Почему электроэнергию передают под высоким напряжением – Почему электрическую энергию передают на большие расстояния под высоким напряжением?

Почему электрическую энергию передают на большие расстояния под высоким напряжением?

Главная причина потерь при передаче электроэнергии — нагревание проводов, то есть превращение электрической энергии во внутреннюю.

Напомним, что согласно закону Джоуля-Ленца при прохождении тока в проводнике выделяется количество теплоты где — сила тока, — сопротивление проводника, — время прохождения тока (см. § 10. Работа и мощность постоянного тока). Следовательно, чтобы уменьшить нагревание проводов, надо уменьшать их сопротивление и силу тока в них.

Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, но очень толстые провода слишком тяжелы и, кроме того, на них пошло бы много дорогой меди. Так что «главный резерв» борьбы с потерями — уменьшение силы тока в проводах.

Силу тока действительно можно уменьшить, причем многократно, но — ценой повышения напряжения во столько же раз, так как передаваемая потребителю мощность равна произведению где — напряжение в сети.

При заданной мощности сила тока Подставляя это выражение в выражение получаем откуда следует, что при заданной передаваемой мощности и заданном сопротивлении проводов  «тепловые потери» в проводах обратно пропорциональны квадрату напряжения

А это значит, что при повышении напряжения в тысячу раз потери на нагревание проводов уменьшаются в миллион раз!

fizikaklass.ru

Зачем нужно высокое напряжение? | Энергия

Задумывались ли вы, зачем для передачи электроэнергии на большое расстояние нужно такое высокое напряжение, заставляющее строить высокие башни-опоры и гигантские изоляторы? Почему бы не передавать электричество низкого напряжения по сверхпрочным проводам, протянутым между скромными сооружениями или даже под землей? Тому есть причина.

Для заданной мощности электроэнергии, потребляемой конечными потребителями (нагрузка сети), сила тока в линиях электропередачи с ростом напряжения понижается. Уменьшение силы тока сокращает потери электроснабжения в линии электропередачи. Обратившись к формуле из школьного курса физики, вы поймете почему:

Р = EI,

где Р — мощность в ваттах, Е — напряжение в вольтах, а / — сила тока в амперах. Из нее следует, что на данном уровне мощности сила тока обратно пропорциональна напряжению:

I = Р/Е.

Потери электроснабжения (т. е. потери мощности) в линии электропередачи пропорциональны квадрату силы тока. Эти потери — мощности, которые не доходят до конечных потребителей; они уходят на нагрев проводов. Это соотношение описывается следующей формулой:

Р = I2R,

где Р — мощность в ваттах, I — сила тока в амперах, a R — сопротивление провода в омах. Конструкторы не могут изменить сопротивление провода или мощность нагрузки сети, но они могут довести до максимума напряжение, минимизируя таким образом «лишний» ток, который вынуждена нести линия передачи для обеспечения потребности сети.

Предположим, напряжение, подаваемое в сеть, повышается десятикратно, а потребительские нагрузки в сети постоянны. Рост напряжения уменьшает силу тока в десять раз, и в результате потери мощности сокращаются в(1/10)2, т. е. в сто раз! Разумеется, использовать повышающий трансформатор в одном месте проще и дешевле, чем протягивать на многие километры провода, тяжесть которых (без трансформатора) оказывалась бы в сто раз больше.

Вид высоковольтной линии переменного тока под напряжением, скажем, 500 000 вольт страшноват? Возможно. Но угрозу здоровью, исходящую от линий электропередачи (реальный уровень этой угрозы — вопрос спорный), на самом деле несут магнитные поля, генерируемые этими линиями. Сила этих колеблющихся полей прямо пропорциональна силе тока, а не напряжению. Если бы такая линия, проходящая по вашему пригороду, имела напряжение в 500 вольт, а не в 500 000, магнитные поля, окружающие ее, были бы гораздо интенсивнее и потенциальная угроза здоровью, соответственно, выше.

www.enersy.ru

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Передача электроэнергии. Путь от электростанции к потребителю. Сокращение потерь при передаче электроэнергии.

Рассмотрим кратко систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии. Глава расширит кругозор тех, кто хочет научиться грамотно использовать домашнюю электросеть.

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. 1.4 представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В.

От электростанции электроэнергия напряжением 110—750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6—35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В, и по воздушным или кабельным линиям электроэнергия поступает непосредственно к потребителю в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок.
Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на рис. 1.5. Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Потери зависят от величины проходящего тока и диаметра проводника, а не приложенного напряжения.

Например:
Допустим, что с электростанции в город, находящийся от нее на расстоянии 100 км, нужно передавать по одной линии 30 МВт. Из-за того, что провода линии имеют электрическое сопротивление, ток их нагревает. Эта теплота рассеивается и не может быть использована. Энергия, затрачиваемая на нагревание, представляет собой потери.

Свести потери к нулю невозможно. Но ограничить их необходимо. Поэтому допустимые потери нормируют, т. е. при расчете проводов линии и выборе ее напряжения исходят из того, чтобы потери не превышали, например, 10% полезной мощности, передаваемой по линии. В нашем примере это 0,1-30 МВт = 3 МВт.

Например:
Если не применять трансформацию, т. е. передавать электроэнергию при напряжении 220 В, то для снижения потерь до заданного значения сечение проводов пришлось бы увеличить примерно до 10 м2. Диаметр такого «провода» превышает 3 м, а масса в пролете составляет сотни тонн.


Применяя трансформацию, т. е. повышая напряжение в линии, а затем, снижая его вблизи расположения потребителей, пользуются другим способом снижения потерь: уменьшают ток в линии. Этот способ весьма эффективен, так как потери пропорциональны квадрату силы тока. Действительно, при повышении напряжения вдвое ток снижается вдвое, а потери уменьшаются в 4 раза. Если напряжение повысить в 100 раз, то потери снизятся в 100 во второй степени, т. е. в 10000 раз.

Например:
В качестве иллюстрации эффективности повышения напряжения укажу, что по линии электропередачи трехфазного переменного тока напряжением 500 кВ передают 1000 МВт на 1000 км.

Линии электропередач

Электрические сети предназначены для передачи и распределения электроэнергии. Они состоят из совокупности подстанций и линий различных напряжений. При электростанциях строят повышающие трансформаторные подстанции, и по линиям электропередачи высокого напряжения передают электроэнергию на большие расстояния. В местах потребления сооружают понижающие трансформаторные подстанции.

Основу электрической сети составляют обычно подземные или воздушные линии электропередачи высокого напряжения. Линии, идущие от трансформаторной подстанции до вводно-распределительных устройств и от них до силовых распределительных пунктов и до групповых щитков, называют питающей сетью. Питающую сеть, как правило, составляют подземные кабельные линии низкого напряжения.

По принципу построения сети разделяются на разомкнутые и замкнутые. В разомкнутую сеть входят линии, идущие к электроприемникам или их группам и получающие питание с одной стороны. Разомкнутая сеть обладает некоторыми недостатками, заключающимися в том, что при аварии в любой точке сети питание всех потребителей за аварийным участком прекращается.

Замкнутая сеть может иметь один, два и более источников питания. Несмотря на ряд преимуществ, замкнутые сети пока не получили большого распространения. По месту прокладки сети бывают наружные и внутренние.

Способы выполнения линий электропередач

Каждому напряжению соответствуют определенные способы выполнения электропроводки. Это объясняется тем, что чем напряжение выше, тем труднее изолировать провода. Например, в квартирах, где напряжение 220 В, проводку выполняют проводами в резиновой или в пластмассовой изоляции. Эти провода просты по устройству и дешевы.

Несравненно сложнее устроен подземный кабель, рассчитанный на несколько киловольт и проложенный под землей между трансформаторами. Кроме повышенных требований к изоляции, он еще должен иметь повышенную механическую прочность и стойкость к коррозии.

Для непосредственного электроснабжения потребителей используются:

♦ воздушные или кабельные ЛЭП напряжением 6 (10) кВ для питания подстанций и высоковольтных потребителей;

♦ кабельные ЛЭП напряжением 380/220 В для питания непосредственно низковольтных электроприемников. Для передачи на расстояние напряжения в десятки и сотни киловольт создаются воздушные линии электропередач. Провода высоко поднимаются над землей, в качестве изоляции используется воздух. Расстояния между проводами рассчитываются в зависимости от напряжения, которое планируется передавать. На рис. 1.6 изображены в одном масштабе опоры для воздушных линий электропередач напряжениями 500, 220, 110, 35 и 10 кВ. Заметьте, как увеличиваются размеры и усложняются конструкции с ростом рабочего напряжения!

Рис. 1.6. Опоры воздушных линий разных напряжений


Например:
Опора линии напряжением 500 кВ имеет высоту семиэтажного дома. Высота подвеса проводов 27 м, расстояние между проводами 10,5 м, длина гирлянды изоляторов более 5 м. Высота опор для переходов через реки достигает 70 м. Рассмотрим варианты выполнения ЛЭП подробнее.

Воздушные ЛЭП
Определение.
Воздушной линией электропередачи называют устройство для передачи или распределения электроэнергии по проводам, находящимся на открытом воздухе и прикрепленным при помощи траверс (кронштейнов), изоляторов и арматуры к опорам или инженерным сооружениям.

В соответствии с «Правилами устройства электроустановок» по напряжению воздушные линии делятся на две группы: напряжением до 1000 В и напряжением свыше 1000 В. Для каждой группы линий установлены технические требования их устройства.

Воздушные ЛЭП 10 (6) кВ находят наиболее широкое применение в сельской местности и в небольших городах. Это объясняется их меньшей стоимостью по сравнению с кабельными линиями, меньшей плотностью застройки и т. д.

Для проводки воздушных линий и сетей используют различные провода и тросы. Основное требование, предъявляемое к материалу проводов воздушных линий электропередачи, — малое электрическое сопротивление. Кроме того, материал, применяемый для изготовления проводов, должен обладать достаточной механической прочностью, быть устойчивым к действию влаги и находящихся в воздухе химических веществ.

В настоящее время чаще всего используют провода из алюминия и стали, что позволяет экономить дефицитные цветные металлы (медь) и снижать стоимость проводов. Медные провода применяют на специальных линиях. Алюминий обладает малой механической прочностью, что приводит к увеличению стрелы провеса и, соответственно, к увеличению высоты опор или уменьшению длины пролета. При передаче небольших мощностей электроэнергии на короткие расстояния применение находят стальные провода.

Для изоляции проводов и крепления их к опорам линий электропередач служат линейные изоляторы, которые наряду с электрической должны также обладать и достаточной механической прочностью. В зависимости от способа крепления на опоре различают изоляторы штыревые (их крепят на крюках или штырях) и подвесные (их собирают в гирлянду и крепят к опоре специальной арматурой).

Штыревые изоляторы применяют на линиях электропередач напряжением до 35 кВ. Маркируют их буквами, обозначающими конструкцию и назначение изолятора, и числами, указывающими рабочее напряжение. На воздушных линиях 400 В используют штыревые изоляторы ТФ, ШС, ШФ. Буквы в условных обозначениях изоляторов обозначают следующее: Т — телеграфный; Ф — фарфоровый; С — стеклянный; ШС — штыревой стеклянный; ШФ — штыревой фарфоровый.

Штыревые изоляторы применяют для подвешивания сравнительно легких проводов, при этом в зависимости от условий трассы используются различные типы крепления проводов. Провод на промежуточных опорах укрепляют обычно на головке штыревых изоляторов, а на угловых и анкерных опорах— на шейке изоляторов. На угловых опорах провод располагают с наружной стороны изолятора по отношению к углу поворота линии.

Подвесные изоляторы применяют на воздушных линиях 35 кВ и выше. Они состоят из фарфоровой или стеклянной тарелки (изолирующая деталь), шапки из ковкого чугуна и стержня. Конструкция гнезда шапки и головки стержня обеспечивает сферическое шарнирное соединение изоляторов при комплектовании гирлянд. Гирлянды собирают и подвешивают к опорам и тем самым обеспечивают необходимую изоляцию проводов. Количество изоляторов в гирлянде зависит от напряжения линии и типа изоляторов.

Материалом для вязки алюминиевого провода к изолятору служит алюминиевая проволока, а для стальных проводов— мягкая стальная. При вязке проводов выполняют обычно одинарное крепление, двойное же крепление применяют в населенной местности и при повышенных нагрузках. Перед вязкой заготовляют проволоку нужной длины (не менее 300 мм).

Головную вязку выполняют двумя вязальными проволоками разной длины. Эти проволоки закрепляют на шейке изолятора, скручивая между собой. Концами более короткой проволоки обвивают провод и плотно притягивают четыре-пять раз вокруг провода. Концы другой проволоки, более длинные, накладывают на головку изолятора накрест через провод четыре-пять раз.

Для выполнения боковой вязки берут одну проволоку, кладут ее на шейку изолятора и оборачивают вокруг шейки и провода так, чтобы один ее конец прошел над проводом и загнулся сверху вниз, а второй — снизу вверх. Оба конца проволоки выводят вперед и снова оборачивают их вокруг шейки изолятора с проводом, поменяв местами относительно провода.

После этого провод плотно притягивают к шейке изолятора и обматывают концы вязальной проволоки вокруг провода с противоположных сторон изолятора шесть-восемь раз. Во избежание повреждения алюминиевых проводов место вязки иногда обматывают алюминиевой лентой. Изгибать провод на изоляторе сильным натяжением вязальной проволоки не разрешается.

Вязку проводов выполняют вручную, используя монтерские пассатижи. Особое внимание обращают при этом на плотность прилегания вязальной проволоки к проводу и на положение концов вязальной проволоки (они не должны торчать). Штыревые изоляторы крепят к опорам на стальных крюках или штырях. Крюки ввертывают непосредственно в деревянные опоры, а штыри устанавливают на металлических, железобетонных или деревянных траверсах. Для крепления изоляторов на крюках и штырях используют переходные полиэтиленовые колпачки. Разогретый колпачок плотно надвигают на штырь до упора, после этого на него навинчивают изолятор.

Провода подвешиваются на железобетонных или деревянных опорах при помощи подвесных или штыревых изоляторов. Для воздушных ЛЭП используются неизолированные провода. Исключением являются вводы в здания — изолированные провода, протягиваемые от опоры ЛЭП к изоляторам, укрепленным на крюках непосредственно на здании.

Внимание!
Наименьшая допустимая высота расположения нижнего крюка на опоре (от уровня земли) составляет: в ЛЭП напряжением до 1000 В для промежуточных опор от 7 м, для переходных опор — 8,5 м; в ЛЭП напряжением более 1000 В высота расположения нижнего крюка для промежуточных опор составляет 8,5 м, для угловых (анкерных) опор — 8,35 м.

Наименьшие допустимые сечения проводов воздушных ЛЭП напряжением более 1000 В, выбираемые по условиям механической прочности с учетом возможной толщины их обледенения, приведены в табл. 1.1.

Минимально допустимые значения проводов возжушныхЛЭП напряжением более 1000 В
Таблица 1.1

Внимание!
Для воздушных ЛЭП напряжением до 1000 В по условиям механической прочности применяются провода, имеющие сечения не менее: алюминиевые —16 мм2; сталеалюминиевые —10 мм2; стальные однопроволочные — 4 мм2. На воздушных ЛЭП напряжением до 1000 В устанавливают заземляющие устройства. Расстояние между ними определяется числом грозовых часов в году:

♦    до 40 часов — не более 200 м;
♦    более 40 часов — не более 100 м.

Сопротивление заземляющего устройства должно быть не более 30 Ом.

Допустимые расстояния от нижних проводов воздушных ЛЭП напряжением до 1000 В и до 10 кВ и их опор до объектов представлены в табл. 1.2.

Таблица 1.2

elektrikvolt.blogspot.com

§ 12 учебника К.Ю Богданова для 11 класса

§ 13. Передача электроэнергии

Для уменьшения потерь электроэнергии при её передаче на дальние расстояния напряжение в сети увеличивают до нескольких сотен киловольт. 

Электроэнергия необходима повсюду. Однако теплоэлектростанции выгоднее строить там, где топливо дешевле, а электростанции – только на мощных реках, иначе стоимость электроэнергии будет неоправданно высокой. Поэтому потребители электроэнергии, производимой в сравнительно немногих местах, часто находятся на очень больших расстояниях от электростанций.

Передавать электроэнергию от мест её производства к потребителям необходимо с минимальными потерями. Главная причина этих потерь – превращение части электроэнергии во внутреннюю энергию проводов, их нагрев. Согласно закону Джоуля-Ленца, количество теплоты Q, выделяемое за время t в проводнике сопротивлением R при прохождении тока I , равно:

 

   Из (13.1) следует, что для уменьшения нагрева проводов необходимо уменьшать силу тока в них и их сопротивление. Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, однако, очень толстые провода, висящие между опорами линий электропередач, могут оборваться под действием силы тяжести, особенно, при снегопаде. Кроме того, при увеличении толщины проводов растёт их стоимость, а они сделаны из относительно дорогого металла, меди. Поэтому более эффективным способом минимизации энергопотерь при передаче электроэнергии служит уменьшение силы тока в проводах.

Таким образом, чтобы уменьшить нагрев проводов при передаче электроэнергии на дальние расстояния, необходимо сделать силу тока в них как можно меньше. Как известно, мощность тока равна произведению силы тока на напряжение. Значит, для сохранения мощности, передаваемой на дальние расстояния, надо во столько же раз увеличить напряжение, во сколько была уменьшена сила тока в проводах.

Пусть P — мощность, передаваемая потребителю электроэнергии при напряжении в сети, равном U. Если в формуле (13.1) силу тока I заменить на P/U, то она преобразуется в :

из которой следует, что при постоянных значениях передаваемой мощности тока и сопротивления проводов потери на нагрев в проводах обратно пропорциональны квадрату напряжению в сети. Например, при увеличении напряжения в 10 раз потери электроэнергии при её передаче уменьшатся в 100 раз. Поэтому для передачи электроэнергии на расстояния в несколько сотен километров используют высоковольтные линии электропередач (ЛЭП), напряжение между проводами которых составляет десятки, а иногда сотни тысяч вольт.

Высокое напряжение опасно для жизни, и поэтому напряжение в электрических сетях потребления последовательно уменьшают на трансформаторных подстанциях: сначала до 4-40 кВ для магистральной сети, разводящей электроэнергию по улицам и дорогам, а потом до 120-240 В для распределительной сети бытовых и коммерческих потребителей (см. рис. 13).

С помощью ЛЭП соседние электростанции объединяются в единую сеть, называемую энергосистемой. Единая энергосистема России включает в себя огромное число электростанций, управляемых из единого центра и обеспечивает бесперебойную подачу электроэнергии потребителям.

Вопросы для повторения:

·        Почему электроэнергию передают на дальние расстояния по высоковольтным линиям электропередач?

·        Во сколько раз уменьшатся потери электроэнергии при её передаче, связанные с нагревом проводов, при повышении напряжения в сети в 100 раз?

·        Почему при потреблении электроэнергии напряжение в сети уменьшают?

·        В чём заключается преимущество переменного тока перед постоянным при передаче электроэнергии на дальние расстояния.

 


 

Рис. 13. Схема передачи и распределения электроэнергии. 1 – тепловая электростанция; 2 – трансформаторная подстанция, повышающая напряжение; 3 – мачты высоковольтной линии электропередач; 4 - трансформаторная подстанция, понижающая напряжение; 5 – магистральная сеть; 6 – понижающий трансформатор.

kaf-fiz-1586.narod.ru

Почему электроэнергию на большие расстояния передают под…

Ответ оставил Гость

Рассмотрим систему электроснабжения, представляющую из себя группу электротехнических устройств для передачи, преобразования, распределения и потребления электрической энергии. 

Снабжение электроэнергией осуществляется по стандартным схемам. Например, на рис. ниже представлена радиальная однолинейная схема электроснабжения для передачи электроэнергии от понижающей подстанции электростанции до потребителя электроэнергии напряжением 380 В. 

Радиальная однолинейная схема электроснабжения 

От электростанции электроэнергия напряжением 110…750 кВ передается по линиям электропередач (ЛЭП) на главные или районные понижающие подстанции, на которых напряжение снижается до 6…35 кВ. От распределительных устройств это напряжение по воздушным или кабельным ЛЭП передается к трансформаторным подстанциям, расположенным в непосредственной близости от потребителей электрической энергии. На подстанции величина напряжения снижается до 380 В и по воздушным или кабельным линиям поступает непосредственно к потребителю электроэнергии в доме. При этом линии имеют четвертый (нулевой) провод 0, позволяющий получить фазное напряжение 220 В, а также обеспечивать защиту электроустановок. 

Такая схема позволяет передать электроэнергию потребителю с наименьшими потерями. Поэтому на пути от электростанции к потребителям электроэнергия трансформируется с одного напряжения на другое. Упрощенный пример трансформации для небольшого участка энергосистемы показан на следующем рисунке. 

Пример трансформации электроэнергии при передаче потребителю 

Зачем применяют высокое напряжение? Расчет сложен, но ответ прост. Для снижения потерь на нагрев проводов при передаче на большие расстояния.

Оцени ответ

reshebka.com

Как передается электроэнергия на расстоянии к потребителям

Ни для кого не секрет, что электричество в наш дом попадает от электростанций, являющихся основными источниками электроэнергии. Однако между нами (потребителями) и станцией может быть сотни километров и через все это дальнее расстояние ток должен каким-то образом передаваться с максимальным КПД. В этой статье мы, собственно, и рассмотрим, как передается электроэнергия на расстоянии к потребителям.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто. Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности. Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП. К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно. Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д. Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт).

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:

Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Что еще важно знать?

Также хотелось пару слов сказать о моментах, которые пересекаются с этим вопросом. Во-первых, уже достаточно долго проводятся исследования на тему того, как осуществить передачу электроэнергии без проводов. Существует множество идей, но самым перспективным на сегодняшний день решением является использование беспроводной технологии WI-Fi. Учёные из Вашингтонского университета выяснили, что этот способ вполне реален и приступили к более подробному исследованию вопроса.

Во-вторых, на сегодняшний день по ЛЭП передается переменный ток, а не постоянный. Это связано с тем, что преобразовательные устройства, которые сначала выпрямляют ток на входе, а потом снова делают его переменным на выходе, имеют достаточно высокую стоимость, что экономически не целесообразно. Однако все же пропускная способность линий электропередач постоянного тока в 2 раза выше, что также заставляет думать над тем, как ее более выгодно осуществить.

Вот мы и рассмотрели схему передачи электричества от источника к дому. Надеемся, вам стало понятно, как передается электроэнергия на расстоянии к потребителям и почему для этого используют высокое напряжение.

Будет интересно прочитать:

samelectrik.ru

почему необходимо Повышать напряжение при передаче электроэнергии на большие расстояния?

Потому что чем длиннее провода, тем больше их сопротивление, а чем оно больше, тем больше падение напряжения… Физику нужно учить…

Как думаешь, каково сопротивление проводов на таких расстояниях? И сколько на этом теряется? Они фактически сами себя и воздух греют.

Для уменьшения потерь при передаче

Из-за сопротивления проводов

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *