току. Такой способ включения по схеме с ОЭ пользуется у радиолюбителей наибольшей популярностью. Существенным недостатком усилительного каскада, включенном по такой схеме, является его сравнительно малое входное сопротивление — всего 500-1000 Ом, что усложняет согласование усилительных каскадов, транзисторы которых включают по такой же схеме. Объясняется это тем, что в данном случае эмиттерный р — n переход транзистора включен в прямом, т.е. пропускном, направлении. А сопротивление пропускного перехода, зависящее от прикладываемого к нему напряжения, всегда мало. Что же касается выходного сопротивления такого каскада, то оно достаточно большое (2-20 кОм) и зависит от сопротивления нагрузки Rк и усилительных свойств.

  • Включение прибора схеме ОК показано на (рис. 5, б). Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК. Каскад с полупроводником, включенным по такой схеме, по напряжению дает усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10 — 500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ. По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными? Потому что выходное напряжение на эмиттере практически полностью повторяет входное напряжение. Почему каскад не усиливает напряжение? Давайте мысленно соединим резистором цепь базы с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на (рис. 5, б) штриховыми линиями. Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх., например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх. с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являющемся нагрузкой транзистора, выделяется напряжение усиленного сигнала, которое через резистор Rвх. оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме с ОЭ.
  • Теперь о включении транзистора по схеме с ОБ (рис. 5, в). В этом случае база через конденсатор Сб по переменному току заземлена, т. е. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв. подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада. Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме с ОЭ (10 — 200). Из — за очень малого входного сопротивления, БК превышающего нескольких десятковом (30-100) Ом, включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления моделями.

Чаще всего как я уже говорил применяются схемы с включением транзистора с ОЭ, реже с ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора. Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов. Вас же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора Iкбо, статический коэффициент передачи тока h313 (читают так: аш два один э) и граничная частота коэффициента передачи тока Fгр.

  • Обратный ток коллектора Iкбо — это неуправляемый ток через коллекторный р — n переход, создающийся неосновными носителями тока транзистора. Он характеризует качество транзистора: чем численное значение параметра Iкбо меньше, тем выше качество. У маломощных низкочастотных транзисторов, например, серий МП39 — МП42, Iкбо не должен превышать 30 мкА, а у маломощных высокочастотных 5 мкА. Транзисторы с большими значениями Iкбо в работе неустойчивы.
  • Статический коэффициент передачи тока h31э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Буква «Э» в этом выражении указывает на то, что при измерении полупроводник включают по схеме ОЭ. Коэффициент h31э характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор — эмиттер и токе эмиттера. Чем больше численное значение коэффициента h31э, тем большее усиление сигнала может обеспечить данный прибор.
  • Граничная частота коэффициента передачи тока Fгр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота Fгр транзистора МП39, например, 500 кГц, а транзисторов П401 — П403 — больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент h31э уменьшается.

При конструировании радиотехнических устройств надо учитывать и такие параметры, как максимально допустимое напряжение коллектор — эмиттер Uкэ max, максимально допустимый ток коллектора Iк.max а также максимально допустимую рассеиваемую мощность коллектора Рк.max — мощность, превращающуюся в тепло.

 

Полевой транзистор

В этом полупроводниковом приборе управление рабочим током осуществляется не током во входной (базовой) цепи, как в биполярном транзисторе, а воздействием на носители тока электрического поля. Отсюда и название «полевой». Схематическое устройство и конструкция полевого транзистора с р — n переходом показаны на (рис. 6). Основой такого транзистора служит пластина кремния с электропроводностью типа n, в которой имеется тонкая область с электропроводностью типа р. Пластину прибора называют затвором, а область типа р в ней — каналом. С одной стороны канал заканчивается истоком, с другой стоком — тоже областью типа р, но с повышенной концентрацией дырок. Между затвором и каналом создается р — n переход. От затвора, истока и стока сделаны контактные выводы. Если к истоку подключить положительный, а к стоку — отрицательный полюсы батареи питания (на рис. 6 — батарея GB), то в канале появится ток, создающийся движением дырок от истока к стоку. Этот ток, называемый током стока Iс, зависит не только от напряжения этой батареи, но и от напряжения, действующего между источником и затвором (на рис. 6 — элемент G).

И вот почему. Когда на затворе относительно истока действует положительное закрывающее напряжение, обедненная область р — n перехода расширяется (на рис. 6 показано штриховыми линиями). От этого канал сужается, его сопротивление увеличивается, из — за чего ток стока уменьшается. С уменьшением положительного напряжения на затворе обедненная область р — n перехода, наоборот, сужается, канал расширяется, и ток снова увеличивается. Если на затвор вместе с положительным напряжением смещения подавать низкочастотный или высокочастотный сигнал, в цепи стока возникнет пульсирующий ток, а на нагрузке, включенной в эту цепь, — напряжение усиленного сигнала. Так, в упрощенном виде устроены и работают полевые транзисторы с каналом типа р, например — КП102, КП103 (буквы К и П означают «кремниевый полевой»). Принципиально так же устроен и работает полевой транзистор с каналом типа n. Затвор транзистора такой структуры обладает дырочной электропроводностью, поэтому на него относительно истока должно подаваться отрицательное напряжение смещения, а на сток (тоже относительно истока) — положительное напряжение источника питания. На условном графическом изображении полевого транзистора с каналом типа n стрелка на линии затвора направлена в сторону истока, а не от истока, как в обозначении транзистора с каналом типа р. Полевой транзистор — тоже трехэлектродный прибор. Поэтому его, как и биполярный транзистор, включать в усилительный каскад можно тремя способами: по схеме общего стока (ОС), по схеме общего истока (ОИ) и по схеме общего затвора (ОЗ). В радиолюбительской практике применяют в основном только первые два способа включения, позволяющие с наибольшей эффективностью использовать полевые транзисторы.

Усилительный каскад на полевом транзисторе обладает очень большим, исчисляемым мегаомами, входным сопротивлением.

Это позволяет подавать на его вход высокочастотные и низкочастотные сигналы от источников с большим внутренним сопротивлением, например от пьезокерамическрго звукоснимателя, не опасаясь искажения или ухудшения усиления входного сигнала.

В этом главное преимущество полевых транзисторов по сравнению с биполярными. Усилительные свойства полевого транзистора характеризуют крутизной характеристики S — отношением изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора, включенного по схеме ОИ. Численное значение параметра S выражают в миллиамперах на вольт; для различных транзисторов оно может составлять от 0,1 — 0,2 до 10 — 15 мА/В и больше. Чем больше крутизна, тем большее усиление сигнала может дать транзистор.

Рис. 6 Конструкция и графическое изображение полевого транзистора с каналом типа (p).

Другой параметр полевого транзистора — напряжение отсечки Uзи.отс. — Это обратное напряжение на р — n переходе затвор — канал, при котором ток через этот переход уменьшается до нуля. У различных транзисторов напряжение отсечки может составлять от 0,5 до 10 В. О полевых транзисторах и их уникальных свойствах можно говорить еще много, я попытался рассказать о наиболее существенных.

Кодовая и цветовая маркировка транзисторов

Все картинки кликабельны. Вы можете нажать и сохранить их себе на ПК, чтобы в дальнейшем пользоваться. Или просто сохраните данную страницу нажав в браузере добавить в закладки.

 

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5 — КТ315, КТ361

И так сказать на закуску классификацию корпусов, чтобы при заказе или обозначении на схеме иметь представление о внешнем виде транзистора

 

Цоколевки полевых транзисторов 1 – 15

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Транзистор n-канального типа состоит из кремниевой подложки с p-проводимостью, n-областей, получаемых путем добавления в подложку примесей, диэлектрика, изолирующего затвор от канала, расположенного между n-областями. К n-областям подсоединяются выводы (исток и сток). Под действием источника питания из истока в сток по транзистору может протекать ток. Величиной этого тока управляет изолированный затвор прибора.

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора.

Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.

При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Полевой транзистор имеет большую входную емкость, которая разряжается довольно долго.

В этой статье я расскажу вам, как проверить полевой транзистор с изолированным затвором, то есть МОП-транзистор. Это вторая часть статьи по проверки полевых транзисторов. В первой части я рассказывал, как проверить транзистор с управляющим p-n переходом.

Да, полевые транзисторы с управляющим p-n переходом уходят в прошлое, а сейчас в современных схемах применяются более совершенные полевые транзисторы с изолированным затвором. Тогда предлагаю научиться их проверять.

Но для того, что бы понять, как проверить полевой транзистор, давайте я вам в двух словах расскажу, как он устроен.

Эти аббревиатуры вытекают из структуры построения транзистора. А именно.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

Для примера возьмем полевой МОП-транзистор с каналом n-типа IRF 640. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.

Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.

Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.

В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».

Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.

Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».

Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.

Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.

Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.

Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.

Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.

Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.

Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.

При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.

Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.

Более подробно и просто всю методику проверки полевого транзистора я изложил в следующем видеоуроке:

Проверяем на работоспособность полевой транзистор структуры металл-диэлектрик-полупроводник (МДП, МОП, MOSFET, GIFET, MISFET).

Необходимое оборудование: мультиметр, цифровой или аналоговый, с возможностью проверки диодов.

N-канальный МДП полевой транзистор с индуцированным переходом:

P-канальный МДП полевой транзистор с индуцированным переходом:

Внимание: проверка полевых транзисторов с p-n переходом (J-FET, JFET, JUGFET)  будет  описана в другой статье.

Наиболее распространённая цоколёвка МДП транзисторов:

Описываемая здесь последовательность действий лучше всего подходит для проверки МДП транзисторов средней и большой мощности, или – всех, что предназначены для крепления на радиатор.

  • При работе с малосигнальными МДП транзисторами требуется быть предельно осторожным относительно статического электричества, чтобы не поубивать их во время такой проверки.
  • МДП транзисторы, работающие в режиме обеднения (со встроенным каналом), надо проверять несколько иначе. Полезность данной статьи сей факт никак не уменьшает, и вот почему: вероятность того, что у вас окажется такой девайс, стремится к бесконечно малой величине. Если же вы справились-таки раздобыть Depletion Mode MOSFET – вам эта статья уж и подавно не нужна Источник: http://MyElectrons.ru/test-mosfet-using-multimeter/

    Как проверить полевой транзистор мультиметром

    Содержание:

  • Устройство и принцип действия
  • Проверка мультиметром
  • Видео
  • В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором. В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.

    Устройство и принцип действия полевых транзисторов

    Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод – затвор выполняет функцию регулировки поперечного сечения канала.Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка – полупроводниковая пластина, имеющая относительно высокое удельное сопротивление. В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод – исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.

    Проверка мультиметром

    Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток – Drain, исток – Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.Проверку можно выполнить с помощью стрелочного омметра, но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки – стоку D, а положительным красным щупом – вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.

    Полевой транзистор MOSFET

    Транзистор является полупроводниковым электронным компонентом. Мы относим его к активным элементам схемы, поскольку он  позволяет преобразовывать  электрические сигналы (нелинейно).Полевой транзистор или MOSFET ( Metal-Oxide Semiconductor Field-Effect Transistor) — полевый транзистор со структурой металл-оксид-полупроводник. Поэтому его часто еще называют просто МОП транзистор.Производимые по этой технологий транзисторы состоят из трех слоев:

    • Первый слой  — это пластина, вырезанная из однородного кристалла кремния  или из кремния с примесью германия.
    • Второй по порядку слой — напыление очень тонкой прослойки диэлектрика (изолятора) из диоксида кремния или оксида металла (оксиды алюминия или циркония). Толщина этого слоя составляет, в зависимости от технологии исполнения, около 10 нм, а  в лучшем варианте толщина этого слоя может иметь около 1,2 нм. Для сравнения: 5 атомов кремния, расположенных друг над другом вплотную как раз составляют толщину, близкую к 1,2 нм.
    • Третий слой – это слой состоит из хорошо проводящего металла. Чаще всего для этой цели используют золото.

    Конструкция такого транзистора схематично представлена ниже:

    Следует отметить, что полевые транзисторы бывают двух типов: N-типа и  P-типа, почти так же, как и в случае с биполярными транзисторами, которые производятся в вариантах PNP и NPN.

    Среди полевых транзисторов  гораздо чаще встречается N-тип. Кроме того, существуют полевые транзисторы:

    • с обедненным каналом, то есть такие, которые пропускают через себя слабый ток   при отсутствии напряжении на  затворе, и чтобы полностью его запереть необходимо подать на затвор обратное смещение  в пару вольт;
    • с обогащенным каналом – это такой вид полевых транзисторов, которые  при  отсутствии напряжения на затворе  не проводят ток, а проводят его лишь тогда, когда напряжение, приложенное к затвору, превышает напряжение истока.

    Большим преимуществом полевых транзисторов   является то, что они управляются напряжением, в отличие от биполярных транзисторов, которые управляются током.

    Легче понять принцип их действия полевого транзистора на примере гидравлического крана.

    Чтобы управлять потоком жидкости под высоким давлением в большой трубе, требуется мало усилий, чтобы открыть или закрыть кран. Другими словами, при небольшом объеме работы, мы получаем большой эффект. Небольшая сила, которую мы прикладываем к ручке крана управляет намного большей силой воды, которая давит на клапан.

    Благодаря этому свойству полевых транзисторов, мы можем управлять токами и напряжениями, которые намного выше, чем те, которые выдает нам, например, микроконтроллер.

     Как уже было отмечено ранее, обычный MOSFET, как правило, не проводит ток на пути источник – сток. Чтобы перевести такой транзистор состояние проводимости необходимо подать напряжение между истоком и затвором так, как указано на рисунке ниже.

    На следующем рисунке приведена вольт-амперная характеристика транзистора IRF540.

    На графике видно, что транзистор начинает проводить тогда, когда напряжение между затвором и истоком приближается к 4В. Однако для полного открытия нужно почти 7 вольт. Это гораздо больше, чем может выдать   микроконтроллер на выходе.

    В некоторых случаях может быть достаточным ток  на уровне 15 мА и напряжением 5В. Но что делать, если это слишком мало? Есть два выхода.

  • Можно применить специальные МОП-транзисторы с пониженным напряжением затвор – исток, например, BUZ10L.
  • Как вариант можно использовать дополнительный усилитель для повышения управляющего напряжения.
  • Независимо от сферы применения, каждый полевой транзистор имеет несколько ключевых параметров, а именно:

    • Допустимое напряжение сток-исток: UDSmax
    • Максимальный ток стока: IDmax
    • Пороговое напряжение открытия: UGSth
    • Сопротивление канала в открытом состоянии: RDSon 

    Во многих случаях ключевым параметром является RDSon, поскольку косвенно указывает нам на потерю мощности, которая крайне нежелательна.

    Для примера возьмем транзистор в корпусе ТО-220 с сопротивлением RDSon = 0,05 Ом и протекающий через этот транзистор ток в  4А.

    Давайте посчитаем потери мощности:

    • UDS=0,05Ом х 4A=0,2В
    • P=0,2В х 4A=0,8Вт

    Мощность потерь, которую способен рассеивать транзистор в корпусе ТО-220 составляет чуть более 1 Вт, так что в этом случае можно обойтись без радиатора. Однако, уже для тока 10А потери составят 5Вт, так что без радиатора никак не обойтись.

    Следовательно, чем меньше RDSon, тем лучше. Поэтому при выборе MOSFET транзистора для конкретного применения следует всегда принимать во внимание этот параметр.

    На практике с увеличением допустимого напряжения UDSmax растет сопротивление исток-сток. По этой причине не следует выбирать транзисторы с большим, чем это требуется UDSmax.

    Цоколевки Отечественных Транзисторов

    При подборе аналогов деталей по схемам, всегда возникает вопрос правильного их монтажа на печатной плате. Цоколевка (распиновка) транзисторов. Вот сейчас хочу описать и выложить на одной странице цоколевки (распиновки) всех отечественных  транзисторов, чтобы Вас вопрос расположения ножек транзисторов не вводило в заблуждение.

    2Т709А2, 2Т709Б2, 2Т709В2, 2Т716А1, 2Т716Б1, 2Т716В1, КТ812А, КТ818А, КТ818Б, КТ818В, КТ818Г, КТ819А, КТ819Б, КТ819В, КТ819Г, КТ805АМ, КТ805БМ, КТ805ВМ, КТ805ИМ, КТ819А, КТ819Б, КТ819В, КТ819Г, КТ835А, КТ835Б, КТ837А, КТ837Б, КТ837В, КТ837Г, КТ837Д, КТ837Е, КТ837Ж, КТ837И, КТ837К, КТ837Л, КТ837М, КТ837Н, КТ837П, КТ837Р, КТ837С, КТ837Т, КТ837У, КТ837Ф

    КТ858А, КТ859А, КТ812А, КТ829А, КТ829Б, КТ829В, КТ829Г, КТ850А, КТ850Б, КТ850В, КТ851А, КТ851Б, КТ851В, КТ852А, КТ852Б, КТ852В, КТ852Г, КТ853А, КТ853Б, КТ853В, КТ853Г, КТ854А, КТ854Б, КТ855А, КТ855Б, КТ855В, КТ857А, КТ863А, КТ899А, КТ8108А, КТ8108Б, КТ8109А, КТ8109Б, КТ8110А, КТ8110Б, КТ8110В, КТ8140А, КТ8116А, КТ8116Б, КТ8116В, КТ8118А, КТ8120А, КТ8121А, КТ8121Б, КТ8123А, КТ8124А, КТ8124Б, КТ8124В КТ117А, КТ117Б, КТ117В, КТ117Г КТ201А, КТ201Б, КТ201В, КТ201Г, КТ201Д, КТ203А, КТ203Б, КТ203В, КТ3102А, КТ3102Б, КТ3102В, КТ3102Г, КТ3102Д, КТ3102Е, КТ3102Ж, КТ3102И, КТ3102К, КТ3108А, КТ3108Б, КТ3108В, КТ3117А, КТ3117Б, КТ3127А, КТ3128А, КТ313А, КТ313Б, КТ316А, КТ316Б, КТ316В, КТ316Г, КТ316Д, КТ342А, КТ342Б, КТ342В, КТ347А, КТ347Б, КТ347В, КТ349А(исполнение1), КТ349Б(исполнение1), КТ349В(исполнение1), КТ363А, КТ363Б КТ208А, КТ208Б , КТ208В , КТ208Г , КТ208Д , КТ208Е , КТ208Ж , КТ208И , КТ208К , КТ208Л , КТ208М , КТ339А , КТ339Б , КТ339В , КТ339Г , КТ339Д , КТ501А , КТ501Б , КТ501В , КТ501Г , КТ501Д , КТ501Е , КТ501Ж , КТ501И , КТ501К , КТ501Л , КТ501М КТ201АМ, КТ201БМ, КТ201ВМ, КТ201ГМ, КТ201ДМ, КТ203АМ, КТ203БМ, КТ203ВМ, КТ208А1, КТ208Б1, КТ208В1, КТ208Г1, КТ208Д1, КТ208Е1, КТ208Ж1, КТ208И1, КТ208К1, КТ208Л1, КТ208М1, КТ209А, КТ209Б, КТ209Б1, КТ209В, КТ209В1, КТ209В2, КТ209Г, КТ209Д, КТ209Е, КТ209Ж, КТ209И, КТ209К, КТ209Л, КТ209М, КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е, КТ503А, КТ503Б, КТ503В, КТ503Г, КТ503Д, КТ503Е, КТ306АМ, КТ306БМ, КТ306ВМ, КТ306ГМ, КТ306ДМ, КТ3102АМ, КТ3102БМ, КТ3102ВМ, КТ3102ГМ, КТ3102ДМ, КТ3102ЕМ, КТ3102ЖМ, КТ3102ИМ, КТ3102КМ, КТ3107А, КТ3107Б, КТ3107В, КТ3107Г, КТ3107Д, КТ3107Е, КТ3107Ж, КТ3107И, КТ3107К, КТ3107Л, КТ3117А1, КТ3126А, КТ3126Б, КТ3128А1, КТ313АМ, КТ313БМ, КТ316АМ, КТ316БМ, КТ316ВМ, КТ316ГМ, КТ316ДМ, КТ349А(исполнение2), КТ349Б(исполнение2), КТ349В(исполнение2), КТ342АМ, КТ342БМ, КТ342ВМ, КТ342ГМ, КТ342ДМ, КТ345А, КТ345Б, КТ345В, КТ350А, КТ351А, КТ351Б, КТ352А, КТ352Б, КТ355АМ, КТ363АМ, КТ363БМ, КТ368АМ, КТ368БМ КТ306А, КТ306Б, КТ306В, КТ306Г, КТ306Д КТ601АМ, КТ601АМ, КТ602АМ, КТ602БМ, КТ814А, КТ814Б, КТ814В, КТ814Г, КТ815А, КТ815Б, КТ815В, КТ815Г, КТ816А, КТ816А2, КТ816Б, КТ816В, КТ816Г, КТ817А, КТ817Б, КТ817Б2, КТ817В, КТ817Г, КТ817Г2, КТ818А, КТ818Б, КТ818В, КТ818Г, КТ8130А, КТ8130Б, КТ8130В, КТ8131А, КТ8131Б, КТ8131В, КТ940А, КТ940Б, КТ940В, КТ961А, КТ961Б, КТ961В, КТ969А, КТ972А, КТ972Б, КТ973А, КТ973Б, КТ997А, КТ997Б, КТ9115А КТ3101А-2, КТ3115А-2, КТ3115В-2, КТ3115Г-2, КТ3123А-2, КТ3123Б-2, КТ3123В-2, КТ372А, КТ372Б, КТ372В, КТ391А-2, КТ391Б-2, КТ391В-2 КТ3109А, КТ3109Б, КТ3109В КТ312А, КТ312Б, КТ312В, КТ325А, КТ325Б, КТ325В КТ3120А, КТ371А, КТ382А, КТ382АМ, КТ382Б, КТ382БМ КТ3129А-9, КТ3129Б-9, КТ3129В-9, КТ3129Г-9, КТ3129Д-9, КТ3130А-9, КТ3130Б-9, КТ3130В-9, КТ3130Г-9, КТ3130Д-9, КТ3130Е-9, КТ3130Ж-9, КТ3168А-9 КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Г1, КТ315Д, КТ315Е, КТ315Ж, КТ315И, КТ315Н, КТ315Р, КТ361А, КТ361Б, КТ361В, КТ361Г, КТ361Г1, КТ361Д, КТ361Е, КТ361Ж, КТ361И, КТ361К КТ3157А, КТ325АМ, КТ325БМ, КТ325ВМ, КТ339АМ КТ368А, КТ368Б, КТ399А, КТ399АМ КТ504А, КТ504Б, КТ504В, КТ505А, КТ505Б, КТ506А, КТ506Б КТ601А КТ602А, КТ602Б, КТ602В, КТ602Г, КТ801А, КТ801Б КТ807А, КТ807Б КТ872А, КТ872Б, КТ872В, КТ8111А, КТ8111Б, КТ8111В, КТ8114А, КТ8114Б, КТ8114В КТ879А, КТ879Б КТ886А1, КТ886Б1, КТ8127А1, КТ8127Б1, КТ8127В1 КТ890А, КТ890Б, КТ890В, КТ896А, КТ896Б, КТ896В, КТ898А, КТ898Б, КТ8101А, КТ8101Б, КТ8102А, КТ8102Б, КТ8106А, КТ8106Б, КТ8117А КТ898А1, КТ898Б1 КТ999А ГТ313А, ГТ313Б, ГТ313В ГТ328А, ГТ328Б, ГТ328В, ГТ346А, ГТ346Б, ГТ346В ГТ906А ГТ905А, ГТ905Б, ГТ906АМ 2Т713А, КТ812Б, КТ812В, 2Т812А, 2Т812Б, КТ818АМ, КТ818БМ, КТ818ВМ, КТ818ГМ, 2Т818А, 2Т818Б, 2Т818В, КТ819АМ, КТ819БМ, КТ819ВМ, КТ819ГМ, 2Т819А, 2Т819Б, 2Т819В, 2Т825А, 2Т825Б, 2Т825В, КТ825Г, КТ825Д, КТ825Е, КТ710А, КТ808АМ, КТ808БМ, КТ808ВМ, КТ808ГМ, КТ812Б, КТ812В, 2Т812А, 2Т812Б, КТ819АМ, КТ819БМ, КТ819ВМ, КТ819ГМ, 2Т819А, 2Т819Б, 2Т819В, 2Т825А, 2Т825Б, 2Т825В, КТ825Г, КТ825Д, КТ825Е, КТ826А, КТ826Б, КТ826В, КТ827А, КТ827Б, КТ827В, КТ828А, КТ828Б, КТ834А, КТ834Б, КТ834В, КТ838А, КТ839А, КТ840А, КТ840Б, КТ841А, КТ841Б, КТ841В, КТ846А, КТ846Б, КТ846В, КТ847А, КТ848А, КТ8127А, КТ8127Б, КТ8127В, КТ878А, КТ878Б, КТ878В, КТ892А, КТ892Б, КТ892В, КТ897А, КТ897Б, КТ8104А, КТ8105А, КТ8107А, КТ8107Б, КТ8107В, КТ8129А, КТ945А

    Если все же у меня получился не полный список цоколевки (распиновки) транзисторов, то прошу это указать в комментариях к данному посту, или если вы заметите какие-либо ошибки, отклонения описания цоколевки (распиновки) транзисторов.

    Страницы:

    Необходимо авторизоваться, чтобы комментировать.

    Большая бутылка шампанского 3 литра купить, виски смотрите на http://www.cognac-whisky.ru.

    отзывы, фото и характеристики на Aredi.ru

    Мы доставляем посылки в г. Калининград и отправляем по всей России

    • 1

      Товар доставляется от продавца до нашего склада в Польше. Трекинг-номер не предоставляется.

    • 2

      После того как товар пришел к нам на склад, мы организовываем доставку в г. Калининград.

    • 3

      Заказ отправляется курьерской службой EMS или Почтой России. Уведомление с трек-номером вы получите по смс и на электронный адрес.

    !

    Ориентировочную стоимость доставки по России менеджер выставит после оформления заказа.

    Гарантии и возврат

    Гарантии
    Мы работаем по договору оферты, который является юридической гарантией того, что мы выполним свои обязательства.

    Возврат товара
    Если товар не подошел вам, или не соответсвует описанию, вы можете вернуть его, оплатив стоимость обратной пересылки.

    • У вас остаются все квитанции об оплате, которые являются подтверждением заключения сделки.
    • Мы выкупаем товар только с проверенных сайтов и у проверенных продавцов, которые полностью отвечают за доставку товара.
    • Мы даем реальные трекинг-номера пересылки товара по России и предоставляем все необходимые документы по запросу.
    • 5 лет успешной работы и тысячи довольных клиентов.

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    % PDF-1.6 % 271 0 объект > эндобдж xref 271 126 0000000016 00000 н. 0000003652 00000 н. 0000003802 00000 н. 0000003931 00000 н. 0000003989 00000 н. 0000004535 00000 н. 0000004810 00000 н. 0000004948 00000 н. 0000005087 00000 н. 0000005226 00000 н. 0000005365 00000 н. 0000005503 00000 н. 0000005642 00000 н. 0000005780 00000 н. 0000005919 00000 н. 0000006058 00000 н. 0000006197 00000 н. 0000006336 00000 н. 0000006475 00000 н. 0000006613 00000 н. 0000006752 00000 н. 0000006891 00000 н. 0000007030 00000 н. 0000007169 00000 н. 0000007307 00000 н. 0000007446 00000 н. 0000007585 00000 н. 0000007723 00000 н. 0000007862 00000 н. 0000008001 00000 н. 0000008140 00000 н. 0000008279 00000 н. 0000008418 00000 н. 0000008557 00000 н. 0000008696 00000 п. 0000008835 00000 н. 0000008974 00000 н. 0000009112 00000 н. 0000009251 00000 п. 0000009683 00000 п. 0000010148 00000 п. 0000010535 00000 п. 0000011058 00000 п. 0000011513 00000 п. 0000011625 00000 п. 0000012070 00000 п. 0000012511 00000 п. 0000013053 00000 п. 0000013167 00000 п. 0000013697 00000 п. 0000014080 00000 п. 0000016202 00000 п. 0000016812 00000 п. 0000016901 00000 п. 0000017423 00000 п. 0000018043 00000 п. 0000020067 00000 н. 0000020261 00000 п. 0000021206 00000 п. 0000021539 00000 п. 0000021882 00000 п. 0000022008 00000 п. 0000024075 00000 п. 0000024376 00000 п. 0000024679 00000 п. 0000025058 00000 п. 0000027188 00000 п. 0000029240 00000 п. 0000031363 00000 п. 0000031544 00000 п. 0000032125 00000 п. 0000032593 00000 п. 0000032879 00000 п. 0000033192 00000 п. 0000033280 00000 п. 0000033856 00000 п. 0000034521 00000 п. 0000034628 00000 п. 0000036638 00000 п. 0000037049 00000 п. 0000038919 00000 п. 0000041430 00000 п. 0000041799 00000 н. 0000047494 00000 п. 0000050048 00000 н. 0000057445 00000 п. 0000057895 00000 п. 0000058413 00000 п. 0000061895 00000 п. 0000064599 00000 п. 0000069673 00000 п. 0000071332 00000 п. 0000071654 00000 п. 0000072035 00000 п. 0000072132 00000 п. 0000072409 00000 п. 0000072681 00000 п. 0000073019 00000 п. 0000073363 00000 п. 0000073749 00000 п. 0000074047 00000 п. 0000074425 00000 п. 0000074911 00000 п. 0000075257 00000 п. 0000075645 00000 п. 0000076202 00000 п. 0000076690 00000 н. 0000077102 00000 п. 0000077516 00000 п. 0000077880 00000 п. 0000078256 00000 п. 0000078614 00000 п. 0000078950 00000 п. 0000079368 00000 п. 0000079958 00000 н. 0000080296 00000 п. 0000080886 00000 п. 0000081476 00000 п. 0000082066 00000 п. 0000082656 00000 п. 0000083245 00000 п. 0000083834 00000 п. 0000084220 00000 п. 0000084557 00000 п. 0000084856 00000 п. 0000002816 00000 н. трейлер ] >> startxref 0 %% EOF 396 0 объект > поток xb«g`m €

    Фотоэдс полевые транзисторы | Природа

  • 1

    Сореф, Р.А. Оптоэлектроника на основе кремния. Proc. IEEE 81 , 1687–1706 (1993)

    CAS Статья Google Scholar

  • 2

    Pavesi, L. & Lockwood, D. J. Silicon Photonics 239–268 (Springer, 2004)

  • 3

    млн лет назад, L. L. et al. Широкополосный «черный кремний» на основе пористого кремния. Заявл. Phys. Lett. 88 , 171907 (2006)

    ADS Статья Google Scholar

  • 4

    Ван Дж.& Ли, С. Ge-фотоприемники для оптоэлектронной интеграции на основе кремния. Датчики 11 , 696–718 (2011)

    CAS Статья Google Scholar

  • 5

    Танабе, К., Ватанабе, К. и Аракава, Ю. III-V / Si гибридные фотонные устройства путем прямого соединения сплавом. Sci. Реп. 2 , 349 (2012)

    ADS Статья Google Scholar

  • 6

    Сореф Р.Воздействие кремниевой фотоники. IEICE Trans. Электрон. E91.C , 129–130 (2008)

    ADS Статья Google Scholar

  • 7

    Masini, G., Colace, L. & Assanto, G. Оптоэлектроника на основе Si для связи. Mater. Sci. Англ. В 89 , 2–9 (2002)

    Артикул Google Scholar

  • 8

    Masini, G., Colace, L.& Assanto, G. Поликристаллический германий-кремний-фотоприемник 2,5 Гбит / с, работающий от 1,3 до 1,55 мкм. Заявл. Phys. Lett. 82 , 2524–2526 (2003)

    CAS ОБЪЯВЛЕНИЯ Статья Google Scholar

  • 9

    Яблонович, Э., Аллара, Д. Л., Чанг, К. К., Гмиттер, Т. и Брайт, Т. Б. Необычно низкая скорость поверхностной рекомбинации на поверхностях кремния и германия. Phys. Rev. Lett. 57 , 249–252 (1986)

    CAS ОБЪЯВЛЕНИЯ Статья Google Scholar

  • 10

    Бранц, Х.M. et al. Наноструктурированный черный кремний и оптическая отражательная способность поверхностей с градиентной плотностью. Заявл. Phys. Lett. 94 , 231121 (2009)

    ADS Статья Google Scholar

  • 11

    О, Дж., Юань, Х.-К. И Бранц, Х. М. Черный кремниевый солнечный элемент с КПД 18,2%, достигнутый за счет управления рекомбинацией носителей в наноструктурах. Nat. Nanotechnol. 7 , 743–748 (2012)

    CAS ОБЪЯВЛЕНИЯ Статья Google Scholar

  • 12

    Кэри, Дж.Э., Крауч, Ч. Х., Шен, М. и Мазур, Э. Видимая и ближняя инфракрасная чувствительность кремниевых микроструктурированных фотодиодов фемтосекундного лазера. Опт. Lett. 30 , 1773–1775 (2005)

    ADS Статья Google Scholar

  • 13

    Konstantatos, G. & Sargent, E.H. Фотодетекторы с коллоидными квантовыми точками. Infrared Phys. Technol. 54 , 278–282 (2011)

    CAS ОБЪЯВЛЕНИЯ Статья Google Scholar

  • 14

    Камат, П.V. Солнечные элементы на квантовых точках. Полупроводниковые нанокристаллы как сборщики света. J. Phys. Chem. К 112 , 18737–18753 (2008)

    КАС Статья Google Scholar

  • 15

    Баскутас, С. и Терзис, А. Ф. Зависимая от размера ширина запрещенной зоны коллоидных квантовых точек. J. Appl. Phys. 99 , 013708 (2006)

    ADS Статья Google Scholar

  • 16

    Масала, С.и другие. Кремний: гетеропереход коллоидных квантовых точек. Adv. Матер. 27 , 7445–7450 (2015)

    CAS Статья Google Scholar

  • 17

    Adinolfi, V. et al. Фотопереходный полевой транзистор на основе канального слоя поглотителя коллоидных квантовых точек. ACS Nano 9 , 356–362 (2015)

    CAS Статья Google Scholar

  • 18

    Konstantatos, G.и другие. Гибридные фототранзисторы графен – квантовая точка со сверхвысоким усилением. Nat. Nanotechnol. 7 , 363–368 (2012)

    CAS ОБЪЯВЛЕНИЯ Статья Google Scholar

  • 19

    Kufer, D. et al. Гибридные фотоприемники на квантовых точках 2D – 0D MoS2 – PbS. Adv. Матер. 27 , 176–180 (2015)

    CAS Статья Google Scholar

  • 20

    Sze, S.М. и Нг, К. К. Физика полупроводниковых приборов 3-е изд., Гл. 7 (Wiley, 2007)

  • 21

    Konstantatos, G. et al. Сверхчувствительные фотоприемники с квантовыми точками, отлитые из раствора. Nature 442 , 180–183 (2006)

    CAS ОБЪЯВЛЕНИЯ Статья Google Scholar

  • 22

    Ли, М. М., Тушер, Дж., Миясака, Т., Мураками, Т. Н. и Снайт, Х. Дж. Эффективные гибридные солнечные элементы на основе мезо-надстройки металлоорганических галогенидных перовскитов. Наука 338 , 643–647 (2012)

    CAS ОБЪЯВЛЕНИЯ Статья Google Scholar

  • 23

    Tang, J. et al. Солнечные элементы на квантовом переходе. Nano Lett. 12 , 4889–4894 (2012)

    CAS ОБЪЯВЛЕНИЯ Статья Google Scholar

  • Органические полевые транзисторы — обзор

    14.2.2 Работа униполярного устройства

    Работа OFET значительно отличается от работы полевого полупроводникового транзистора на основе оксида кремния (MOSFET), который работает в режиме инверсии.В Si MOSFET области, прилегающие к контактам истока и стока, сильно легированы, и, следовательно, индуцируется поток неосновных носителей, формирующий ток I D (Sze and Ng, 2007). OSC работают как собственные полупроводники, а OFET — в режиме накопления. Здесь канал транзистора формируется в OSC на его границе с изолятором затвора следующим образом: дырки накапливаются, когда подается отрицательное напряжение В GS (проводимость p-типа), и электроны при положительном напряжении В GS применяется (проводимость n-типа).Тип проводимости зависит от внутренних свойств полупроводника и от выбора материала контакта. OSC работают преимущественно по р-типу (Klauk, 2010; Ward et al., 2015; Cho et al., 2008; Mas-Torrent et al., 2004; Gershenson et al., 2006; Mcculloch et al., 2009; Jurchescu et al., 2004; Gershenson et al., 2006; Mcculloch et al., 2009; Jurchescu et al. al., 2008; Loo and McCulloch, 2008), и было обнаружено лишь несколько OFET n-типа (Yan et al., 2009; Chua et al., 2005; Anthony et al., 2010; Lim et al., 2009; Tang et al., 2009; Newman et al., 2004).Амбиполярные полевые транзисторы работают в обоих режимах напряжения и были продемонстрированы на донорно-акцепторных смесях (Meijer et al., 2003; Shkunov et al., 2005; Xu et al., 2015) или чередующихся слоях (Lin et al., 1999; Kuwahara et al. al., 2004), а также в ограниченном количестве осцилляторов с малой запрещенной зоной, способных переносить как электроны, так и дырки, включая комплексы с переносом заряда (Takahashi et al., 2005, 2006; Chikamatsu et al., 2007; Anthopoulos et al., 2006; Işık et al., 2011; Goetz et al., 2016; Vermeulen et al., 2014).

    Устройство находится в состоянии на (формируется ток стока), когда значение напряжения затвора превышает значение порогового напряжения ( V T ). Тем не менее, даже при более низких напряжениях затвора небольшой ток ( от тока) присутствует в результате диффузии носителей заряда из-за их тепловой энергии. Этот режим называется подпороговым режимом , и количественно он характеризуется подпороговым размахом S . S можно определить, взяв обратный наклон бревна ( I D ) по сравнению с подпороговым наклоном кривой V GS (рис. 14.2A, правая ось; пунктирная линия) линии обозначают наклон) в подпороговом режиме:

    Рис. 14.2. Электрические характеристики органических полевых транзисторов: (A) эволюция тока стока I D при напряжении затвора в режиме насыщения. (B) Изменение тока стока I D при напряжении стока В DS для напряжений затвора, В GS .

    (14.1) S = ∂VGS∂logID

    Подпороговое колебание определяет скорость, с которой устройство включается (увеличение I D с V GS ), с низким значения, соответствующие лучшей производительности устройства. Значения 0,88 В / дек были оценены в пентаценовых TFT с диэлектриком Cytop (Kalb et al., 2007) и 0,1 В / дек с диэлектриком SAM (Halik et al., 2004). В монокристаллических ОПТ типичные значения составляют 0,3–0.5 В / дек (Gershenson et al., 2006; Kalb et al., 2007; Podzorov et al., 2003; de Boer et al., 2004). Поскольку подпороговое колебание определяется качеством границы раздела изолятор / полупроводник, этот параметр позволяет оценить плотность захвата границы раздела ( N i ) из данных OFET с помощью следующего уравнения (Sze and Ng, 2007) :

    (14.2) S = kBTeln101 + eCiNi,

    , где k B — постоянная Больцмана, e — элементарный заряд, а C i диэлектрическая проницаемость затвора единичная площадь.Для SiO 2 , например, количество ловушек на границе раздела органических / диэлектрических материалов может быть уменьшено путем химической обработки этой поверхности SAM из органических трихлорсиланов перед нанесением полупроводника. В результате обычно достигаются более высокая подвижность и уменьшенный гистерезис в характеристиках I V (Chua et al., 2005; Jurchescu et al., 2008; Salleo et al., 2002; Takeya et al., 2003 ).

    Работа OFET описывается постепенным приближением канала, как это используется для Si MOSFET.Эта модель применяется, когда распределение заряда в канале полевого транзистора определяется V GS , а не поперечным полем. Если канал устройства очень мал, необходимо убедиться, что диэлектрик затвора достаточно тонкий; в противном случае в текущем распределении будут преобладать эффекты пространственного заряда, и модель больше не применима (Sze and Ng, 2007). В этом приближении можно выделить два режима. В линейном режиме ( V DS V GS — V T , рис.14.2B), устройство действует как переменный резистор, управляемый напряжением затвора: ток исток-сток ( I D ) увеличивается с приложенным напряжением V DS , следуя выражению в следующее уравнение:

    (14.3) ID = WLCiμVGS-VTVDS-VDS22,

    , где W и L — длина и ширина канала соответственно. На более высоком уровне V DS ( V DS V GS — V T , рис.14.2B), на контакте с дренажем образуется зона истощения. За пределами этой точки, называемой отсечкой , транзистор работает в режиме насыщения (рис. 14.2B), а I D изменяется квадратично с напряжением затвора (уравнение 14.4):

    ( 14.4) ID = WLCi2μVGS-VT2.

    Это можно увидеть из Ур. (14.3) и (14.4) видно, что в OFET ток стока регулируется приложенным напряжением затвор-исток. Количественно это описывается крутизной g m :

    (14.5) gm = ∂ID∂VGSVDS.

    Крутизна определяется из передаточных характеристик при постоянном напряжении V DS (рис. 14.2A). Увеличение тока стока I D с повышенным отрицательным напряжением затвор-исток V GS является признаком органического слоя, переносящего дырки. Для материала, переносящего электроны, ток стока увеличивается при приложении положительного напряжения затвор-исток, а в случае амбиполярного транспорта ток увеличивается как для положительного, так и для отрицательного напряжения.На рис. 14.2A представлены типичные характеристики передачи с данными, полученными в режиме насыщения OFET, изготовленного на органическом монокристалле на поверхности обработанного октилтрихлорсиланом (OTS) диэлектрика затвора SiO 2 , с нижними контактами из золота (структура 1A). ) (Jurchescu et al., 2008). Следуя уравнениям. (14.3) и (14.4), полевую подвижность μ можно вычислить из наклона кривой I D по сравнению с V GS в линейном режиме и ( I D ) 1/2 по сравнению с V GS (серая кривая в белом кружке на рис.14.2A) в режиме насыщения, соответственно, используя следующие выражения:

    (14.6) μlin = LW1CiVDS∂ID∂VGSlinear mode

    (14.7) μsat = LW2Ci∂ID∂VGS2saturation mode

    Пересечение этого наклона с V GS ось позволяет определять V T с пороговым напряжением, близким к нулю, что необходимо для минимизации энергопотребления. Повышенное отрицательное или положительное значение V T указывает на наличие эффектов захвата или легирования, соответственно, в канале транзистора.Сдвиг V T также может создаваться во время работы устройства в результате взаимодействия с окружающей средой или воздействий напряжения смещения. Эти эффекты могут иметь необратимый или (частично) обратимый характер (Goldmann et al., 2006; Street et al., 2003).

    Последний примечательный параметр — это соотношение тока включения / выключения, определяемое как максимальный ток, достигаемый устройством, деленный на ток в подпороговом режиме (в выключенном состоянии). Это значение должно быть высоким, чтобы обеспечить правильное переключение между состояниями в транзисторных приложениях, с разумным, но высоким значением 10 6 .Максимальный ток может быть ограничен рядом эффектов, в том числе низкой подвижностью носителей заряда и контактным сопротивлением. Ток отключения обычно определяется качеством диэлектрика затвора — диэлектрик с утечкой затвора приведет к высокому току отключения — если только в полупроводнике не присутствует большое количество свободных носителей заряда ниже порогового напряжения, как при легировании. Так обстоит дело с поли (3-гексилтиофеном) (P3HT), легированным кислородом, который, как было показано, демонстрирует отношение тока включения / выключения 10 8 при измерении в азоте, но только 10 2 –10 3 при измерении в воздухе (Arias et al., 2006).

    Приложение для тройного инвертора с фотоуправлением — Корейский университет

    @article {f7016f97f3af4019b424d4300af27f08,

    title = «Полевой транзистор с фотоэлементом MoS2 / органически-рубреновым гетеропереходом: Применение для тройного транзистора с фото-триггером

    » abstract = «Многозначные логические схемы (MVL) с более высокой эффективностью, такие как троичный инвертор, могут рассматриваться как многообещающие структуры для преодоления ограничений двоичной системы.Светочувствительные характеристики двумерного (2D) MoS2 и нанолиста из органического каучука (NS) np гетеропереходного полевого транзистора (FET) изучаются с целью создания нового трехкомпонентного инвертора с фотоуправлением в виде схемы MVL. . Характеристики антиамбиполярного транзистора (AAT) наблюдались для полевых транзисторов с гетеропереходом MoS2 / органический рубрен-NS n-p. Последовательно соединенные устройства, содержащие AAT с одним полевым транзистором на основе MoS2 (n-типа) или с одним полевым транзистором на основе рубрена-NS (p-типа), были изготовлены для исследования характеристик инвертора, которые могут быть выгодны по сравнению с обычными дополнительными металлооксидный полупроводник, используемый в двоичной логической схеме.Интересно, что инверторы, использующие AAT, подключенные последовательно к полевому транзистору на основе рубрена-NS p-типа, успешно работали как схемы MVL при световом облучении. Характеристики новых тройных инверторов с фотоуправлением обусловлены отчетливой светочувствительностью НС-органического рубрена p-типа, а также положительным сдвигом порогового напряжения AAT и полевого транзистора на основе рубрена-NS p-типа на основе эффект фотостробирования, достигаемый при определенных условиях светового излучения. В этой работе новый фото-триггер (т.е. фотоуправляемый) тройной инвертор с использованием 2D-MoS2 и органических полупроводниковых полевых транзисторов с гетеропереходом рубрен-NS. Гетеропереходы неорганических и органических полупроводников 2D демонстрируют большой потенциал для разработки новых светочувствительных схем MVL и многофункциональных транзисторов с исключительными характеристиками и производительностью, включая энергосбережение. «,

    keywords =» полевой транзистор, дисульфид молибдена, фотостатирование , rubrene, тройной инвертор «,

    author =» Пак, {Чхоль Джун} и Пак, {Хён Чон} и Ким, {Чон Ён} и Ли, {Сан Хун} и Ёнджун Ли, и Чонён Ким и Джинсу Джу «,

    год = «2020»,

    месяц = ​​июн,

    doi = «10.1088 / 1361-6641 / ab843a «,

    language =» English «,

    volume =» 35 «,

    journal =» Semiconductor Science and Technology «,

    issn =» 0268-1242 «,

    publisher = «IOP Publishing Ltd.»,

    номер = «6»,

    }

    Фотодетекторы на графеновых полевых транзисторах (GFET) — Графенея

    Удивительное применение графена — его использование в фотоприемниках. Возможности графена по обнаружению света по своей природе ограничены, потому что один лист материала поглощает только ~ 2.3% света в видимой части спектра. Такая высокая прозрачность желательна для таких применений, как прозрачные проводники, однако для обнаружения света требуется сильное поглощение. Тем не менее, частотно-независимое поглощение графена в сочетании с чрезвычайно высокой подвижностью носителей заряда вызвали пик интереса исследователей-оптиков, которые обнаружили, что взаимодействие графена с сильно поглощающими свет материалами может привести к созданию превосходных практических фотодетекторов, превосходящих возможности конкурирующих материалов.

    Первые попытки улучшить фотоотклик графена были в направлении интеграции в нанополости, микрополости и плазмонные резонаторы, нанотехнологические устройства, которые локально увеличивают интенсивность света, так что больший отклик получается от того же графена. Эти подходы обеспечивают высокую чувствительность, однако они ограничивают используемую полосу пропускания, отменяя широкополосную природу графена. Спектрально более широкий отклик был получен от гибридных детекторов графена и квантовых точек, которые, однако, приносили в жертву скорость устройства.Наконец, баланс был достигнут путем наложения графена на фотонные волноводы, что позволило увеличить чувствительность до 0,1 А / Вт при работе на частоте 20 ГГц. Тот же принцип работы был с тех пор интегрирован в производство полупроводниковых пластин и доведен до 75 ГГц.

    Особенно интересным направлением исследований является использование гибридных фотодетекторов графена и квантовых точек в качестве широкополосных датчиков изображения для КМОП-камер. Эти Fab-совместимые устройства имеют очень высокую чувствительность, порядка 10 7 А / Вт, и работают как в видимой, так и в коротковолновой инфракрасной частях спектра (300–2000 нм).Время отклика достаточно велико (0,1–1 мс) для использования в инфракрасных камерах. Что, пожалуй, наиболее интересно в этом устройстве, так это то, что это интегральная схема CMOS, аналогичная тем, которые используются для коммерческих датчиков изображения в цифровых камерах, обычно используемых в смартфонах. Таким образом, используя полную широкополосную возможность графена, такие чипы позволят приложениям в области безопасности и защиты, ночного видения, камер смартфонов, автомобильных сенсорных систем, контроля пищевых продуктов и фармацевтики и мониторинга окружающей среды, помимо возможностей, предлагаемых современными полупроводниковыми чипами. .

    Иллюстрация создания фотоэдс после поглощения света в графене (авторское право на изображение 2015 Achim Woessner)

    В других подходах используются плазмонные резонансы для локального увеличения интенсивности в графене. Плазмоны — это световые волны, связанные с колебаниями электронов на поверхности металла. Поскольку плазмоны ограничены поверхностью и распространяются со скоростью, близкой к скорости света, многие считают их хорошими кандидатами для встроенной оптической обработки информации.Плазмонно-усиленный фотоотклик в графене может найти применение в наноразмерных оптоэлектронных устройствах, где требуется точный контроль поведения света на размерах меньше половины длины волны.

    Помимо обнаружения света, графен также может использоваться в светоизлучающих устройствах. Типичным примером использования графена в таких устройствах является прозрачный электрод. Применение прозрачных проводников, безусловно, является захватывающим применением графена из-за его высокой прозрачности и чрезвычайно большой подвижности носителей.Например, графен используется в качестве электрода в органических светодиодах (OLED), которые составляют многие современные экраны и мониторы. Еще одно применение, опять же благодаря необычным электронным свойствам графена, — это электрический контроль излучения света молекулами с потенциальными приложениями в оптоэлектронике.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *