Твердотельное реле плавным включением 1с
Описание Твердотельное реле плавным включением 1с
Реле используется для плавной коммутации электрических цепей постоянного тока и представляет собой электронное полупроводниковое реле, собранное на основе мощного силового транзисторного ключа.
Применяемость: реле используется на автомобилях, оборудовании, детских игрушках с напряжением питания 12 вольт.
Реле имеет функцию плавного включения и плавного отключения, это позволяет использовать его для защиты устройств от резких бросков напряжения и тока.
|
Монтаж и подключение:
Подключение реле производить при отключенном питании.
Подключить реле в соответствии со схемами рисунке.
При подключении управляющими можно использовать контакты «85» или «86». Управление может осуществляться как «плюсом» (рис.1а, 2а), так и «минусом» (рис.1б, 2б).
Возможна установка реле в блок вместо штатного при условии строго соответствия полярности силовых контактов («30» и «87») этих реле.
Внимание! Категорически запрещается подключение реле в обратной полярности.
Твердотельное реле — Практическая электроника
Что такое твердотельное реле
Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.
Виды твердотельных реле
Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле
Такие релe используются в печатных платах и предназначены для коммутации (переключения) малого тока и напряжения.
На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике
А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках
Слева однофазное реле, справа трехфазное.
Если через коммутируемые контакты силовых реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят на радиаторы, которые рассеивают тепло в окружающее пространство.
Твердотельные реле по типу управления
ТТР могут управляться с помощью:
1) Постоянного тока. Его диапазон составляет от 3 и до 32 Вольт.
2) Переменного тока. Диапазон переменного тока составляет от 90 и до 250 Вольт. То есть такими реле можно спокойно управлять с помощью сетевого напряжения 220 В.
3) С помощью переменного резистора. Значение переменного резистора может быть в диапазоне от 400 и до 600 Килоом.
Твердотельные реле по типу переключения
С коммутацией перехода через ноль
Посмотрите внимательно на диаграмму
Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток достигнет нуля. Выключение происходит подобным образом.
Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.
Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:
управление постоянным токомуправление переменным токомМгновенного включения
Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.
В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока, а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.
Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:
С фазовым управлением
Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.
Примерная схема подключения выглядит вот так:
Работа твердотельного реле
В гостях у нас ТТР фирмы FOTEK:
Давайте разберемся с его обозначениями. Вот небольшая табличка-подсказка для этих типов реле
Давайте еще раз взглянем на наше ТТР
SSR – это значит однофазное твердотельное реле.
40 – это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер.
D – тип управляющего сигнала. От значения Direct Current – что с буржуйского – постоянный ток. Управление ведется постоянным
А – тип коммутируемого напряжения. Alternative current – переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и до 380 Вольт переменного напряжения.
Для опыта нам понадобится лампа накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:
В разрыв вставляем наше твердотельное реле
Втыкаем вилку в розетку и…
Нет… не хочет… Чего-то не хватает…
Не хватает управляющего напряжения! Выводим напряжение от Блока питания от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…
О чудо! Лампочка загорелась! Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле.
Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.
А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!
Плюсы и минусы твердотельного реле
Плюсы
- включение и выключение цепей без электромагнитных помех
- высокое быстродействие
- отсутствие шума и дребезга контактов
- продолжительный период работы (свыше МИЛЛИАРДА срабатываний)
- возможность работы во взрывоопасной среде, так как нет дугового разряда
- низкое энергопотребление (на 95% (!) меньше, чем у обычных реле)
- надёжная изоляция между входными и коммутируемыми цепями
- небольшие размеры и хорошая теплоотдача (если конечно использовать термопасту и хороший радиатор)
Минусы:
инструкция по сборке и советы по подключению
Что такое твердотельные реле и их классификация
Самодельное твердотельное реле
Твердотельные реле (или ТТР) – это электронные приборы со структурой, не содержащей механических компонентов. Принцип их действия основан на особенностях работы полупроводниковых переходов, отличающихся высокой скоростью коммутаций и защищенностью от физических полей.
Переключение твердотельных реле основано на принципе срабатывания электронного ключа.
В качестве ключевых элементов в этих изделиях традиционно применяются такие распространенные электронные компоненты, как транзисторы, управляемые диоды или тиристоры. В зависимости от используемых при их изготовлении структур ТТР подразделяются на приборы, построенные на основе одного из перечисленных элементов (реле на симисторах, например).
В соответствии с режимами работы и по виду коммутируемых напряжений образцы твердотельных реле, изготавливаемых на базе полупроводников, делятся на следующие группы:
- устройства, коммутирующие постоянный ток;
- приборы, управляющие работой нагрузочных линий с переменными токовыми параметрами;
- универсальные изделия, работающие в различных цепях.
Для первых устройств характерно управление постоянными напряжениями величиной не более 32 Вольт. Представители двух оставшихся позиций способны коммутировать значительные по величине потенциалы (вплоть до десятков киловольт).
Принцип действия
Схема всех SSR практически одинаковая, даже если есть разница, она никак не влияет на принцип действия.
Схема SSR постоянного тока
Схема твердотельного реле переменного тока
Схема цепей
На вход поступает электрический сигнал, дальше он подаётся на оптический светодиод. Оптическая развязка обеспечивает изоляцию между входной, промежуточной и выходной цепью. В работу включается триггерная цепь. Она управляет переключением выхода ТТР. Переключающая цепь передает напряжение на нагрузку, которая представлена транзистором, тиристором или симистором. Защитная цепь нужна для надежной работы ТТР при различных нагрузках.
Для предотвращения сгорания контактов устройства, рекомендуется установка предохранителя.
Что нужно знать о работе реле?
Напряжение срабатывания
Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах. Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал. Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…
Коммутируемый ток
Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится. Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы. Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.
Нумерация выводов
Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».
Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch. А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.
Материал и тип выводов
Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми». Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато. Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.
Плюс и минус питания
Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.
В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.
Реле с диодом параллельно катушке
Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.
Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.
Температура корпуса
Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов. Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются. Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.
Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.
Проверка реле
При ремонте неисправное реле обычно временно подменяют исправным, а затем заменяют на аналогичное, и дело с концом. Однако мало ли какие задачи могут возникнуть, к примеру, при установке дополнительного оборудования. А значит, полезно будет знать элементарный алгоритм проверки реле с целью диагностики или уточнения цоколевки – вдруг попалось нестандартное? Для этого нам понадобятся источник питания с напряжением 12 вольт (блок питания или два провода от аккумулятора) и тестер, включенный в режиме измерения сопротивления.
Предположим, что у нас реле с 4 выводами – то есть, с парой нормально разомкнутых контактов, работающих на замыкание (реле с переключающей контактной «тройкой», проверяется аналогичным образом). Сперва касаемся щупами тестера поочередно всех пар контактов. В нашем случае это 6 комбинаций (изображение условное, чисто для понимания).
На одной из комбинаций выводов омметр должен показать сопротивление около 80 ом – это обмотка, запомним или пометим её контакты (у автомобильных 12-вольтовых реле наиболее распространенных типоразмеров это сопротивление бывает в диапазоне от 70 до 120 ом). Подадим на обмотку напряжение 12 вольт от блока питания или АКБ – реле должно отчетливо щелкнуть.
Соответственно, два других вывода должны показывать бесконечное сопротивление – это наши нормально разомкнутые рабочие контакты. Подключаем к ним тестер в режиме прозвонки, а на обмотку одновременно подаем 12 вольт. Реле щелкнуло, тестер запищал – все в порядке, реле работает.
Если же вдруг на рабочих выводах прибор показывает замыкание даже без подачи напряжения на обмотку, значит, нам попалось редкое реле с НОРМАЛЬНО ЗАМКНУТЫМИ контактами (размыкающимися при подаче напряжения на обмотку), либо, что более вероятно, контакты от перегрузки оплавились и сварились, замкнувшись накоротко. В последнем случае реле отправляется в утиль.
Механизмы реле
Основные элементы электромагнитного реле
Релейный прибор выполняется в виде катушки, обвитой большим количеством медной проволоки. Внутри нее расположен сердечник-стержень из металла, зафиксированный на ярме – Г-образной пластине. Поверх сердечника и катушки находится якорь – металлическая пластина, которая удерживается возвратная пружина. К якорю прикреплены подвижные контакты, а напротив них – неподвижные.
Узел из катушки и сердечника – электромагнит, а узел из сердечника, якоря и ярка – магнитопровод. Контакты обеспечивают управление электроцепью, размыкая и замыкая ее.
Детали и корпус
Нам потребуется:
- F1 – предохранитель на 100 мА.
- S1 – любой маломощный переключатель.
- C1 – конденсатор 0.063 мкФ 630 Вольт.
- C2 – 10 – 100 мкФ 25 Вольт.
- C3 – 2.7 нФ 50 Вольт.
- C4 – 0.047 мкФ 630 Вольт.
- R1 – 470 кОм 0.25 Ватт.
- R2 – 100 Ом 0.25 Ватт.
- R3 – 330 Ом 0.5 Ватт.
- R4 – 470 Ом 2 Ватта.
- R5 – 47 Ом 5 Ватт.
- R6 – 470 кОм 0.25 Ватт.
- R7 – варистор TVR12471, или подобный.
- R8 – нагрузка.
- D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например – 1N4007.
- D2 – стабилитрон на 6.2 Вольта.
- D3 – диод 1N4007.
- T1 – симистор ВТ138-800.
- LED1 – любой сигнальный светодиод.
Виды устройства
SSR различаются по следующим свойствам.
- Характер тока в сети
- Однофазное реле способно коммутировать электрический ток от 10 до 120 А или от 100 до 500 А. Управление проводится через фазу с помощью аналогового сигнала (непрерывный по времени) и переменного резистора (элемент электрической цепи). Как правило, корпус однофазного SSR стандартный, модульный (завершенная конструкция).
Однофазное реле используется в бытовых приборах.
Рекомендация. Установка однофазного ТТР в электрическую систему обезопасит домашнюю технику от поломки.
- Трехфазное релекоммутирует электричество на трёх фазах сразу. Диапазон напряжения 10 – 120 А. Отдельными характеристиками обладает реверсивное трехфазное ТТР. Выделяется надёжной коммутацией цепей. Сфера использования – непостоянная работа двигателя.
Чтобы не происходило перенапряжение, используется варистор (полупроводниковый резистор)или предохранитель. Трёхфазное SSR имеет долгий срок использования в сравнении с однофазным устройством.
- Способ управления
- Коммутация постоянного тока. Применяется при постоянном напряжении от 3 до 32 вольт. Отличаются высокой надежностью работы. Поддержка температур от -30 до +70 соблюдается практически у всех моделей.
- Коммутация переменного тока. SSR переменного тока характеризуется маленьким соотношением электромагнитных помех, бесшумностью, экономным энергопотреблением и оперативной работой. Диапазон напряжения от 90 до 250 вольт.
- Реле, управляемое вручную. Оно позволяет управлять настройками.
Коммутация – процесс переключение и отключение напряжения. Происходит моментально при замыкании и размыкании цепей.
- Тип коммуникации
- Конструкция с фазовым регулятором мощности. Тип коммуникации – изменения на выходе нагрузки с управлением мощности, нагреванием (уровень освещения).
- Прибор, контролируемый нулевым регулятором мощности. Область использования –коммутация ёмкостных (конденсатных) резистивных (лампы и нагреватели) слабо индуктивных приборов. SSR с нулем необходимы для коммутации индуктивных (трансформаторы, двигатели) и резистивных нагрузок при необходимости мгновенного действия.
- По конструкции
- Устанавливаемые на одну рейку.
- Монтируемые на планки переходного типа.
Разновидности реле
Реле контроля напряжения однофазное цифровое на DIN-рейку
Релейные устройства классифицируются по нескольким параметрам.
Количество фаз
Подразделяются на:
- однофазные – предназначены для подачи напряжения в жилых помещениях;
- трехфазные – подходят для применения в промышленных условиях.
Трехфазники отключают питание всего оборудования при скачках вольтажа на одной из линий.
Тип переключения
Можно приобрести модели:
- максимальные – повышают параметр напряжения до определенной величины;
- минимальные – понижают показатель до заданного значения.
Порог напряжения пользователем не устанавливается.
Тип активации воспринимающего элемента
Реле промежуточное РП-18-54 220В DC
Воспринимающий элемент, по включению которого будет работать прибор, – это электромагнит, магнитоэлектрический узел, индукционная или электродинамическая система. В зависимости от его вида существуют реле:
- первичные с прямым подключением контактов в сеть;
- вторичные – могут подключаться через измерительные индуктивные или емкостные трансформаторы;
- промежуточные – усиливают или преобразуют сигналы первичных/вторичных моделей.
Функции воспринимающего элемента – преобразование напряжения в процесс движения якоря относительно ярма.
Тип управления нагрузкой
Для управления напряжением применяются модели:
- прямого действия – нагрузка переключается контактами;
- косвенного действия – нагрузку подключаются вторичные элементы.
Нагрузка подается и приостанавливается с определенными промежутками.
Тип поступления сигнала
Герконовое реле
В продаже можно найти следующие коммутационные устройства:
- электронные – обеспечивают контроль напряжения в условиях высокой нагрузки. Управляют освещением и узлами автомобиля;
- герконовые – небольшие модели в виде катушки. Предназначены для замыкания, переключения, размыкания сети. Чувствительны к механическим воздействиям и ультразвуку;
- электротепловые – отключают и включают электрический ток по нагреву биметаллической пластины. Используются для электродвигателей на производстве, обустройства однофазной или трехфазной электросети;
- временной выдержки – для создания кратковременных пауз применяются схемы замедления. Приборы работают в автомобилях, светофорах, елочных гирляндах;
- таймеры света – позволяют программировать освещение теплиц, аквариумов, животноводческих комплексов. К ним подключаются нагреватели, вентиляторы;
- электромагнитные – ток статистической обмотки активируется по воздействию магнитного поля. Приборы со средней нагрузкой до 320 А и напряжение до 1,6 кВт могут работать только в сети с постоянным током.
Конструктивно стандартный регулятор имеет вид пакетника для крепления на дин-рейку. Некоторые модели исполняются в виде переходников и удлинителей.
Характеристики твердотельного реле
- Входной управляющий сигнал 1,5 – 12 В постоянного тока
- Оптимальное напряжение самой схемы VCC 12 – 18 В
- Питание нагрузки 12 – 60 В постоянного тока
- Частота входного сигнала до 50 кГц
- Напряжение изоляции 3 kV
Примечание: нужно увеличить резистор на светодиоде, если питание нагрузки выше чем 24 В.
Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Драйвер затвора необходимо питать в пределах 12 – 18 В постоянного тока. Теплоотвод необходим только для предельной нагрузки. До 5-ти ампер можно не ставить.
Сферы применения
Твердотельное реле 12в
SSR не заменит полностью электромагнитный аналог, но во многих областях превосходит его в применении.
Сфера применения достаточно обширная. Его устанавливают в том оборудования, где нужно надежное и длительное использование системы.
- Для поддержания постоянной температуры в технологическом процессе.
- Регулятор мощности тока.
- При замене пyскателя реверсивного типа.
- Электрический двигатель.
- Датчик движения.
- Датчик освещения.
- Диммер (выключатель с регулировкой яркости лампы).
- Производственные станки.
- Регулятор температуры камеры.
Далеко не весь список использования.
Преимущества использования
Твердотельное реле применяется в различных электрических цепях- низковольтных, высоковольтных. От простейшего бытового прибора, которое имеется в каждом доме до крупного промышленного объекта.
- Компактный размер даёт возможность использования в ограниченных пространством условиях, и перемещать его.
- Более точный и стабильный регулятор температуры по сравнению с электромагнитным устройством.
- Скорость быстрого включения в работу без потребности долгого запуска.
- Экономия электроэнергии из-за использования полупроводников вместо электромагнитного разнесения.
- Надёжность работы. Реле может выполнить более миллиарда срабатываний.
- Долгий срок эксплуатации без необходимости прохождения постоянного технического обслуживания.
- Отсутствие источников искр.
- Включение в цепь без помех из-за герметичной конструкции.
- Бесшумность работы.
- Не происходит дребезжания благодаря быстрому старту.
- Широкая сфера применения. ТТР используется для регулятора работы многих устройств.
Различия схем включения реле
По виду подключения твердотельные реле можно разделить на следующие категории:
По управлению (виду входного управляющего сигнала):
- постоянное напряжение (встречается чаще всего),
- переменное напряжение,
- постоянный ток 4-20 мА,
- переменный резистор.
По виду коммутируемого тока
- твердотельные реле переменного тока
- твердотельные реле постоянного тока
По количеству фаз
- одна фаза
- три фазы (как правило, фактически это две фазы)
В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.
Простая схема реле
В силовой электронике часто возникает необходимость использовать одно- или 3 х-фазное твердотельное реле. Своими руками изготовить это устройство можно по одной из схем, представленных в статье.
Преимущество твердотельного реле перед механическими контакторами очевидно – у них ресурс намного выше. И это из-за того, что в них нет ни одного механического компонента, а именно они являются наиболее уязвимыми.
Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Гальваническую развязку осуществляет симисторная оптопара. В схеме используются такие элементы:
- Оптопара типа МОС3083.
- Симистор марки ВТ139-800 16А с изолированным анодом.
- Ограничивающий резистор, который снижает ток, проходящий через светодиод.
- Светодиод для индикации работы устройства.
- К управляющему электроду симистора подключается резистор 160 Ом.
А теперь давайте рассмотрим более детально процесс изготовления устройства.
Особенности процесса изготовления
Нагрузка нагревательного элемента составляет Вт.
Вход — это первичная цепь, в которой устанавливается постоянное сопротивление.
В обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются.
Выходная мощность порядка Вт. Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках.
Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя. Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей.
Конструкция и детали
Чувствительность реле изменяют подстроечным конденсатором С4. В устройстве, монтаж которого показан на рис. 1, б, можно применить подстроеч-ные конденсаторы КПВ, КПК-МЛ, КПК-1, резистор R2 составлен из двух-, трех резисторов меньшего номинала, для повышения чувствительности сопротивление этого резистора можно увеличить до 10 … 15 МОм. Ток, потребляемый устройством в дежурном режиме, составляет 1,5 … 2 мА, а при подаче звукового сигнала — 3 … 4 мА.
Монтажная плата устройства показана на рис. 1. Датчик Е1 представляет собой металлическую сетку или пластину размерами примерно 200X Х200 мм.
Как сделать ТТР своими руками?
Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.
Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие
Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.
Электронные компоненты для сборки схемы
Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:
- Оптопара типа МОС3083.
- Симистор типа ВТ139-800.
- Транзистор серии КТ209.
- Резисторы, стабилитрон, светодиод.
Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:
Принципиальная схема маломощного твердотельного реле для сборки своими руками. Небольшое количество деталей и простой навесной монтаж позволяют спаять схему без труда
Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.
А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.
Проверка собранной схемы на работоспособность
Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.
Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт
Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».
Устройство монолитного корпуса
Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.
Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем
Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.
На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.
Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.
Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию. Только так обеспечивается качественный теплоотвод и надёжность работы
Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.
Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.
Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки
Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).
Приготовление компаунда и заливка корпуса
Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:
- Эпоксидная смола без отвердителя.
- Порошок алебастра.
Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.
Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.
Так выглядит готовый экземпляр твердотельного реле, собранного своими руками. Несколько необычно и не очень презентабельно, но достаточно надёжно
Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.
По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.
Налаживание
Проверяют и настраивают емкостное реле в следующей последовательности. Одной рукой касаются неизолированного общего провода и подстроечным конденсатором С4 добиваются пропадания звукового сигнала. После этого приближают руку к датчику—в телефоне должен появиться сигнал. Если звука нет, то увеличивают емкость конденсатора C3, если же звуковой сигнал не пропадает, то уменьшают емкость этого конденсатора или удаляют его вообще. Более точным подбором емкости подстроечного конденсатора можно добиться срабатывания реле при поднесении руки к датчику на расстоянии 10 – 15 см.
С эмкостным реле думаю все понятно, а для управления устройствами при помощи звука используется звуковое реле, основным датчиком которого является микрофон.
Пример подключения твердотельного реле
Вы знаете, как изготовить твердотельное реле своими руками. Аналоги такого устройства встречаются в продаже достаточно часто. Можно использовать как любительские схемы, так и промышленные – зависит от того, какие возможности нужно получить от устройства. С помощью такого устройства обеспечивается контакт высоковольтной и низковольтной цепей.
Большая часть промышленных устройств и самоделок имеет схожую структуру. Отличия несущественные, на работу не влияют никак. Убедиться в этом несложно. На рисунке приведена простейшая схема включения реле:
Структура устройства:
- Оптическая развязка цепей.
- Триггерная цепь (может быть несколько).
- Защитные устройства и переключатели.
- Входы.
Вход – это первичная цепь, в которой устанавливается постоянное сопротивление. Функция входа заключается в приеме сигнала и передаче нужной команды на устройство, которое производит коммутацию нагрузки.
Развязка оптического типа
Оптическая развязка – это прибор, который осуществляет изоляцию входов и выходов. Когда происходит обработка сигнала, поступающего на вход, обязательно нужно использовать триггерную цепь. Это отдельный компонент, но иногда он включен в конструкцию оптической развязки. Цепь переключения используется в том случае, когда нужно подать напряжение к нагрузке.
Источники
- https://StrojDvor.ru/elektrosnabzhenie/tverdotelnoe-rele-svoimi-rukami/
- https://electricvdele.ru/elektrooborudovanie/datchiki/tverdotelnoe-rele.html
- https://www.kolesa.ru/article/avtomobilnye-rele-kak-ustroeny-kak-ih-vybirat-i-proveryat
- https://StrojDvor.ru/elektrosnabzhenie/kak-podklyuchit-dvux-chetyrex-i-pyatikontaktnoe-rele/
- https://SdelaySam-SvoimiRukami.ru/4493-tverdotelnoe-rele-svoimi-rukami.html
- https://tehnoobzor.com/schemes/automatics/825-shema-tverdotelnogo-rele-na-12v.html
- https://SamElectric.ru/promyshlennoe-2/tverdotelnye-rele-shemy-podklyucheniya.html
- https://FB.ru/article/374516/tverdotelnoe-rele-svoimi-rukami-shema
- https://tokzamer.ru/bez-rubriki/tverdotelnoe-rele-shema-principialnaya
- https://RadioStorage.net/1307-emkostnoe-rele-na-mikroskheme-k176la7.html
- https://sovet-ingenera.com/elektrika/rele/tverdotelnoe-rele-svoimi-rukami.html
Сила тока 100 мA () 2 A () 3 A () 5 A () 20 A () 25 A () 35 A () 45 A () 60 A () 90 A () 150 A () Зависит от применяемого твердотельного реле () | 2 А (240 В перем. тока, резистивная нагрузка) 3 A (24 В пост. Тока, резистивная нагрузка) | 100 мA 2 A | 2 A 3 A | 3 A | 3 A 5 A | 90 A | 20 A | 60 A | 25 A | 45 A | 150 A | 35 A | 60 A | Зависит от применяемого твердотельного реле | Напряжение нагрузки (В перем. тока) 24 — 240 В перем. тока () 100 — 240 В перем. тока () 100 — 480 В перем. тока () 200 — 480 В перем. тока () | 100 — 240 ~В (-A(L)) | — | 100 -240 ~В (-F) | 100 — 240 ~В (-H) | 100 -240 ~В (-B) | 24 — 240 В перем. тока 200 — 480 В перем. тока | 100 … 240 В~ | 24 — 240 В перем. тока 200 — 480 В перем. тока | 100 — 480 В перем. тока | 100 … 240 В~ 200 — 480 В перем. тока | 100 … 240 В~ 180 — 480 В перем. тока | 100 … 240 В~ 200 — 480 В перем. тока | 100 … 240 В~ | 100 … 240 В~ 400 — 480 В перем. тока | Напряжение нагрузки (В пост. тока) 4 — 48 В пост. тока () 5 — 24 В пост. тока () 5 — 110 В пост. тока () 5 — 200 В пост. тока () | 5 — 24 =В (-D) | 4 — 48 В пост. тока (-O) 5 — 24 =В (-I) | 4 — 48 В пост. тока (-FD) 5 — 110 В пост. тока (-FD) | 4 — 48 В пост. тока (-HD) | 5 -110 В пост. тока (-BD) | 5 — 200 В пост. тока | — | — | — | — | — | — | — | — | Особенности Светодиодный индикатор работы () Варистор () Заменяемый силовой модуль () Защитная крышка () Контроль перехода фазы через ноль () Радиатор () Схема подавления перенапряжений () Трансформатор тока () | Светодиодный индикатор работы Контроль перехода фазы через ноль | Светодиодный индикатор работы Контроль перехода фазы через ноль | Контроль перехода фазы через ноль | Контроль перехода фазы через ноль | Контроль перехода фазы через ноль | Светодиодный индикатор работы Варистор Защитная крышка Контроль перехода фазы через ноль | Варистор Контроль перехода фазы через ноль | Светодиодный индикатор работы Варистор Заменяемый силовой модуль Защитная крышка Контроль перехода фазы через ноль Радиатор | Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор | Светодиодный индикатор работы Контроль перехода фазы через ноль Радиатор Схема подавления перенапряжений | Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор Схема подавления перенапряжений | Светодиодный индикатор работы Защитная крышка Контроль перехода фазы через ноль Радиатор Трансформатор тока | Контроль перехода фазы через ноль Радиатор | — |
Ошибка 404 | НПФ КонтрАвт. КИПиА для АСУ ТП
Выберите продукцию из спискаНормирующие преобразователи измерительные …НПСИ-ТП нормирующий преобразователь сигналов термопар и напряжения …НПСИ-237-ТП нормирующий преобразователь сигналов термопар и напряжения, IP65 …НПСИ-ТС нормирующий преобразователь сигналов термосопротивлений …НПСИ-237-ТС нормирующий преобразователь сигналов термосопротивлений, IP65 …НПСИ-150-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-150-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-110-ТП1 нормирующий преобразователь сигналов термопар и напряжения …НПСИ-110-ТС1 нормирующий преобразователь сигналов термометров сопротивления …НПСИ-250/500-УВ1 нормирующий преобразователь сигналов термопар, термосопротивлений и потенциометров…НПСИ-230-ПМ10 нормирующий преобразователь сигналов потенциометров …НПСИ-200-ГРТП модули гальванической развязки токовой петли…НПСИ-200-ГР1/ГР2 модули гальванической развязки токового сигнала (4…20) мА…НПСИ-200-ГР1.2 модуль разветвления 1 в 2 и гальванической развязки сигнала (4…20) мА…НПСИ-ДНТВ нормирующий преобразователь действующих значений напряжения и тока…НПСИ-ДНТН нормирующий преобразователь действующих значений напряжения и тока …НПСИ-200-ДН/ДТ нормирующие преобразователи действующих значений напряжения и тока…НПСИ-МС1 преобразователь мощности, напряжения, тока, коэффициента мощности…НПСИ-500-МС3 измерительный преобразователь параметров трёхфазной сети с RS-485 и USB …НПСИ-500-МС1 измерительный преобразователь параметров однофазной сети с RS-485 и USB …НПСИ-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией…НПСИ-237-УНТ нормирующий измерительный преобразователь унифицированных сигналов с сигнализацией, IP65 …НПСИ-ЧВ/ЧС нормирующие преобразователи частоты, периода, длительности сигналов, частоты сети…ПНТ-х-х нормирующий преобразователь сигналов термопар…ПСТ-х-х нормирующий преобразователь сигналов термосопротивлений…ПНТ-a-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-a-Pro нормирующий преобразователь сигналов термосопротивлений программируемый…ПНТ-b-Pro нормирующий преобразователь сигналов термопар программируемый…ПCТ-b-Pro нормирующий преобразователь сигналов термосопротивлений программируемыйБарьеры искрозащиты (барьеры искробезопасности)…КА5003Ех барьеры искрозащиты, разветвители 1 в 2 сигналов термопар, термометров сопротивления и потенциометров, 1-канальные, USB, RS-485…КА5004Ех барьеры искрозащиты, сигналы термопар, термометров сопротивления и потенциометров, сигнализация, USB, RS-485…КА5011Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 1-канальные, HART …КА5022Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 2-канальные…КА5013Ех барьеры искрозащиты (барьеры искробезопасности), приемники-разветвители 1 в 2 аналогового сигнала (4…20) мА, 1-канальные, HART, шина питания …КА5031Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 1-канальные, HART …КА5032Ех барьеры искрозащиты (барьеры искробезопасности), приёмники аналогового сигнала (4…20) мА, 2-канальные, HART …КА5131Ех барьеры искрозащиты (барьеры искробезопасности), передатчики аналогового сигнала (4…20) мА, 1-канальные, HART …КА5132Ех барьеры искрозащиты (барьеры искробезопасности), передатчики аналогового сигнала (4…20) мА, 2-канальные…КА5241Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 1-канальные…КА5242Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5262Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5232Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 2-канальные…КА5234Ех барьеры искрозащиты (барьеры искробезопасности), приёмники дискретных сигналов, 4-канальныеКонтроллеры, модули ввода-вывода…MDS AIO-1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-1/F1 Модули комбинированные функциональные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов…MDS AIO-4/F1 Модули комбинированные ввода-вывода аналоговых и дискретных сигналов, 4 ПИД регулятора…MDS AI-8UI Модули ввода аналоговых сигналов тока и напряжения…MDS AI-8TC Модули ввода сигналов термопар, тока и напряжения…MDS AI-8TC/I Модули ввода сигналов термопар, тока и напряжения с индивидуальной изоляцией между входами…MDS AI-3RTD Модули ввода сигналов термосопротивлений и потенциометров…MDS AO-2UI Модули вывода сигналов тока и напряжения…MDS DIO-16BD Модули ввода-вывода дискретных сигналов…MDS DIO-4/4 Модули ввода-вывода дискретных сигналов …MDS DIO-12h4/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DIO-8H/4RA Модули ввода-вывода дискретных сигналов высоковольтные…MDS DI-8H Модули ввода дискретных сигналов высоковольтные…MDS DO-8RС Модули вывода дискретных сигналов …MDS DO-16RA4 Модули вывода дискретных сигналов …MDS IC-USB/485 преобразователь интерфейсов USB и RS-485…MDS IC-232/485 преобразователь интерфейсов RS-232 и RS-485…I-7561 конвертер USB в RS-232/422/485…I-7510 повторитель интерфейса RS-485/RS-485…I-7520 преобразователь интерфейса RS-485/RS-232Измерители-регуляторы технологические…МЕТАКОН-6305 многофункциональный ПИД-регулятор с таймером выдержки…МЕТАКОН-4525 многоканальный ПИД-регулятор…МЕТАКОН-1005 измеритель технологических параметров, щитовой монтаж, RS-485…МЕТАКОН-1015 измеритель, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1105 измеритель, позиционный регулятор, щитовой монтаж, RS-485…МЕТАКОН-1205 измеритель-регулятор, нормирующий преобразователь, контроллер, щитовой монтаж, RS-485…МЕТАКОН-1725 двухканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-1745 четырехканальный измеритель-регулятор, нормирующий преобразователь, щитовой монтаж, RS-485…МЕТАКОН-512/522/532/562 многоканальные измерители-регуляторы…Т-424 универсальный ПИД-регулятор…МЕТАКОН-515 быстродействующий универсальный ПИД-регулятор…МЕТАКОН-513/523/533 ПИД-регуляторы…МЕТАКОН-514/524/534 ПДД-регуляторы…МЕТАКОН-613 программные ПИД-регуляторы…МЕТАКОН-614 программные ПИД-регуляторы…СТ-562-М источник тока для ПМТ-2, ПМТ-4Регистраторы видеографические…ИНТЕГРАФ-1100 видеографический безбумажный 4/8/12/16 канальный регистратор данных …ИНТЕГРАФ-1000/1010 видеографические безбумажные 8/16 канальные регистраторы данных …ИНТЕГРАФ-3410 видеографический безбумажный регистратор-контроллер термообработки… DataBox Накопитель-архиваторСчётчики, реле времени, таймеры…ЭРКОН-1315 восьмиразрядный одноканальный счётчик импульсов, поддержка RS-485, щитовой монтаж…ЭРКОН-315 счётчик импульсов одноканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-325 счетчик импульсов двухканальный, поддержка RS-485, щитовой монтаж…ЭРКОН-415 тахометр-расходомер…ЭРКОН-615 счетчик импульсов реверсивный многофункциональный, поддержка RS-485, щитовой монтаж…ЭРКОН-714 таймер астрономический…ЭРКОН-214 одноканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-224 двухканальное реле времени, цифровая индикация, монтаж на DIN-рельс или на панель…ЭРКОН-215 реле времени программируемое одноканальное, поддержка RS-485, щитовой монтаж, цифровая индикацияБлоки питания и коммутационные устройства…PSM-120-24 блок питания 24 В (5 А, 120 Вт)…PSM-72-24 блок питания 24 В (3 А, 72 Вт)…PSM-36-24 блок питания 24 В (1,5 А, 36 Вт)…PSL низковольтные DC/DC–преобразователи на DIN-рейку 3 и 10 Вт…PSM-4/3-24 многоканальный блок питания 24 В (4 канала по 0,125 А, 3 Вт)…PSM-2/3-24 блок питания 24 В (2 канала по 0,125 А, 3 Вт)…PSM/4R-36-24 блок питания и реле, 24 В (1,5 А, 36 Вт)…БП-24/12-0,5 блок питания 24В/12В (0,5А)…ФС-220 фильтр сетевой…БПР блок питания и реле…БКР блок коммутации реверсивный (пускатель бесконтактный реверсивный)…БР4 блок реле…PS3400.1 блок питания 24 В (40 А) …PS3200.1 блок питания 24 В (20 А)…PS3100.1 блок питания 24 В (10 А)…PS3050.1 блок питания 24 В (5 А)…PS1200.1 блок питания 24 В (20 А)…PS1100.1 блок питания 24 В (10 А)…PS1050.1 блок питания 24 В (5 А)Программное обеспечение…SetMaker конфигуратор…… История версий…MDS Utility конфигуратор…RNet программное обеспечение…OPC-сервер для регулятров МЕТАКОН…OPC-сервер для MDS-модулей
Реле постоянного тока на 5 вольт
Управление мощной нагрузкой постоянного тока. Часть 1
О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.
Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.
Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй — везде жопа. Что делать?
Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.
Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется Ic, в наших Iк. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде 🙂 Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. Где у него коллектор, где база, а где эмиттер. Сделать это лучше всего по даташиту или справочнику. Вот, например, кусок из даташита:
Обратите внимание на коллекторный ток — Ic = 100мА (Нам подоходит!) и маркировку выводов.
Цоколевка нашего КТ315 определяется так
Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.
Берем транзистор и подключаем его по такой схеме:
Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.
Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления hfe. hfe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.
Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет Ic=Ibe*hfe=0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.
Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.
Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.
Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.
Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:
При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало. После закрытия транзистора конденсатор разряжается через резистор. Из этого следует встречное западло — если сразу же попытаться реле включить, когда конденсатор еще не разрядился, то тока на рывок может и не хватить. Так что тут надо думать с какой скоростью у нас будет щелкать реле. Кондер, конечно, разрядится за доли секунды, но иногда и этого много.
Добавим еще один апгрейд. При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
Из куска даташита видно, что предельное напряжение Коллектор-База (Collector-Base voltage) для BC549 составляет 30 вольт. Вкручиваем стабилитрон на 27 вольт — Profit!
Твердотельное реле
Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.
Виды ТТР
Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле
Такие релe используются в печатных платах и предназначены для коммутации (переключения) малого тока и напряжения.
На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике
А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках
Слева однофазное реле, справа трехфазное.
Если через коммутируемые контакты силовых реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят на радиаторы, которые рассеивают тепло в окружающее пространство.
ТТР по типу управления
ТТР могут управляться с помощью:
1) Постоянного тока. Его диапазон составляет от 3 и до 32 Вольт.
2) Переменного тока. Диапазон переменного тока составляет от 90 и до 250 Вольт. То есть такими реле можно спокойно управлять с помощью сетевого напряжения 220 В.
3) С помощью переменного резистора. Значение переменного резистора может быть в диапазоне от 400 и до 600 Килоом.
ТТР по типу переключения
С коммутацией перехода через ноль
Посмотрите внимательно на диаграмму
Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток достигнет нуля. Выключение происходит подобным образом.
Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.
Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:
управление постоянным токомуправление переменным током
Мгновенного включения
Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.
В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока, а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.
Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:
ТТР с фазовым управлением
Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.
Примерная схема подключения выглядит вот так:
Работа твердотельного реле
В гостях у нас ТТР фирмы FOTEK:
Давайте разберемся с его обозначениями. Вот небольшая табличка-подсказка для этих типов реле
Давайте еще раз взглянем на наше ТТР
SSR – это значит однофазное твердотельное реле.
40 – это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер.
D – тип управляющего сигнала. От значения Direct Current – что с буржуйского – постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем “плюс”, а на №4 мы подаем “минус”.
А – тип коммутируемого напряжения. Alternative current – переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и до 380 Вольт переменного напряжения.
Для опыта нам понадобится лампа накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:
В разрыв вставляем наше твердотельное реле
Втыкаем вилку в розетку и…
Нет… не хочет… Чего-то не хватает…
Не хватает управляющего напряжения! Выводим напряжение от Блока питания от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…
О чудо! Лампочка загорелась! Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле.
Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.
А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!
Плюсы и минусы твердотельного реле
Плюсы
- включение и выключение цепей без электромагнитных помех
- высокое быстродействие
- отсутствие шума и дребезга контактов
- продолжительный период работы (свыше МИЛЛИАРДА срабатываний)
- возможность работы во взрывоопасной среде, так как нет дугового разряда
- низкое энергопотребление (на 95% (!) меньше, чем у обычных реле)
- надёжная изоляция между входными и коммутируемыми цепями
- компактная герметичная конструкция, стойкая к вибрации и ударным нагрузкам
- небольшие размеры и хорошая теплоотдача (если конечно использовать термопасту и хороший радиатор)
Минусы:
Где купить твердотельное реле
Любые виды твердотельных реле вы всегда можете найти на Али по этой ссылке.
При написании статьи использовалась информация, взятая по этой ссылке.
Схемы подключения и управление твердотельными реле переменного и постоянного тока — блог СамЭлектрик.ру
Схемы подключения твердотельных реле
В этой статье обсудим схемы подключения твердотельными реле (ТТР), и способы управления ими.
Напоминаю, для тех кто не в курсе – что такое твердотельное реле и как оно работает – обратитесь к более старой моей статье О принципах работы твердотельных реле.
Схемы включения подобных реле не очень сложны, но, как и везде, есть свои особенности.
Твердотелки – надо ли их использовать?
Для начала рассмотрим также целесообразность применения таких реле. Например, реальный случай:
У нас на предприятии на одном станке стоят соленоидные клапаны с питанием 24VDC 2А. Эти два клапана соединены параллельно, и включаются-выключаются с частотой примерно 1 раз в секунду. Питание идёт через реле. И, несмотря на то, что номинальный ток реле 10А индуктивной нагрузки, приходилось менять его каждый месяц-два. Поставили мы твердотелку – и забыли, работает без шума и проблем уже два года.
Другой случай, когда такие реле не нужны:
Простейший контроллер температуры, точность поддержания не существенна. Нагрузка – ТЭНы, работают в воде круглосуточно. Чаще, чем раз в год, один из ТЭНов замыкает или коротит на корпус. Здесь большая вероятность того, что ТТР выгорит, так как они очень чувствительны к перегрузкам.
О перегрузках и защите твердотельных реле будет подробно сказано ниже, а в данном случае целесообразно применить обычный контактор, который прекрасно справляется с перегрузкой и стоит в 10 раз дешевле.
Поэтому, за модой гнаться не стоит, а лучше применить трезвый расчет. Расчет по току и по финансам.
Если кому-то придёт в голову, можно кнопкой звонка или герконом запускать двигатель мощностью 10 кВт! Но не так всё просто, подробности будут ниже.
Различия схем включения реле
По виду подключения твердотельные реле можно разделить на следующие категории:
- постоянное напряжение (встречается чаще всего),
- переменное напряжение,
- постоянный ток 4-20 мА,
- переменный резистор.
- твердотельные реле переменного тока
- твердотельные реле постоянного тока
- одна фаза
- три фазы (как правило, фактически это две фазы)
В любом случае, для выбора ТТР и его схемы включения нужно руководствоваться мануалами на данное реле.
Кстати, рекомендую мою статью про трехфазное и однофазное напряжение. Терминология и отличия разжеваны не пальцах)))
Схемы подключения твердотельных реле
Теперь рассмотрим подключение твердотельного реле подробнее.
Управление твердотельными реле схемотехнически такое же, как и у обычного реле. Ниже упрощенно показана схема включения реле переменного тока с сигналом управления 24В постоянного тока:
Схема включения твердотельного реле
Схема показана для реле, у которого управляющее напряжение постоянное, от 5 до 24 Вольт. Данное реле может коммутировать переменное напряжение до 240 Вольт, ток до 20 А.
С током не всё так просто, но об этом ниже.
Как работает схема. На вход (контакты 3 и 4, соблюдать полярность!) подается управляющее напряжение от источника 24В. Подается оно через цепь управления, которая представлена как НО контакт. Этим контактом может быть и обычное реле, и выход контроллера, и датчик с релейным выходом или транзисторным выходом типа PNP.
Про НО контакты и PNP выходы датчиков я подробно написал в этой статье. Очень рекомендую!
Ещё раз напоминаю –
НЗ – это закрытые (замкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) течёт ток.
А что там свежего в группе ВК СамЭлектрик.ру?
НО – это открытые (незамкнутые) контакты, через которые в нормальном положении (без активации управляющим сигналом) ток не течёт.
Условные выходные контакты ТТР также будут НО, т.к. без активации цепи управления нагрузка выключена.
Теперь подробнее по управлению твердотелками.
Схемы с управлением от транзистора
Здесь транзистор может быть выходом любого полупроводникового прибора – датчика приближения, контроллера, и т.п.
Управление транзистором PNP, НО реле
Скажу, что со схемами управления, которые я взял из фирменных инструкций, полная путаница. Можете сами разобраться, а я расскажу своё мнение.
Управление транзистором PNP, НО реле
Под “нормально открытым контактом” (читали, что это, ссылку я давал выше?) подразумевается, что без управляющего напряжения (на базе транзистора) твердотельное реле не пропускает ток. Напряжение между входными контактами 3 и 4 близко к нулю, реле выключено. При подаче входного управляющего напряжения на базу транзистора (например, +5В), транзистор открывается и плюс подается на вход 3. Реле открывается, нагрузка получает питание.
Управление транзистором NPN, НЗ реле
Управление транзистором NPN, НЗ реле
Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, нагрузка под напряжением.
Управление транзистором NPN, НО реле
Когда транзистор закрыт (не активен), на управляющий вход твердотельного реле подается напряжение, близкое к нулю, и нагрузка без напряжения.
Управление резистором
Плавно подходим к переменному току.
Управление переменным резистором
Не путать переменный ток и переменный резистор! В данном случае твердотельное реле фактически является диммером, который изменяет скважность выходного напряжения для нагрузки, которая приспособлена для этого. Такие реле – только с коммутацией переменного тока, и включаются/выключаются 100 раз в секунду.
Схема с фиксацией и управлением кнопками (защелка)
Управление твердотельным реле с фиксацией включения
Схема включения интересна тем, что можно включать – выключать нагрузку, используя только две кнопки – Пуск и Стоп. То есть, схема такая же, как и при использовании обычного реле. Точнее, магнитного пускателя. Важно, что управляющее напряжение равно напряжению питания нагрузки.
Схема нарисована тайваньскими инженерами, попробуем разобраться в ней.
Кстати, её же можно использовать для коммутации и переменного, и постоянного тока.
Схема работает таким образом. Исходно управляющее напряжение поступает на клемму 3 ТТР с источника питания через НЗ контакты кнопки Стоп. При нажатии кнопки Пуск (слева на схеме) напряжение с другого полюса источника поступает через НО контакты на клемму 4 ТТР. Реле включается, напряжение на клемме 1 появляется, и подается через резистор (вверху схемы) на клемму 4. Прошла доля секунды, кнопку Пуск можно отпускать, нагрузка питается до тех пор, пока не будет нажата кнопка Стоп.
Схемы включения трехфазных твердотельных реле
Трехфазное твердотельное реле, схемы подключения.
Тут источник трехфазного напряжения – справа по схемам, нагрузка – слева. Управляющее напряжение может быть любым (переменным или постоянным).
Кроме того, коммутация может быть как по двум фазам, так и по трём, это важно! Подробнее ниже.
Реверсивные твердотельные реле
Существуют также специальные трехфазные твердотельные реле для реверса двигателей, у которых два управляющих входа.
Пример включения трехфазного реле – на фото ниже:
Включение трехфазного твердотельного реле
Как видно, реле не совсем трехфазное, одна фаза подается на двигатель постоянно, что может стать причиной опасности.
Та же особенность бывает в устройствах плавного пуска.
На корпусе реле напечатана его схема включения, где всё понятно. Реле реверсивное, и у него два входа – Forward и Reverse (Вперёд/Назад). Для реверса фазы L1 и L2 меняются местами.
Важно – внутри реле нет блокировки от одновременного включения в обоих направлениях, и ее надо обеспечить аппаратно (блокировочные контакты кнопок/реле) и программно (если управление – от контроллера). Если это не предусмотреть, то вероятна ситуация, когда силовые выходы 1, 2, 3, 4 будут замкнуты накоротко 🙁 .
Выбор твердотельных реле, защита и особенности работы
Обычное реле и контактор без особых проблем выдерживают кратковременные перегрузки до 150 и даже 200% от номинала. Особенно, если не коммутировать нагрузку с таким током, а повышать ток после замыкания, и понижать перед размыканием.
Обычные контакты могут выдержать и кратковременный ток КЗ, если сработает защита с правильной уставкой тока. Просто, возможно, придётся потом контакты почистить.
Твердотельные реле от перегрузок страдают сильнее, за пол периода портятся безвозвратно, и контакты потом не почистить, из-за отсутствия таковых.
Это как в звукотехнике. Ламповая техника при перегрузках чувствует себя нормально, только слегка “потеет”, а транзисторы начинают жутко искажать сигнал и могут выйти из строя. За это до сих пор так ценятся ламповые усилители, за их мягкий, бархатный звук на предельных мощностях. Другое дело, что источников качественного сигнала сейчас практически нет, всё заполонил mp3 128kbps, и то в лучшем случае. Но это тема отдельной статьи…
Если при выборе контактора достаточно выбрать запас в 10-20% и защитить его обычным автоматом, то с твердотельными устройствами всё сложнее.
Поэтому для твердотельных реле рекомендуется для активной нагрузки (лампы, ТЭНы) запас по номинальному току в 2-4 раза. При пуске асинхронных двигателей из-за большого пускового тока запас по току нужно увеличить до 6-10 раз.
То есть, трехфазная твердотелка Fotek TSR-40AA-H на 40А, показанная на фото чуть выше, на своих 40 амперах работать вряд ли будет. Мощность двигателя, которую можно коммутировать в данном случае – от 2,2 кВт до 5 кВт. Причём двигатель 5 кВт (это около 10А) должен запускаться обязательно на холостом ходу, с минимальным пусковым моментом, а нагрузку к нему прикладывать можно после пуска и разгона.
Кстати, с индуктивной нагрузкой твердотельные реле могут вести себя неадекватно, у меня бывали проблемы. В случае высокоиндуктивных нагрузок (трансформаторы, катушки с магнитопроводами, электрические звонки, и т.п.) нужно параллельно нагрузке включать RC-цепь (снабберную цепь из последовательных резистора и конденсатора) для уменьшения влияния противо-ЭДС. Кроме того, эта цепь уменьшает общую индуктивность нагрузки, т.е. делает её более активной. И ТТР легче работать.
Напоследок – защита при КЗ
Производители рекомендуют использовать специальные предохранители для твердотельных приборов:
- gR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов(более быстродействующие , чем gS)
- gS – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов, при повышенной загрузке линии.
- aR – предохранители для всего диапазона рабочих токов, для защиты полупроводниковых элементов от короткого замыкания.
Такие предохранители стоят дорого (сравнимы со стоимостью самого твердотельного реле), поэтому в большинстве случаев можно использовать защитные автоматы класса В. Чем же они хороши и как они спасут наши твердотельные реле от выгорания при КЗ?
Напомню, в 99% везде встречаются автоматы класса С. Класс D ставят в качестве вводных рубильников и при больших пусковых токах (мощные двигатели, трансформаторы). А класс В – самый чувствительный, срабатывает раньше всех.
Рекомендую почитать мою жарко-летнюю статью по выбору и замене защитных автоматов.
Кстати, гуру электрики и электропроводки, cs-cs.net, предлагает дома ставить автоматы только В класса. И некоторые производители – рекомендуют ставить В класс на электроплиты, водонагреватели – туда, где нет двигателей и пусковых токов.
Почему – поясню на графике.
Кривые отключения или токо-временные характеристики
Подробно про выбор защитного автомата рассказано в другой статье.
Но мы вернёмся к нашему трехфазному твердотельному реле Fotek TSR-40AA-H на 40А, про которое я писал выше. Чтобы его гарантированно защитить от КЗ, надо обязательно поставить вот такой автомат:
Автомат с характеристикой В6 (обведено красным)
Он мгновенно сработает при токе 20…30 Ампер и спасет твердотелку. А от перегруза надо будет поставить мотор-автомат на ток 4-6,3 А. И это всё будет питать двигатель на 2,2 кВт, лучше меньше. Либо ТЭН, тогда мотор-автомат не нужен.
Пишите в комментариях, у кого какой опыт по применению!
Полезные файлы, возможно, написано информативнее, чем у меня:
• Твердотельные реле Фотек / Твердотельные реле Фотек. Руководство пользователя. Рассмотрена вся линейка Fotek, даны рекомендации по применению и схемы включения., pdf, 757.78 kB, скачан:2977 раз./ • Твердотельные реле – устройство и принцип работы / Подробно изложено, как устроены и работают твердотельные реле, приведены схемы включения, и т.п. Автор, отзовись!, pdf, 414.19 kB, скачан:3387 раз./Где купить твердотельные реле
Если вы живете в крупном городе, то лучше конечно поехать в ближайший магазин – и через час реле можно устанавливать. Но, например, у меня в Таганроге такие реле – только под заказ, и купить их можно только через фирмы в Ростове.
Поэтому, на сегодняшний день лучший вариант – покупать твердотельные реле в интернете, через АлиЭкспресс. Цены примерно те же, но минус в том, что доставка может быть около месяца.
Пишите в комментариях, у кого какие вопросы, отзывы и опыт по применению!
Статья понравилась?Добавьте её в свою соц.сеть и дайте оценку!
(14 оценок, среднее: 4,93 из 5) Загрузка…Схема твердотельного реле на 12В
Схема самодельного электронного реле с мощностью до 10 A 60 В постоянного тока с оптически изолированным входом, предназначенное на замену обычным электромагнитным. Твердотельное реле (SSR — солид стейт реле) — это электронное устройство переключения, что включается или выключается, когда малое внешнее напряжение подается через контакты управления. Чаще всего оно состоит из оптопары, которая реагирует на соответствующий входной сигнал (сигнал управления), и полупроводниковый электронное переключающее устройство, которое переключает нагрузку. Упрощённая схема и подключение показана ниже:Данный проект позволяет заменить обычные 12-вольтовые электромагнитные реле универсального назначения, часто используемые в устройствах автоматики, автомобилях и другой аппаратуре, на более надёжные и скоростные электронные. Схема была разработан на базе IGBT/МОП оптопары TLP250/352, которая работает драйвером полевого транзистора MOSFET IRFP260. Реле состоит из оптически изолированного драйвера затвора и МОП-транзистора с низким сопротивлением канала. Сочетание низкого сопротивления и высокой возможной мощности нагрузки делают это реле подходящим для различных устройств переключения. Устройство обеспечивает изоляцию 3 кВ от входа до выхода.SSR реле, предназначенное для переключения нагрузок постоянного тока до 10 ампер. Оно выполняет ту же функцию, что и любое электромеханические реле, но не имеет движущихся частей. Твердотельные реле имеют намного более быстрое время переключения по сравнению с электромеханическими, и не изнашивается. Входной триггер предназначен под напряжения 3 — 9 В постоянного тока (1,5 — 12 Вольт с транзистором), а выходная нагрузка под питание 12 — 100 В постоянного тока.- Входной управляющий сигнал 1,5 — 12 В постоянного тока
- Оптимальное напряжение самой схемы VCC 12 — 18 В
- Питание нагрузки 12 — 60 В постоянного тока
- Частота входного сигнала до 50 кГц
- Напряжение изоляции 3 kV
Примечание: нужно увеличить резистор на светодиоде, если питание нагрузки выше чем 24 В.
Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Драйвер затвора необходимо питать в пределах 12 — 18 В постоянного тока. Теплоотвод необходим только для предельной нагрузки. До 5-ти ампер можно не ставить.Другие новости по теме:
Электрооборудование – nandatapew.ru
Электрооборудование – nandatapew.ru Главная / Товары для дома, сада и огорода / ЭлектрооборудованиеОтображение 1–40 из 56
Автоматика для дома и дачи
(7)Актуаторы и моторы
(8)Блоки питания
(7)Вентиляторы
(19)Инверторы
(1)Нагревательные элементы
(7)Термореле
(2)Электромагнитные и твердотельные реле
(5)Концевик для мотора
160руб. В корзину Быстрый заказАктуатор (линейный привод) длина 50 мм, питание 12 вольт , нагрузка до 130 кг, скорость 7 мм/сек
3250руб. В корзину Быстрый заказАктуатор (линейный привод) длина 100 мм, питание 12 вольт , нагрузка до 130 кг, скорость 7 мм/сек
3560руб. В корзину Быстрый заказАктуатор (линейный привод) длина 150 мм, питание 12 вольт , нагрузка до 130 кг, скорость 7 мм/сек
3780руб. В корзину Быстрый заказАктуатор (линейный привод) длина 500 мм, питание 12 вольт , нагрузка до 50 кг, скорость 6 мм/сек
4200руб. Подробнее Быстрый заказАктуатор (линейный привод) длина 500 мм, питание 12 вольт , нагрузка до 130 кг, скорость 7 мм/сек
5650руб. В корзину Быстрый заказАктуатор (линейный привод) длина 800 мм, питание 12 вольт , нагрузка до 130 кг, скорость 7 мм/сек
7800руб. В корзину Быстрый заказБлок питания 220V AC / 12V DC 10А
940руб. В корзину Быстрый заказВентилятор радиальный (центробежный) 40х40х20мм 12Вольт GDT4020
420руб. В корзину Быстрый заказВентилятор радиальный (центробежный) 50х40х10мм 12Вольт
420руб. В корзину Быстрый заказВентилятор радиальный (центробежный) 50х50х15мм 12Вольт
420руб. В корзину Быстрый заказВентилятор радиальный (центробежный) 75х75х15мм 12Вольт
440руб. В корзину Быстрый заказВентилятор радиальный (центробежный) 75х75х30мм 12Вольт
420руб. В корзину Быстрый заказОсевой вентилятор корпусной 120х120х25мм 12Вольт
450руб. В корзину Быстрый заказВентилятор радиальный (центробежный) 120х120х32мм 12Вольт GDT12032
810руб. В корзину Быстрый заказОсевой вентилятор корпусной 120х120х38мм 12Вольт
690руб. В корзину Быстрый заказОсевой вентилятор корпусной 200х200х50мм 220 Вольт
2250руб. В корзину Быстрый заказГравитационный клапан для инкубатора
110руб. В корзину Быстрый заказТвердотельное реле 10Ампер 3-32VDC для коммутации переменного тока 24-380VAC
450руб. В корзину Быстрый заказТвердотельное реле 25Ампер 3-32VDC для коммутации постоянного тока 5-60VDC
450руб. В корзину Быстрый заказТвердотельное реле 25Ампер 90-250VAC для коммутации переменного тока 24-380VAC
450руб. В корзину Быстрый заказТвердотельное реле 40Ампер 90-250VAC для коммутации переменного тока 24-380VAC
540руб. Подробнее Быстрый заказТермореле KSD 301_5_1
320руб. Подробнее Быстрый заказТермореле_70_1
115руб. В корзину Быстрый заказГреющий кабель мощностью 40 Вт/м
300руб. Подробнее Быстрый заказГреющий кабель мощностью 20 Вт/м
2150руб. Подробнее Быстрый заказИнвертор преобразователь (150Ватт) DC 12Вольт в AC 220Вольт и 5Вольт USB
1150руб. В корзину Быстрый заказBlauberg Turbo 150
15580руб. В корзину Быстрый заказВентилятор радиальный (центробежный) на подшипнике 97х97х33 мм 12Вольт.
620руб. В корзину Быстрый заказВентилятор радиальный (центробежный) на втулке 97х97х33мм 12Вольт
540руб. Подробнее Быстрый заказBlauberg Turbo 100
19980руб. В корзину Быстрый заказТангенциальный вентилятор 90х30мм (12в)
420руб. В корзину Быстрый заказBlauberg Iso-Mix 100
500руб. Подробнее Быстрый заказBlauberg Iso-Mix 150
19980руб. В корзину Быстрый заказОсевой вентилятор корпусной 120х120х38мм 12Вольт 4500об/мин
980руб. В корзину Быстрый заказВентилятор радиальный (центробежный) на подшипнике 58х56.3х28 мм 12Вольт.
530руб. Подробнее Быстрый заказБлок питания 220V AC / 12V DC 5А small
590руб. В корзину Быстрый заказБлок питания 220V AC / 12V DC 1A.
290руб. В корзину Быстрый заказБлок питания 8А с функцией UPS. Мощность 100 Ватт.
2200руб. Подробнее Быстрый заказБлок питания 220V AC / 12V DC 2A.
410руб. Подробнее Быстрый заказ
Твердотельное реле постоянного тока 12 В с использованием BUZ71A
Полупроводниковое реле предназначено для переключения нагрузки постоянного или переменного тока, некоторые из них могут переключать нагрузки как переменного, так и постоянного тока. Их выход (переменный, постоянный или переменный / постоянный ток) зависит от типа коммутационного устройства, используемого в их схемах, такого как транзистор (МОП или биполярный), симистор или тиристор.
В этом проекте мы создаем твердотельное реле 12 В постоянного тока с использованием оптрона и полевого МОП-транзистора. Твердотельные реле используются вместо механических реле.В механических реле много движущихся частей. Как следует из названия, это реле находится в твердотельном корпусе и не имеет движущихся частей, оно обеспечивает все функции, аналогичные механическому реле, и может включаться и выключаться намного быстрее, чем они.
Компоненты оборудования
S.no | Компонент | Кол-во |
1. | 5-12 В входное питание | 1 |
2. | Оптрон PC817 | 1 |
3. | МОП-транзистор BUZ71A | 1 |
4. | Резисторы (470 Ом, 10 кОм) | 1,1 |
Рабочие
Работа этой схемы довольно проста и понятна. Входной сигнал 5-12 В подается на схему, которая подается на оптрон PC817. Внутренний фототранзистор оптопары активируется и отправляет выходной сигнал, который становится входом полевого МОП-транзистора BUZ71A.МОП-транзистор начинает проводить, и нагрузка постоянного тока, подключенная к транзистору, активируется.
Эта схема может легко управлять нагрузкой постоянного тока 10 ампер. Чтобы управлять более высокой нагрузкой постоянного тока, вы можете использовать высокоамперный MOSFET-транзистор. Например, МОП-транзистор IRFZ44N может управлять нагрузкой 40 ампер. Вы должны использовать радиатор с любым MOSFET-транзистором, который вы используете.
приложений и использует
- Если вы управляете двигателями и т. Д., Эту схему можно использовать в качестве изолятора для ваших микроконтроллеров или проектов Arduino.
- Его можно использовать как схему фиксации.
- Если вам требуется переключение с высокой нагрузкой, вы можете использовать эту схему.
Выход постоянного тока | Идеальная посадка | Панельный монтаж | Продукция
Крепление на панель Perfect Fit
Наше предложение продукции с выходом постоянного тока для панельного монтажа включает широкий спектр твердотельных реле, доступных с номиналами от 3 до 100 А при напряжении от 1 до 1000 В постоянного тока, и твердотельных контакторов с номинальным резистивным током до 160 А при 150 В постоянного тока и номиналами двигателей до до 25 FLA / 3 л.с. при 150 В постоянного тока, в одноканальных конфигурациях и конфигурациях с реверсивным двигателем.
Эти твердотельные реле с выходом постоянного тока для монтажа на панели доступны с технологией MOSFET для обеспечения быстрого и надежного переключения при высоких токах и могут быть легко установлены на металлическую пластину или радиатор с помощью 2 монтажных винтов.
Показано 9 товаров
PowerPlus Series
- Выход MOSFET, полупроводниковое реле постоянного тока
- Номинальные характеристики от 10 до 100 А при 1-500 В постоянного тока
- Дополнительная крышка IP20 с защитой от прикосновения
1-DC Серия
- Выход MOSFET Твердотельное реле постоянного тока
- Номинальные характеристики от 7 до 40 А при 1-500 В постоянного тока
- Высокая скорость переключения
D06D Серия
- Выход MOSFET Твердотельное реле постоянного тока
- Номинальные характеристики от 60 до 100 А при 0-60 В постоянного тока
- Гибкий 3.Диапазон управляющего напряжения 5-32 В постоянного тока
Серия DC60
- Экономичный биполярный транзисторный выход Твердотельное реле
- Номинальные параметры 3, 5 и 7 А при 3-48 В постоянного тока
- Дополнительно нормально закрытый выход
Серия 1-DCL
- Выход на полевом транзисторе Твердотельное реле постоянного тока
- Номинальные характеристики от 7 до 40 А при 1-500 В постоянного тока
- Управляющее напряжение постоянного тока
Серия SSC
- Высоковольтный выход IGBT Твердотельное реле постоянного тока
- Номинальное значение 25 А @ 1-1000 В постоянного тока
- Управляющее напряжение постоянного тока
Серия EL
- Твердотельное реле постоянного тока с мини-шайбой
- Номинальные параметры 5 и 10 А при 3-100 В постоянного тока
- Выход полевого МОП-транзистора с низким сопротивлением
Серия HDC
- Сильноточный полупроводниковый контактор постоянного тока
- Номинальные параметры 120 и 160 А при 7-150 В постоянного тока
- Варианты управления входом переменного или постоянного тока
DP4R Series
- Обороты двигателя постоянного тока Твердотельный контактор ersing
- Номинальные параметры 20, 40 и 60 А при 1-48 В постоянного тока
- Дополнительный плавный пуск / плавный останов
Выходное твердотельное реле постоянного тока
Твердотельное реле с выходом постоянного тока, 10 А, 60 В постоянного тока (оптически изолированный вход)
Этот проект был разработан для TLP250 / 352 , который представляет собой драйвер затвора оптопары IGBT / MOSFET от Toshiba, и Mosfet IRFP260 от IR. Это реле состоит из оптически изолированного драйвера затвора и низкоомного Mosfet.Сочетание низкого сопротивления и способности выдерживать высокие токи нагрузки делают это реле пригодным для различных коммутационных приложений. Эти устройства идеально подходят для управления высоковольтными и токовыми нагрузками постоянного тока с твердотельной надежностью, обеспечивая изоляцию 3750 В, от входа до выхода.
Твердотельное реле (SSR) — это электронное переключающее устройство, которое включается или выключается, когда на его управляющие клеммы подается небольшое внешнее напряжение. SSR состоят из оптоизолятора, который реагирует на соответствующий вход (управляющий сигнал), твердотельного электронного переключающего устройства, которое переключает питание на схему нагрузки, и механизма связи, позволяющего сигналу управления активировать этот переключатель без механических частей.Это реле предназначено для переключения нагрузки постоянного тока до 10А. Он выполняет ту же функцию, что и электромеханическое реле, но не имеет движущихся частей. Твердотельные реле имеют высокую скорость переключения по сравнению с электромеханическими реле и не имеют физических контактов, которые могут изнашиваться. Входное триггерное напряжение от 3 до 9 В постоянного тока (от 1,5 до 12 В с транзистором), выходная нагрузка 10 А и питание от 12 до 60 В постоянного тока (также возможно 100 В постоянного тока). Драйвер затвора требует питания от 12 В до 18 В постоянного тока. Радиатор необходим для пиковой нагрузки.
- ПРИМЕЧАНИЕ 1: Q2, R1, J2 являются дополнительными для входного сигнала запуска с низким током
- ПРИМЕЧАНИЕ 2: J1 (VC-J) Закрытие при питании нагрузки и питание логического затвора одинаковы: от 12 В до 18 В постоянного тока для работы с одним входом питания
- ПРИМЕЧАНИЕ 3: Готово, используйте индикатор R4, D1, если напряжение питания выше 24 В постоянного тока
- ПРИМЕЧАНИЕ 4: J3 для катодного заземления в случае входа одиночного импульса
Характеристики
- Питание + В 60 В постоянного тока (возможно 100 В постоянного тока) для нагрузки
- Источник питания VC 12 В — 18 В постоянного тока для драйвера затвора оптопары
- Перемычка J1 для операций с одним источником питания (если напряжение питания нагрузки находится в диапазоне от 12 В до 18 В постоянного тока)
- Ток нагрузки до 10 А (требуется радиатор большого размера для сильноточной нагрузки)
- Два варианта входа: 1.Вход катода анода 2. Вход сигнала через вход базы транзистора
- Входной триггер От 3 до 9 В постоянного тока — анод и катод (изменить значение резистора для триггерного входа 24 В постоянного тока)
- Входной сигнал от 1,5 В до 12 В постоянного тока на базе транзистора (измените значение сопротивления базы для более высокого входа триггера)
- Напряжение изоляции: 3750 В (драйвер затвора)
- Рабочая входная частота до 50 кГц (дополнительную информацию см. В листе технических данных TLP352)
Подключения
- Катод 2.Анод 3. Вход слаботочного сигнала 4. VCC-12V-18V 5. GD-Ground
- + V и GD Источник питания от 12 В до 60 В постоянного тока
- + V и DR Нагрузка (DR-Drain: –загрузка и + V: + Load)
Приложения
- Органы управления двигателем
- Робототехника
- Медицинское оборудование
- Железная дорога / Управление движением
- Бытовая техника
- Промышленный контроль
- Электромагнитное управление
- TEC Драйверы
- Сильноточные драйверы светодиодов
- Низковольтные диммеры для галогенных ламп
- Светодиодные диммеры
- Драйверы катушек Тесла
- Индукционная варочная панель
- Бытовая техника
Схема
Список деталей
Фото
Видео
TLP250 / 352 Datahseet
TLP250_datasheet_ru_20170526 (1)Схема твердотельного реле
(SSR) с использованием полевых МОП-транзисторов
SSR или твердотельные реле — это мощные электрические переключатели, которые работают без механических контактов, вместо этого они используют твердотельные полупроводники, такие как MOSFET, для переключения электрической нагрузки.
SSR могут использоваться для работы с мощными нагрузками за счет небольшого входного триггерного напряжения при незначительном токе.
Эти устройства могут использоваться как для работы с нагрузками переменного тока большой мощности, так и с нагрузками постоянного тока.
Твердотельные релевысокоэффективны по сравнению с электромеханическими реле благодаря нескольким отличительным особенностям.
Основные характеристики и преимущества SSR
Основными особенностями и преимуществами твердотельных реле или SSR являются:
- SSR можно легко построить с использованием минимального количества обычных электронных компонентов. отсутствие механических контактов.
- Твердотельное состояние также означает, что твердотельные реле могут переключаться с гораздо большей скоростью, чем традиционные электромеханические типы.
- SSR не зависят от внешнего источника питания для включения, а извлекают питание от самой нагрузки.
- Они работают с незначительным током и поэтому не разряжают батарею в системах с батарейным питанием. Это также гарантирует незначительный ток холостого хода для устройства.
Базовая концепция работы SSR с использованием полевых МОП-транзисторов
В одном из своих предыдущих постов я объяснил, как двунаправленный переключатель на основе полевого МОП-транзистора можно использовать для управления любой желаемой электрической нагрузкой, как и стандартный механический переключатель, но с исключительными преимуществами.
Та же концепция двунаправленного переключателя MOSFET может быть применена для создания идеального устройства SSR.
Для SSR на основе симистора см. Этот пост и клеммы затвора, соединенные вместе друг с другом.
D1 и D2 — это внутренние диоды соответствующих полевых МОП-транзисторов, которые при необходимости могут быть усилены внешними параллельными диодами.
Входной источник постоянного тока также можно увидеть подключенным к общим клеммам затвор / исток двух полевых МОП-транзисторов. Этот источник питания используется для включения полевых МОП-транзисторов или для постоянного включения полевых МОП-транзисторов во время работы блока SSR.
Источник переменного тока, который может быть до уровня сети, и нагрузка подключены последовательно через два стока полевых МОП-транзисторов.
Как это работает
Работу предлагаемого проданного реле состояния можно понять, обратившись к следующей диаграмме и соответствующим деталям:
При вышеуказанной настройке, из-за подключенного питания входного затвора, T1 и T2 оба во включенном положении.Когда вход переменного тока на стороне нагрузки включен, на левой диаграмме показано, как положительный полупериод проходит через соответствующую пару MOSFET / диод (T1, D2), а на правой диаграмме показано, как отрицательный цикл переменного тока проходит через другой дополняющий MOSFET / диодная пара (Т2, Д1).
На левой диаграмме мы видим, что один из полупериодов переменного тока проходит через T1 и D2 (T2 имеет обратное смещение) и, наконец, завершает цикл через нагрузку.
На правой диаграмме показано, как другой полупериод завершает цепь в противоположном направлении, проводя через нагрузку, T2, D1 (в этом случае T1 имеет обратное смещение).
Таким образом, два полевых МОП-транзистора T1, T2 вместе с соответствующими внутренними диодами D1, D2 позволяют проводить оба полупериода переменного тока, идеально питая нагрузку переменного тока и эффективно выполняя роль SSR.
Создание практической схемы SSR
До сих пор мы изучили теоретическую конструкцию SSR, теперь давайте продвинемся вперед и посмотрим, как можно построить практический модуль твердотельного реле для переключения желаемой мощной нагрузки переменного тока без каких-либо внешних вход постоянного тока.
Вышеупомянутая схема SSR сконфигурирована точно так же, как обсуждалось в предыдущей базовой конструкции.Однако здесь мы находим два дополнительных диода D1 и D2, а также корпусные диоды MOSFET D3, D4.
Диоды D1, D2 используются для определенной цели, так что они образуют мостовой выпрямитель вместе с корпусными диодами D3, D4 MOSFET.
Крошечный выключатель можно использовать для включения / выключения SSR. Этим переключателем может быть геркон или любой слаботочный переключатель.
Для высокоскоростной коммутации вы можете заменить переключатель на оптрон, как показано ниже.
По сути, теперь схема удовлетворяет трем требованиям.
- Он питает нагрузку переменного тока через конфигурацию MOSFET / Diode SSR.
- Мостовой выпрямитель, образованный D1 — D4, одновременно преобразует входной переменный ток нагрузки в выпрямленный и фильтрованный постоянный ток, и этот постоянный ток используется для смещения затворов полевых МОП-транзисторов. Это позволяет МОП-транзисторам надлежащим образом включаться через саму нагрузку переменного тока, независимо от внешнего постоянного тока.
- Выпрямленный постоянный ток дополнительно завершается как вспомогательный выход постоянного тока, который может использоваться для питания любой подходящей внешней нагрузки.
Проблема цепи
При более внимательном рассмотрении приведенной выше конструкции можно предположить, что эта конструкция SSR может иметь проблемы с эффективной реализацией намеченной функции. Это связано с тем, что в момент, когда коммутирующий постоянный ток достигает затвора полевого МОП-транзистора, он начинает включаться, вызывая обход тока через сток / исток, уменьшая напряжение затвора / истока.
Рассмотрим MOSFET T1. Как только выпрямленный постоянный ток начинает достигать затвора T1, он начинает включаться примерно с 4 В и далее, вызывая эффект обхода источника питания через его выводы стока / истока.В этот момент постоянный ток будет изо всех сил пытаться подняться на стабилитроне и начнет падать до нуля.
Это, в свою очередь, приведет к выключению полевого МОП-транзистора, и между стоком / истоком полевого МОП-транзистора и затвором / истоком полевого МОП-транзистора будет происходить постоянная борьба или перетягивание каната, что препятствует правильной работе SSR.
Решение
Решение вышеупомянутой проблемы может быть выполнено с использованием следующей концепции схемы в качестве примера.
Цель состоит в том, чтобы убедиться, что полевые МОП-транзисторы не проводят ток до тех пор, пока на стабилитроне или на затворе / истоке полевых МОП-транзисторов не будет достигнуто оптимальное напряжение 15 В.
Операционный усилитель гарантирует, что его выход срабатывает только после того, как Линия постоянного тока пересекает опорный порог стабилитрона 15 В, что позволяет затворам полевого МОП-транзистора получить оптимальное значение 15 В постоянного тока для проводимости.
Красная линия, связанная с выводом 3 микросхемы IC 741, может быть переключена через оптопару для требуемого переключения от внешнего источника.
Как это работает : Как мы видим, инвертирующий вход операционного усилителя связан с стабилитроном 15 В, который формирует опорный уровень для вывода 2 операционного усилителя. Контакт 3, который является неинвертирующим входом операционного усилителя, подключен к положительной линии. Эта конфигурация гарантирует, что выходной контакт 6 операционного усилителя выдает напряжение 15 В только после того, как его напряжение на контакте 3 достигает отметки 15 В. Действие гарантирует, что полевые МОП-транзисторы проводят только через допустимое оптимальное напряжение затвора 15 В, обеспечивая правильную работу SSR.
Изолированное переключение
Основной особенностью любого SSR является предоставление пользователю возможности изолированного переключения устройства с помощью внешнего сигнала.
Вышеупомянутая конструкция на основе операционного усилителя может быть упрощена с помощью этой функции, как показано в следующей концепции:
Как диоды работают как мостовой выпрямитель
Во время положительных полупериодов ток проходит через D1, 100k, стабилитрон, D3 и обратно к источнику переменного тока.
Во время другого полупериода ток проходит через D2, 100k, стабилитрон, D4 и возвращается к источнику переменного тока.
Ссылка: SSR
Разница между SSR и контактным реле | FAQ | Сингапур
Основное содержание
Вопрос
В чем разница между твердотельными реле и контактными реле?
В твердотельных реледля бесконтактной работы используются полупроводники.Твердотельные реле не сильно отличаются в работе от контактных реле (электромагнитных реле). Однако твердотельные реле состоят из электронных частей без механических контактов. Следовательно, твердотельные реле обладают множеством функций, которые не включают в себя контактные реле.
Используйте оба реле в соответствии с назначением.
Основные характеристики твердотельного реле и контактного реле
Subject | Merit | Solid State Relay | Merit | Контактное реле (электромагнитное реле) |
Шум и скачки напряжения | Да | Ничего | Обратный всплеск происходит при прекращении входного сигнала |
Тема | Merit | Твердотельное реле | Merit | Контактное реле (Электромагнитное реле) | ||
Количество контактных полюсов | Обычно 1a контакт | Да | Доступно несколько контактов | |||
Ток нагрузки | Допускается в несколько раз более высокий ток разряда. И не имеет зоны действия, как небольшая нагрузка . | Требуется обработка, надежность контакта при работе с малым током при большом токе | ||||
Транзит | Разрушение или неисправность / болтовня | Да | Нет дребезга или дребезга | Есть дребезги или дребезжание | ||
Ток утечки | Несколько мкА и несколько мА | Да | Ноль | |||
Шум / скачок | Шум возник во время операции theloss time | Помповый шум возник при использовании индуктивной нагрузки | ||||
Дуга | Да | Ничего | Дуга возникла при средней и большой нагрузке | |||
Ноль -крест функция | Да | Доступно 900 12 | Недоступно | |||
Срок службы | Да | Без ограничений | Приблизительно несколько миллионов раз |
Экологические характеристики
Subject | Merit | Solid State Relay | Merit | Контактное реле (электромагнитное реле) |
Температура | Требуется конструкция радиатора, как самонагрев полупроводникового прибора | Требуется материал корпуса и изменение режима работы . | ||
Звук работы | Да | Ничего | Слышен звук контакта |
MSD Сильноточное твердотельное 4-канальное реле
Мы все бывали там раньше: с нетерпением ждали, когда владелец маслкара выйдет и продемонстрирует свою новую сборку. Они выходят, потянувшись вниз и снимая капюшон. Ваше волнение увеличивается. Они освобождают защелку безопасности и начинают подниматься, когда появляется моторный отсек. Моторный отсек свежо детализирован, провода свечей зажигания хорошо проложены, и все выглядит как победитель.Однако не хватает последних штрихов. Вы быстро замечаете цепочку из четырех 12-вольтных 30-амперных реле и неприлично большой положительный вывод питания, случайно прикрученный к внутренней стенке крыла. Каждое реле имеет серию из пяти проводов, идущих во всех направлениях из-под реле, соединенных только гофрированными плоскими разъемами. Положительный наконечник питания можно использовать в качестве таблицы размеров для всех калибров проводов. Ваше волнение уменьшается, поскольку проводка в моторном отсеке оставляет желать лучшего.
К счастью, компания MSD создала решение, которое вернет электрическую часть вашего маслкара в нужное русло и повысит уровень азарта! Новое сильноточное твердотельное реле — универсальный магазин для всех ваших проводов, позволяющий избавиться от кеша постепенно выведенных из эксплуатации реле.Страх перед подключением уменьшен, так как основной положительный и основной отрицательный — это только по одному проводу. Активация каждого канала может осуществляться через землю или через 12 вольт. Четыре непрерывных 35-амперных выхода требуют только одного провода для подачи питания. Две диагностические светодиодные лампы расположены непосредственно под выходом каждого канала и помогут определить включение и выключение системы, короткие замыкания или чрезмерное потребление тока. Монтаж на двух болтах обеспечивает простоту размещения в различных местах и ориентациях.
В сильноточном твердотельном релеMSD используются винты с резьбой для минимизации проскальзывания провода.
Несмотря на то, что установка проста, удобство использования — это то, что делает продукт ярким. Реле MSD позволяет запитать до четырех элементов через свои четырехканальные 35-амперные выходы, что в сумме составляет 140 ампер. Топливные насосы, электрические вентиляторы и другие устройства, потребляющие большой ток, могут иметь два выделенных канала, работающих параллельно, обеспечивая необходимую мощность. Чтобы избежать вредных скачков напряжения в усилителе, вы можете использовать контроллер широтно-импульсной модуляции в качестве переключателя активации для таких элементов, как вентиляторы с регулируемой скоростью, пока рабочий диапазон составляет от 50 до 90% и остается ниже 150 герц.Реле работает от источника питания 7-20 В, что означает, что у гонщиков с напряжением 16 В не будет проблем с перенапряжением. На случай возникновения проблем в релейный блок встроена автоматическая защита от перегрева, короткого замыкания и перегрузки, а также сброс канала. В довершение ко всему MSD имеет даже годичную производственную гарантию!
Твердотельный блок сильноточного реле MSD — это больше, чем просто спагетти-спагетти для вашего крысиного гнезда из проводов, он позволяет вам войти в современную электронику без затрат на оплату услуг профессионала, предлагая при этом сверхнадежные продукты MSD. имеют.При цене 174,95 доллара это не проблема, и кошелек не будет Герц .
Особенности:
- Работает от источника питания от 7 до 20 вольт
- 4 независимых канала, 35 А каждый непрерывный или 100 А в течение 8 секунд
- Суммарный номинальный длительный ток 140 ампер
- Каналы могут работать параллельно для устройств, требующих одноканальной мощности более 35 А
- Чистый, простой монтаж с минимальным количеством проводов
- Защита от перегрева, короткого замыкания и перегрузки
- Диагностические светодиоды и индикаторы состояния
- Несколько вариантов монтажа
- Активация по одному проводу путем переключения питания или заземления
- Доступен в красном или черном цвете
- ШИМ-сигнал может использоваться в модуле твердотельного реле с максимальной частотой 150 герц и диапазоном рабочего цикла от 50% до 90%.
Для получения дополнительной информации о твердотельном реле MSD щелкните здесь.
Твердотельные реле до 75 А, вверх
переключаемая нагрузка на 900 В постоянного тока POWER-IO также может твердотельные реле, многозонные блоки ssr, настраиваемые входные диапазоны для твердотельных реле реле и многое другое.Дополнительные модели включают: твердотельные реле для переменного тока нагрузки, переключение переменного тока твердотельное реле + радиатор + монтаж на DIN-рейку и др. твердотельное реле продукты.
Новый, Семья «Е» из E xpanded features: самый быстрый, самый крутой, легкий вес, RoHS, CE, Made в США: HDD-06V75E до 60 В постоянного тока макс., До 75 А, 3-32
VDC активирован Традиционная деталь Номера: были заменены на более новые, более мощные, HDD-E продукты, указанные выше.Пожалуйста, используйте более новые модели, показанные выше. HDD-06V75 до 60 В постоянного тока макс., До 75 А, 4.35-32
VDC активирован | Новый, «Е»
семейство or |