Литиевый аккумулятор своими руками: Как сделать литиевый аккумулятор (батарею) своими руками

Содержание

Как сделать литиевый аккумулятор (батарею) своими руками

Категория: Поддержка по аккумуляторным батареям
Опубликовано 15.04.2016 19:45
Автор: Abramova Olesya


Первым этапом создания литий-ионного аккумулятора является определение требований к значению напряжения и необходимому времени работы. Затем уточняются характеристики нагрузки, окружающей среды, габаритные размеры и вес. У современных портативных устройств будут повышенные требования к толщине аккумулятора, поэтому предпочтительным будет выбор призматического или даже бескорпусного форматов. Если же толщина не будет определяющим фактором, то выбор цилиндрических элементов типоразмера 18650 в качестве структурных частей позволит обеспечить более низкую стоимость и лучшую производительность (с точки зрения удельной энергоемкости, безопасности и долговечности). (Смотрите также BU-301a: Разнообразие форм электрических батарей

).

Большинство аккумуляторов, используемых в медицинском оборудовании, электроинструменте, электровелосипедах и даже электромобилях, используют элементы типоразмера 18650. Казалось бы, использование этого цилиндрического элемента не особо практично из-за большого занимаемого им объема, но его сильные стороны, такие как развитая и массовая технология производства, а также низкая стоимость ватт-часа утверждают обратное.

Как уже говорилось выше, цилиндрическая форма элемента не является идеальной, поскольку она приводит к образованию пустого пространства в многоэлементных системах. Но если рассматривать вопрос с точки зрения необходимости охлаждения, то этот недостаток превращается в преимущество. К примеру, элементы типоразмера 18650 используются в электромобиле Tesla S85, где их суммарное количество достигает 7000 штук. Эти 7000 элементов формируют сложную аккумуляторную систему, где используется и последовательное соединение для увеличения напряжения, и параллельное – для увеличения силы тока.

В случае выхода из строя одного элемента в последовательном соединении потеря мощности будет минимальна, а в параллельном такой элемент отключится системой защиты. Соответственно, нет зависимости всего аккумулятора от единичных элементов, что позволяет более стабильную эксплуатацию.

У производителей электромобилей нет единого мнения по поводу использования типоразмеров, но существует тенденция к использованию более крупных форматов, так как это уменьшает общее количество элементов в аккумуляторе и соответственно снижает стоимость системы защиты. Экономия может достигать 20-25 процентов. Но с другой стороны, использование больших элементов приводит к удорожанию суммарной стоимости кВт*ч. По данным за 2015 год, именно Tesla S85 с элементами типоразмера 18650 имеет более низкую стоимость ватт-часа в сравнении с электромобилями, использующими большие призматические аккумуляторы. В таблице 1 сравнивается стоимость кВт*ч различных электромобилей.

Модель Тип элемента Стоимость кВт*ч Удельная энергоемкость
Tesla S85, 90 кВт (2015)* 18650 $260/кВт*ч 250 Вт/кг
Tesla 48кВт Gen III 18650 $260/кВт*ч 250 Вт/кг
Лучшие модели с DoE/AABC бескорпусная/призматическая $350/кВт*ч 150-180 Вт/кг
Nissan Leaf, 30 кВт (2016)* бескорпусная/призматическая $455/кВт*4 80-96 Вт/кг
BMW i3 бескорпусная/призматическая нет данных 120 Вт/кг

Таблица 1: Сравнение стоимости ватт-часа различных моделей электромобилей.

Массовое производство элементов типоразмера 18650 удешевляет использующие их аккумуляторы.

* В 2015-2016 году в Tesla S85 увеличилась мощность аккумулятора с 85 кВт*ч до 90 кВт*ч. В Nissan Leaf также произошло увеличение — с 25 кВт*ч до 30 кВт*ч.

Разрабатываемый аккумулятор должен соответствовать нормам безопасности не только при стандартной работе, но и в случае выхода из строя. Все источники энергии, и электрические батареи не исключение, в конечном итоге вырабатывают свой ресурс и приходят в негодность. Бывают и случаи преждевременного, непрогнозируемого выхода из строя. Например, после некоторых инциндентов, бортовой литий-ионный аккумулятор лайнера Боинг 787 помещен в специальный металлический контейнер с вентилированием наружу. В электромобилях Tesla аккумуляторный отсек дополнительно защищается стальной пластиной во избежание проникающих повреждений.

Большие аккумуляторные системы для высоконагруженных систем имеют принудительное охлаждение. Оно может быть реализовано в виде отвода тепла радиатором, а может включать в себя вентилятор для подачи холодного воздуха. Также существуют системы с жидкостным охлаждением, но они довольно дорогие, и используются, как правило, в электромобилях.

Уважающие себя производители электрических элементов не поставляют литий-ионные элементы несертифицированным компаниям-производителям аккумуляторов. Эта мера предосторожности вполне оправдана, так как схема защиты в конструируемом аккумуляторе может быть некорректно настроена ради завышения показателей, и элементы будут заряжаться и разряжаться не в безопасном интервале напряжений.

Стоимость сертифицированной аккумуляторной системы для воздушного транспорта или для иного коммерческого использования может составлять от $ 10000 до $ 20000. Столь высокая цена вызывает беспокойство, особенно зная о том, что производители периодически меняют используемые в таких системах электрические элементы. Аккумуляторная система с такими новыми элементами хоть и будет указана в качестве прямой замены более старой, снова будет требовать новых сертификатов.

Часто задают вопрос: ”Зачем нужна сертификация аккумулятора, если элементы, из которых он состоит, уже одобрены?”. Ответ довольно прост — конечное устройство, аккумулятор, также должно быть проверено на соответствие стандартам безопасности и правильность сборки. К примеру, неисправность той же схемы защиты может привести к возгоранию или даже взрыву, а ее тестирование возможно только в готовом аккумуляторе.


Аккумуляторы EverExceed

 

OPzS
NI-CD OPzV
20 лет / 1500 циклов 25 лет / 2000 циклов 20 лет / 1500 циклов
для промышленного и частного применения: телекоммуникации, аварийное освещение, солнечные электростанции, системы безопасности, (UPS) источники бесперебойного питания и т.д.

Согласно правилам, установленным ООН, аккумулятор должен пройти механические и электрические тесты, чтобы соответствовать требованиям, регламентирующим возможность воздушной транспортировки. Эти правила (UN/DOT 38.3) работают совместно с рекомендациями Федерального Управления Гражданской Авиации (FAA), Департамента Транспорта США (US DOT) и Международной Ассоциации Воздушного Транспорта (IATA)*. Сертификация распространяется на первичные и вторичные литиевые батареи.

Правила ООН 38.3 включают в себя такие тесты:

  • Т1 — Имитация работы на высоте (первичные и вторичные батареи)

  • Т2 — Температурные испытания (первичные и вторичные батареи)

  • Т3 — Вибрация (первичные и вторичные батареи)

  • Т4 — Удар (первичные и вторичные батареи)

  • Т5 — Внешнее короткое замыкание (первичные и вторичные батареи)

  • Т6 — Механическое воздействие (первичные и вторичные батареи)

  • Т7 — Перезарядка (вторичные батареи)

  • Т8 — Принудительный разряд (первичные и вторичные батареи)

Испытуемые электрические батареи должны пройти испытания, не причинив вреда окружающему пространству, сохранение ими работоспособности после тестов не играет никакой роли.

Эти испытания предназначены исключительно для тестирования безопасности, а не потребительских качеств. Уполномоченная лаборатория, проводящая эти тесты, нуждается в 24 образцах батарей, 12 новых и 12 прошедших 50 циклов заряда/разряда. Присутствие уже используемых аккумуляторов гарантирует более реалистичное качество выборки.

Высокая стоимость сертификации является неподъемной для небольших производителей литий-ионных батарей, поэтому конечная цена сертифицированных моделей довольно высока. Но у потребителей есть выбор — вместо сертифицированного литий-ионного вполне можно приобрести аккумулятор на основе никеля, транспортировка которого не регламентируется так строго. (Смотрите BU-704: Транспортировка электрических батарей.)

2. Рекомендации по работе с литий-ионными батареями
  • Соблюдайте осторожность при работе и тестировании аккумуляторов.

  • Не допускайте короткого замыкания, перезарядки, сдавливания, падения, проникновения посторонних предметов, применения обратной полярности, воздействия высокой температуры на аккумулятор.

  • Не разбирайте аккумулятор.

  • Используйте только оригинальные литий-ионные аккумуляторы и зарядные устройства.

  • Следует прекратить эксплуатацию аккумулятора и/или зарядного устройства при чрезмерном нагреве.

  • Следует помнить, что вещество электролита легковоспламеняемое и взрыв или возгорание аккумулятора может привести к травмам.

* Международная ассоциация воздушного транспорта работает с авиакомпаниями и воздушной транспортной отраслью для обеспечения безопасности, надежности и экономичности авиаперевозок.

Самодельные домашние батареи на 30-100 кВтч делают из аккумуляторов выброшенных ноутбуков

В мае 2015 года Илон Маск представил красивые домашние блоки Powerwall, чтобы хранить энергию от солнечных батарей с крыши — и снабжать бесплатным электричеством весь дом днём и ночью. Даже при отсутствии солнечных батарей такое резервное питание для дома особенно ценно, если в квартале отключили электричество. Компьютер и вся техника продолжат спокойно работать.

Вторая версия Powerwall хранит до 13,5 кВтч, чего должно хватить на несколько часов (стандартная мощность 5 кВт, а в пике 7 кВт). Проблема лишь в том, что оригинальная версия от Tesla стоит аж $5500 (плюс $700 за сопутствующее оборудование, итого $6200, плюс работы по установке стоят от $800 до $2000) — очень дорого. DIY-мейкеры решили эту проблему с помощью бэушных батареек, которые лежат бесплатно в выброшенных ноутбуках.

Своими руками можно собрать блок с лучшими характеристиками, чем у Tesla (например, на 30-100 кВтч) — и намного дешевле.

Энтузиасты DIY-сборки делятся опытом на специализированных форумах DIY Powerwalls, в группе на Facebook и на YouTube. Специальный раздел на форумах посвящён безопасности — это важный аспект, когда собираешь такую мощную штуку, которая может ещё и загореться на улице (их обычно устанавливают за пределами дома, чтобы не нарушать закон и из безопасности).

Для мейкеров сборка и подключение такого блока питания — не только интересное занятие и экономия денег, но ещё и возможность разобраться, как работает электрика в доме.

Практически все энтузиасты в комментарии Motherboard отметили, что их собственные системы получаются гораздо большей ёмкости, чем у Tesla. Вероятно, компания пожертвовала ёмкостью ради красивого тонкого дизайна блока питания и ради большей эффективности охлаждения и безопасности. Один из французских мейкеров с форума под ником Glubux собрал блок на 28 кВтч. Он говорит, что этого хватает для всего дома, и пришлось даже купить электрическую духовку и индукционную плиту, чтобы куда-то расходовать излишки энергии.

Австралийский мейкер Питер Мэтьюс собрал блок на 40 кВтч, который питается от 40 солнечных панелей на крыше, благо в Австралии нет недостатка солнечных дней.

Самый большой самодельный блок, который удалось найти Motherboard, собран из 22 500 ячеек от ноутбуков и имеет ёмкость более 100 кВтч. От такого блока маленький дом может работать несколько месяцев — например, всю зиму — даже если солнечные панели полностью вышли из строя или неактивны.

А калифорнийский блогер Джеху Гарсия намерен собрать из батареек ноутбука систему на 1 мегаватт, крупнейшую подобную систему частного хранения энергии в США.

Большинство энтузиастов использует при сборке литий-ионные аккумуляторы модели 18650. Они обычно упакованы в цветные пластиковые корпуса и устанавливаются в ноутбуки и другую электронику. Новые аккумуляторы 18650 стоят около $5 за штуку, так что система выйдет немногим дешевле модели от Tesla. Поэтому сборщики обычно скупают бэушные аккумуляторы и вынимают аккумуляторы из выкинутых сломанных ноутбуков. К сожалению, многие люди просто выкидывают аккумуляторы вместе со сломанным ноутбуком, хотя они ещё вполне рабочие. По словам директора крупнейшей в США компании по переработке батарей Call2Recycle, около 95% аккумуляторов не используются повторно, а заканчивают свой путь на свалке, хотя почти все типы батарей могут быть использованы повторно в том или ином виде.

Найти достаточное количество выброшенной техники не так просто, а в последнее время стало ещё труднее, потому что многие люди начали собирать из них собственные энергетические системы вроде Powerwall, а производители ноутбуков вообще не поощряют повторное использование их аккумуляторов в самодельной технике не их фирмы.

После находки батарей их тестируют, затем «обновляют» через cycling с полным разрядом. Потом батареи объединяет в «упаковки». Такие коробки для сотни батарей можно купить на рынке или собрать самостоятельно. Наверх прикрепляют электропроводящие медные «шины» (busbars), а к ним припаивают контакты батарей.

Вся структура прикрепляются к инвертору и монтируется в стойке, которая устанавливается обычно на улице. Можно установить там систему мониторинга для контроля температуры с автоматическим отключением банков энергии, которые слишком сильно разогрелись.

Сейчас уже сформировалось целое сообщество мейкеров со всего мира, которые конструируют такие «аккумуляторные домашние фермы» из старых батарей ноутбуков, чтобы хранить электричество от солнечных батарей. Сообщество объединяет энтузиастов со всего мира, они делятся опытом и советами по безопасности, инженерным системам, совместимости разных типов батарей и т. д. Успех и безопасность Powerwall доказала, что это действительно безопасные системы, пригодные для постоянного долговременного использования (у Powerwall гарантия 10 лет).

Схемы контроллеров заряда-разряда Li-ion аккумуляторов и микросхемы модулей защиты литиевых батарей

Содержание статьи:

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

ОбозначениеПорог отключения по перезаряду, ВГистерезис порога перезаряда, мВПорог отключения по переразряду, ВПорог включения перегрузки по току, мВ
R5421N111C4.250±0.0252002.50±0.013200±30
R5421N112C4.350±0.025
R5421N151F4.250±0.025
R5421N152F4.350±0.025

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

ОбозначениеПорог отключения по перезаряду, ВГистерезис порога перезаряда, мВПорог отключения по переразряду, ВПорог включения перегрузки по току, мВ
SA57608Y4.350±0.0501802.30±0.070150±30
SA57608B4.280±0.0251802.30±0.05875±30
SA57608C4.295±0.0251502.30±0.058200±30
SA57608D4.350±0.0501802.30±0.070200±30
SA57608E4.275±0.0252002.30±0.058100±30
SA57608G4.280±0.0252002.30±0.058100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Схемы правильных зарядок для литиевых аккумуляторов приведены в этой статье.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

Как из литиевого аккумулятора сделать батарейку на 9 вольт, своими руками, для замены обычной Кроны.

Вашему вниманию предлагаю достаточно полезную штуку, а именно схему, которая позволяет получать из литиевого аккумулятора более высокие постоянное напряжение. Конкретно в этой статье я рассматриваю увеличитель напряжения до 9 вольт, который можно использовать для замены обычных 9-ти вольтовых батареек типа Крона. Ведь допустим такие батарейки при токе потребления более 10 мА могут работать всего около 30-100 часов, что в принципе достаточно мало. А стоимость их не так уж и мала. Но поскольку в наше время очень популярными и распространенными являются литиевые аккумуляторы, то почему бы самому не сделать такую вот аккумуляторную батарейку, которой будет хватать на гораздо больше времени, после чего аккумулятор нужно будет просто заново зарядить.

Предлагаемый вариант собран на основе дешевых, Китайских модулей, но работающих вполне хорошо. Ну, и одной простой самодельной схемы светодиодного индикатора разряда литиевого аккумулятора. Итак, для нашей аккумуляторной батареи на 9 вольт понадобится следующие компоненты:

1 » литиевый аккумулятор с подходящей емкостью;
2 » модуль контроля заряда аккумулятора Li-ion;
3 » модуль DC-DC преобразователя, повышающего напряжение;
4 » несколько электронных компонентов для схемы индикатора разряда.

Итак, допустим мы делаем аккумуляторную батарею для установки ее в обычный электронный мультиметр. Токи потребления у мультиметра относительно небольшие. Значит можно взять литиевый аккумулятор емкостью около 300-800 мА. Как известно, приемлемый диапазон заряда литиевых аккумуляторов колеблется в районе 3,5 вольт, что соответствует остаточному заряду около 10%, и 4,2 вольта, что соответствует 100% заряду батарей. Учтите, что литиевые аккумуляторы очень сильно не любят перезаряд и чрезмерный разряд. Они при этом очень быстро портятся и выходят из строя. Именно для защиты аккумуляторной батареи и нужны контроллеры и индикаторы заряда и разряда.

Чтобы безопасно заряжать свой литиевый аккумулятор нужно приобрести специальный модуль контроля заряда именно для аккумуляторов литиевого типа. Эти модули сейчас приобрести можно где угодно, и стоят они практически копейки. Их работа заключается в следующем. На них имеются гнезда для подключения обычного зарядного устройства от любого мобильного телефона. Также имеются и контакты, к которым припаиваются сами выводы аккумуляторов. Несмотря на то, что модули подключены параллельно батареям, они в ждущем режиме совсем не потребляют тока. Когда аккумулятор разряжен, мы просто к модуля контроля заряда подсоединить зарядное устройство, после чего на нем загорается красный светодиод. Это свидетельствует о процессе заряда литиевого аккумулятора. Когда заряд достигнет своего 100% уровня, то контроллер сам отключит подачу питания на батарею и при этом на модуле зажжётся синий светодиод.

Далее нам нужно приобрести для нашего устройства еще одни недорогой модуль, который будет увеличивать напряжение до нужных 9 вольт. Такой модуль называется MT3608. Приобрести его также не составит особого труда, он популярен и распространен. Стоит практически копейки. Этот модуль DC-DC преобразователя постоянного напряжения имеет следующие рабочие характеристики: на вход можно подавать постоянное напряжение величиной от 2 до 24 вольта, а на выходе можно получать любое постоянное напряжение в районе от 5 до 28 вольт. Максимальная сила тока на выходе до 2 ампер. То есть, этот модуль на будет увеличивать напряжение аккумулятора 3,5-4,2 вольта до нужных 9 вольт (хотя можно на нем накрутить и любое другое нужное напряжение, которое он может обеспечить).

В принципе для работы схемы аккумуляторной батарейки хватит и этих модулей. Но ведь нужно обезопасить свой литиевый аккумулятор и от чрезмерного разряда. И для этого мы должны спаять очень простую схему светодиодного индикатора разряда литиевого аккумулятора. Компоненты этой схемы подобраны таким образом, что когда напряжение на аккумуляторе снизится до 3,5 вольт (остаточный заряд в 10%), то зажжется сигнальный светодиод. Он и будет говорить о том, что уже пора начать зарядку литиевого аккумулятора нашей аккумуляторной батарейки. Схема индикатора разряда по цене обойдется также в копейки. Хотя большинство деталей у вас уже может иметься дома.

Поскольку повышающий модуль даже без нагрузки потреблять небольшой ток, да и светодиодный индикатор это делает, то аккумулятор будет постепенно разряжаться даже в нерабочее время. И чтобы этого не допустить, то желательно поставить обычный выключатель между аккумулятором и электронными модулями. Когда нужно, мы этим выключателем запускаем нашу аккумуляторную батарею, ну а в выключенном своем состоянии батарея если и будет иметь саморазряд, то он будет гораздо меньше, чем с включенными модулями.

Видео по этой теме:

P.S. Эту схему аккумуляторной батареи можно собрать даже в корпусе, размеры которого не превышают обычную батарейку на 9 вольт. Хотя если размеры не важны, то лучше поставить аккумулятор большей емкости. Хоть и увеличится размеры батарейки, но и по времени ее хватать будет на гораздо больше. В целом же по стоимости это устройство обойдется не намного дороже хорошей батарейки. Так что смысл в ее сборке есть. Уже многие пользуются такими аккумуляторными батарейками, которые обычно собираются своими руками из дешевых модулей.

Литий ионный аккумулятор своими руками. Литий-ион своими руками

То, что будет рассказано в данной статье, поможет многим разобраться с питанием самодельных устройств автономного типа. В ней приведена методика, по указаниям которой можно получить литий-ионные аккумуляторы любых размеров. Из учебников физики нам известно, что простым аккумулятором является устройство, состоящее из медно-цинковых пластин, между которыми присутствует электролитический раствор. Такое устройство было создано Вольтом, (хотя вопрос спорный, Луиджи Гальвани открыл эффект первым, только не смог дать этому явлению логическое объяснение).

С тех пор прошло более 200 лет, сейчас мы живем в век цифровых технологий, но аккумулятор по-прежнему остается незаменимым источником энергии, без которого не может работать не одно автономное устройство. Современные литиевые аккумуляторы нашли широкое применение в современной технике, причин на то много — легкий вес, долгий срок службы, большая емкость и многие другие параметры делают аккумуляторы незаменимыми в портативных устройствах.

Но со временем и литий-ионный аккумулятор приходит в негодность. На днях тоже самое случилось и с аккумулятором моего телефона. Аккумулятор от лицензионного производителя, поэтому прослужил очень долго и мог бы еще послужить верой и правдой, еслиб не моя дурная идея его проколоть. Дело в том, что со временем аккумулятор распух, но продолжал работать на ура, вот и было решено его проколоть. После небольшой операции аккумулятор уже стал не тем, что был раньше, резкое снижение емкости всего за неделю.


Ему на смену пришел другой аккумулятор, а тот выбросить жалко (и не нужно, вред экологии!), так что же делать с ним? Было решено создать новый аккумулятор на базе старого. Перед работой хочу предупредить — некоторые соединения лития токсичны, поэтому желательно использовать перчатки, а работу делать на свежем воздухе. Ну я как всегда нарушаю все правила по безопасности, без всяких перчаток аккумулятор был разобран прямо в гостиной комнате. Как всегда — своеобразный запах литиевых источников питания, ни с чем не спутаешь. Для резки алюминиевого корпуса был использован обычный монтажный нож и плоскогубцы.


Спустя пару минут алюминиевый капсоль был удален, пора идти дальше.


Тут начинается самая грязная работа, нужно разобрать аккумулятор. Литиевые элементы питания, как и любой другой источник напряжения, состоит из положительно и отрицательно заряженных пластин, между ними проложен слой изоляции. Теперь берем пасту от гелиевой ручки и как бы «наматываем» на пасту.




Нужно соблюдать предельную осторожность, чтобы не закоротить пластины. В процессе наматывания пластин, можно наблюдать тепловыделение, не пугайтесь так и должно быть. Далее следует обмотать заготовку скотчем, но заранее нужно очистить пластины.


На очищенные места припаиваем провода контактов. Можно просто взять два медных провода (многожильных) и просто приклеиваем к контактам при помощи того же скотча.


Один из контактов был припаян к корпусу, другой выведен наружу. Корпус следует загерметизировать, для этого я использовал универсальный клей «момент». Сразу после создания такого аккумулятора измеряем напряжение, оно лежит в пределах 2,2-2,8 вольт, в корпусе уже 2,8-3,3 вольт. На следующее утро напряжение уже в районе 3,6-3,65 вольт.


Литиевые элементы питания боятся минусовых температур, при температурах ниже нуле литий-ионный аккумулятор не заряжается вообще.

Первым этапом создания литий-ионного аккумулятора является определение требований к значению напряжения и необходимому времени работы. Затем уточняются характеристики нагрузки, окружающей среды, габаритные размеры и вес. У современных портативных устройств будут повышенные требования к толщине аккумулятора, поэтому предпочтительным будет выбор призматического или даже бескорпусного форматов. Если же толщина не будет определяющим фактором, то выбор цилиндрических элементов типоразмера 18650 в качестве структурных частей позволит обеспечить более низкую стоимость и лучшую производительность (с точки зрения удельной энергоемкости, безопасности и долговечности). (Смотрите также BU-301a: Разнообразие форм электрических батарей ).

Большинство аккумуляторов, используемых в медицинском оборудовании, электроинструменте, электровелосипедах и даже электромобилях, используют элементы типоразмера 18650. Казалось бы, использование этого цилиндрического элемента не особо практично из-за большого занимаемого им объема, но его сильные стороны, такие как развитая и массовая технология производства, а также низкая стоимость ватт-часа утверждают обратное.

Как уже говорилось выше, цилиндрическая форма элемента не является идеальной, поскольку она приводит к образованию пустого пространства в многоэлементных системах. Но если рассматривать вопрос с точки зрения необходимости охлаждения, то этот недостаток превращается в преимущество. К примеру, элементы типоразмера 18650 используются в электромобиле Tesla S85, где их суммарное количество достигает 7000 штук. Эти 7000 элементов формируют сложную аккумуляторную систему, где используется и последовательное соединение для увеличения напряжения, и параллельное – для увеличения силы тока. В случае выхода из строя одного элемента в последовательном соединении потеря мощности будет минимальна, а в параллельном такой элемент отключится системой защиты. Соответственно, нет зависимости всего аккумулятора от единичных элементов, что позволяет более стабильную эксплуатацию.

У производителей электромобилей нет единого мнения по поводу использования типоразмеров, но существует тенденция к использованию более крупных форматов, так как это уменьшает общее количество элементов в аккумуляторе и соответственно снижает стоимость системы защиты. Экономия может достигать 20-25 процентов. Но с другой стороны, использование больших элементов приводит к удорожанию суммарной стоимости кВт*ч. По данным за 2015 год, именно Tesla S85 с элементами типоразмера 18650 имеет более низкую стоимость ватт-часа в сравнении с электромобилями, использующими большие призматические аккумуляторы. В таблице 1 сравнивается стоимость кВт*ч различных электромобилей.

Таблица 1: Сравнение стоимости ватт-часа различных моделей электромобилей. Массовое производство элементов типоразмера 18650 удешевляет использующие их аккумуляторы.

* В 2015-2016 году в Tesla S85 увеличилась мощность аккумулятора с 85 кВт*ч до 90 кВт*ч. В Nissan Leaf также произошло увеличение – с 25 кВт*ч до 30 кВт*ч.

Разрабатываемый аккумулятор должен соответствовать нормам безопасности не только при стандартной работе, но и в случае выхода из строя. Все источники энергии, и электрические батареи не исключение, в конечном итоге вырабатывают свой ресурс и приходят в негодность. Бывают и случаи преждевременного, непрогнозируемого выхода из строя. Например, после некоторых инциндентов, бортовой литий-ионный аккумулятор лайнера Боинг 787 помещен в специальный металлический контейнер с вентилированием наружу. В электромобилях Tesla аккумуляторный отсек дополнительно защищается стальной пластиной во избежание проникающих повреждений.

Большие аккумуляторные системы для высоконагруженных систем имеют принудительное охлаждение. Оно может быть реализовано в виде отвода тепла радиатором, а может включать в себя вентилятор для подачи холодного воздуха. Также существуют системы с жидкостным охлаждением, но они довольно дорогие, и используются, как правило, в электромобилях.

1. Аспекты безопасности

Уважающие себя производители электрических элементов не поставляют литий-ионные элементы несертифицированным компаниям-производителям аккумуляторов. Эта мера предосторожности вполне оправдана, так как схема защиты в конструируемом аккумуляторе может быть некорректно настроена ради завышения показателей, и элементы будут заряжаться и разряжаться не в безопасном интервале напряжений.

Стоимость сертифицированной аккумуляторной системы для воздушного транспорта или для иного коммерческого использования может составлять от $ 10000 до $ 20000. Столь высокая цена вызывает беспокойство, особенно зная о том, что производители периодически меняют используемые в таких системах электрические элементы. Аккумуляторная система с такими новыми элементами хоть и будет указана в качестве прямой замены более старой, снова будет требовать новых сертификатов.

Часто задают вопрос: ”Зачем нужна сертификация аккумулятора, если элементы, из которых он состоит, уже одобрены?”. Ответ довольно прост – конечное устройство, аккумулятор, также должно быть проверено на соответствие стандартам безопасности и правильность сборки. К примеру, неисправность той же схемы защиты может привести к возгоранию или даже взрыву, а ее тестирование возможно только в готовом аккумуляторе.

Создание литий-ионного аккумулятора
Узнайте о требованиях к конструкции источника питания литий-ионной электрохимической системы.


Зачем собирать самому? Да затем, что аккумуляторные батареи — это та область, где готовый продукт — всегда лажа. Они всегда неоправдано дорогие. Всегда не достать нужного размера, который, разумеется, уникален для каждого устройства. Всегда нет нужной емкости, а есть только те, которые расчитаны на беготню от розетки к розетке в пределах города.

Особенно громко ругать производителей начинаешь тогда, когда попадаешь в форс-мажорную ситуацию. Остаешься без связи, потому что на морозе сдох коммуникатор. Не можешь снять удачный момент, потому что кончился родной аккумулятор на камере, а запасной от фирмы стоит $50. Или сидишь и скучаешь, потому что ноутбука хватило на час.

А вот сами вы можете собрать батарею, которая будет ограничена только двумя параметрами: ценой за ватт-час и энергоплотностью. Все остальные характеристики вы будете выбирать сами.

Статья написана для дилетантов и от дилетанта.

Только одно «но». Эта статья НЕ про батареи мощнее нескольких киловатт-часов.

Теория на пальцах

Элемент , ячейка , «банка» , «батарейка» — то, что накапливает и отдает энергию. От аккумуляторных элементов зависят все характеристики батареи.

Батарея — это уже набор из многих элементов. Несколько ячеек соединяют в батарею, когда характеристик одной ячейки мало. Если соединить последовательно — растет напряжение. Если параллельно — увеличивается емкость батареи. Может включать в себя не только банки, но и всякую там управляющую электронику.

Напряжение — это то, с какой силой батарея может ударить током в потребителя. Является лишь характеристикой аккумулятора, от потребителя не зависит. 7 Измеряется в вольтах (V).

Сила тока — чем она больше, тем больше жрет потребитель электричества. Измеряется в амперах (A).

Емкость — характеристика аккумулятора, измеряется в ампер-часах (Ah). К примеру, емкость в 2Ah означает, что аккумулятор может отдавать ток в 1A два часа и в 2A — один час.

Емкость аккумулятора также зависит от разрядного тока. Обычно чем он больше, тем емкость меньше. Производители аккумуляторов обычно указывают емкость, полученную при разряде каким-нибудь мизерным током в 100mA.

Справа показаны характеристики Li-ion-аккумулятора, который разряжают при разной силе тока. Чем ток выше, тем кривая разряда ниже.

C — буква латинского алфавита, которой измеряют отношение силы тока к емкости аккумулятора, то есть во сколько раз ток превышает емкость. Если аккумулятор имеет емкость 2Ah и разряжается при токе в 4A, то можно сказать, что он разряжается при токе в 2C. Все дело в том, что чем больше емкость аккумулятора, тем проще ему отдавать ток, и поэтому такой характеристикой пользоваться удобнее, чем просто амперами.

Энергия — та характеристика, которая позволяет сравнивать аккумуляторы с разным напряжением. Измеряется в ватт-часах и грубо вычисляется путем умножения напряжения на аккумуляторе на его емкость. Численно равна площади фигуры под кривой разряда.

Попугаи емкости и ватт-часы энергии

Предположим, у нас есть две батарейки одинаковой емкости — 2200mAh. Но одна из них — литий-ионная, а другая — никель-металлгидридная.

Вопрос: означает ли это, что в обоих аккумуляторах одинаковое количество энергии? Будет ли одно и то же устройство работать от обоих банок одинаковое время?

На самом деле, глядя лишь на характеристику емкости, нельзя сравнивать энергию , которую может накопить и отдать аккумулятор. Для этого нужно знать номинальное напряжение на нем.

Грубо прикинуть количество энергии в ватт-часах можно, умножив номинальное напряжение аккумулятора на его емкость. И у нас получится:

  • Для NiMH: 1.2 вольт * 2.2 ампер-часа = 2.64 ватт-часа
  • Для Li-ion: 3.7 вольт * 2.2 ампер-часа = 8.14 ватт-часа

Что энергия Li-ion-аккумулятора той же емкости — в 3 раза больше, чем NiMH.

Но это всего лишь грубая «прикидка». Так, напряжение в 1.2 вольта на NiMH-элементе — это максимальное напряжение, соответствующее полному заряду аккумулятора. При разряде оно будет только падать, и реальная энергия будет немного меньше 2.64 ватт-часов. Тем не менее, именно такой способ расчета энергии аккумулятора мы будем использовать для сравнения их характеристик.

Как собрать аккумуляторную батарею
Как собрать аккумуляторную батарею Зачем собирать самому? Да затем, что аккумуляторные батареи — это та область, где готовый продукт — всегда лажа. Они всегда неоправдано дорогие. Всегда не

Мотик Suzuki SV400S ’98 купленный мной прошлой осенью практически сразу захотел новый аккумулятор — тот что был моментально разряжался, не всегда включал 35-ваттную ксенонку, а стартер крутил как-то вяло и нехотя. После очередного позорного старта «с толкача» я полез по сайтам в поисках нового аккумулятора. И практически сразу закручинился — новый аккумулятор для моей Сузы от любого приличного производителя выходил не меньше 3 т.р. И это за доисторические свинцовые аккумуляторы, малоемкие, тяжелые, с низкой токоотдачей! Многим известно что у большинства свинцовых аккумуляторов есть такая малоприятная «фича» — при заявленной емкости в 12 Ач безопасно можно использовать только половину емкости, т.е. около 6 Ач. Дальнейший разряд ведет к ускоренной деградации аккумулятора и скорой его замене. Исключение составляют аккумуляторы серий «Deep Cycle» — но часто ли вы видели такую надпись?)))
Еще немного покопавшись в просторах инета я нашел более интересный вариант — аккумуляторы собранные из элементов LiFePo4.

Осторожно! Много непонятных буковок и картинок

Литий-железная химия вполне безопасна, элементы емкие и легче свинца. Многие производители также говорят про 3-4 кратное увеличение времени жизни таких батарей при условии правильной эксплуатации. И емкость элементов — честная, хорошие элементы можно разряжать почти полностью без ущерба для них и без падения токоотдачи по мере разряда! К тому же еще и более морозоустойчивые чем свинец. Нашел подходяший по размерам и параметрам вариант — Shorai LFX12A1-BS12

Итак, что мы имеем? Емкость проставлена в «свинцовом эквиваленте», т.е. читаем 12 Ач — имеем в наличии все те же 6 Ач! За такие деньги — я не согласен. Быстрый перебор информации от остальных производителей аналогичных аккумуляторов тоже не порадовал — везде небольшая емкость, где честно проставленная, а где и опять располовиненная «PB EQ».

Скажете засада. Не для самодельщика))
Дальше будет много терминологии понятной моделистам, электрикам и собратьям-самоделкиным. Если что — спрашивайте в комментах меня или мучайте гугля.
Два года назад я всерьез заинтересовался возможностью сборки электровелика «с нуля», таки собрал его, и вот уже года полтора использую его по назначению. Тяговая батарея собиралась из большого количества элементов и электроники для контроля ее состояния. Вот так она выглядит без чехла:

Количество проводов меня тоже пугает, да)
Навыки и информация полученная в процессе очень помогли в сборке новой батареи.

Итак, вводные: Элементы LiFePo4, максимальная емкость в пределах габаритов свинцовой батареи, максимальная токоотдача, система контроля для долгой счастливой жизни, минимальная цена.
Перекопав еще раз дебри сети нашел несколько подходящих вариантов, а финалистами стали два из них:
A123 ANR26650M1A

номинальное напряжение 3,3в
номинальная емкость 2,3 Ач
номинальный разрядный ток 30С (69А с элемента)
максимальный разрядный ток до 60С (до 138А с элемента)
номинальный зарядный ток 10С (до 23А на элемент)
размеры 26мм х 66,5мм
вес 70гр.

номинальное напряжение 6,6в (3,3в на каждую пару элементов)
номинальная емкость 3,6 Ач (1,8 Ач на каждый элемент)
номинальный разрядный ток 30С (54А с элемента)
максимальный разрядный ток до 40С (до 72А с элемента)
номинальный зарядный ток 2С (до 3,6А на элемент)
размеры 139мм х 21мм х 45мм
вес 262гр.

В доступный нам обьем влезает 24 элемента А123 (схема 4S6P, емкость 13,8 Ач, зарядный ток до 138А, разрядный ток 414А/828А, вес 1680гр) или 8 батарей Zippy (схема 4S8P, емкость 14,4 Ач, зарядный ток до 28,8А, разрядный ток 432А/576А, вес 2100гр).
Все здорово и радостно, но теперь начинает влиять такой важный фактор как стоимость. 24 элемента А123 обойдутся примерно в 6000р., 8 батарей Zippy в 5600р, это все с доставкой. Дофига? Вот и я так подумал.
Поэтому несколько умерил свои аппетиты и заказал 6 батарей Zippy что обошлось мне в 4200р. Параметры конечно получились поскромнее, но все еще радующие глаз — схема 4S6P, емкость 10,8 Ач, зарядный ток до 21,6А, разрядный ток 324А/432А, вес 1570гр.
А в довесок, благо все в одном магазине, взял еще вот такую мелкую шнягу, которая называемся в миру Battery Checker & Balancer

Эта мелкая приблуда будет заниматься здоровьем батарейки, иначе говоря она будет выравнивать напряжение элементов батареи относительно друг друга. Единственное «но» — тестер расчитан в первую очередь для батарей LiPo, а не LiFePo4, поэтому заряд батареи в % показываться будет неверно. Балансировке элементов это не мешает. Поэтому левый уголок экрана с указателем заряда батареи я просто заклеил — нефик сбивать с толку)
Ну и мелочевка — балансировочные кабели для тестера и защитные колпачки. Пригодицца! ©

Затем при помощи Почты России был небольшой перерыв — первая посылка ехала примерно 1,5 месяца, вторая 2,5 месяца.

Наконец все приехало, и я отбалансировал все батареи по отдельности на модельном заряднике. Это чтобы не получить небольшой «бадабум» при соединении батарей между собой. Заодно проверил емкость, стабильность напряжения на элементах при разрядке ну и вообще…

Следующий этап — пайка и сборка:
1) Спаял параллельно 2 группы по 3 батареи в каждой (2S6P + 2S6P)

с другого ракурса

Попутно все зафиксировал армированным скотчем — так надежнее и меньше шансов повредить тонкие полиэтиленовые оболочки элементов.
2) Так выглядит собранная вместе начинка батареи

Два толстых провода с разьемами нужны для последовательного соединения частей батареи между собой. Также видны балансировочные выводы 2S от каждой части.
3) Распиленый на части пластиковый воздуховод послужит жестким корпусом батареи

5) Стянул все армированным скотчем до полного удовлетворения, и сделал контакты «колечками» из самих выводов (подходящих контактных колечек под рукой не оказалось)

6) Поставил балансироваться, разбег между элементами минимальный

Через пару минут все сводится к общему знаменателю

И засыпает чтобы не жрать зазря мою новую батарейку

Собсно всё, дальше батарейка была установлена в надлежащее место, и работает как ей и полагается.
Т.е. ксенон включается быстро и без противного моргания, стартер крутит как заведенный, а фары можно оставить на час-два без того чтобы они разрядили батарею до нуля. Когда поставлю противоугонку — можно также оставлять ее включенной намного дольше по времени. А еще я люблю хороший свет, поэтому в скором времени буду ставить на место 35вт ксенонки что-то получше — 55/75вт или вообще диоды. Батарея позволяет)

В следующей статье я расскажу как сделал из мощных диодов габарит/стопсигнал заменивший галогеновые лампочки.

Литий ионный аккумулятор своими руками
Я решил что свой первый пост посвящу чему-то более интересному, чем то как я докатился до такой жизни)) Мотик. Как и зачем я сделал литиевый аккумулятор

Уже несколько десятилетий при различных работах используют шуруповерты. Эти приборы питаются от никелевых или кадмиевых аккумуляторов. Но прогресс не стоит на месте, ученые нашли замену таким устаревшим батареям. Их заменили литиевые аналоги. Чтобы пользоваться таким аккумулятором, необходима переделка шуруповерта. Литиевая батарея повысит технические характеристики старого инструмента. Причем такую переделку, возможно, выполнить самостоятельно, не прибегая к услугам специальных фирм.

Литиевый аккумулятор шуруповерта отличается рядом преимуществ, которые отсутствовали в кадмиевых аналогах.

Энергетическая плотность АКБ шуруповерта Li ion намного выше. Батарея с литиевыми банками отличается небольшим весом, причем напряжение 12 вольт, а также емкость аккумулятора, остается неизменными. Литиевые батареи заряжаются быстрее ионных аппаратов. Безопасная зарядка длится около 60 минут.

Литий-ионные батареи не обладают «эффектом памяти». Иными словами, их не нужно полностью разряжать, чтобы поставить на зарядку. Среди положительных качеств литиевой батареи, существует и ряд недостатков, которые требуется учитывать:

  • Зарядка литиевых аккумуляторов не должна быть выше 4,2 вольта, а разрядка выше 2,7 вольта. Но это теоретические данные. В настоящей жизни интервал становится еще хуже. При несоблюдении установленных значений, аккумулятор просто перестанет функционировать. Чтобы избежать такой ситуации, после переделки шуруповерта на литий, нужно установить в шуруповёрт специальный контроллер разряда, а также его зарядки.
  • Один Li ion имеет напряжение3,63,7 В. У никелевой батареи оно не больше 1,2 вольта. Другими словами переделка шуруповерта на материал li ion вызывает проблемы, связанные со сборочным процессом батареи, у которой номинальное напряжение равно 12 вольтам. Три литиевых банки, соединенные последовательно, дают напряжение 11,1 вольта, четыре 14,8 В.Изменятся предельные значения напряжения заряда. Иными словами, переделка аккумулятора для шуруповерта связана с решением проблемы совместимости новой батареи с инструментом.
  • Для переделки кадмиевого аккумулятора шуруповерта, умельцы используют литиевые банки 18650. Их габариты отличаются от никелевых банок. Переделка аккумулятора для шуруповерта, требует также предусмотреть установку контролера, которому потребуется дополнительное место.
  • После переделки зарядное устройство никелевых батарей придется доработать, или воспользоваться универсальной зарядкой.
  • Минусовые температуры отрицательно сказываются на работе ионных аккумуляторов. Поэтому таким переделанным шуруповертом не всегда можно работать вне помещения.
  • Стоимость литиевых батарей намного выше кадмиевых аналогов.

Алгоритм переделки АКБ на литий ионную батарею

Как переделать шуруповерт, чтобы получить наивысшую производительность? Для этого требуется строго выполнять некоторую технологическую последовательность.

Подбор подходящего аккумулятора

Соединение батарей делается последовательным, Поэтому номинал напряжения каждого элемента суммируется с последующим. То есть, чтобы получить 14, 4 вольта, потребуется четыре элемента с напряжением 3,3 В.

Чтобы переделать аккумуляторный шуруповерт, нужно покупать миниатюрные батареи только известного производителя. К примеру, аккумуляторы марки LiFePO4, выпущенные фирмой Sistem A123. Емкость элемента достигает 2 300 мА/ч. Этого значения достаточно, для эффективной работы электрического инструмента. Дешевые батареи, сделанные в Китае, не дадут большого эффекта. Они быстро выйдут из строя.

При выборе батареи для переделки, нужно чтобы на выводах были расположены медные полоски. Паять такие элементы намного проще.

Подбор инструментов и материалов

Технология пайки отличается своей спецификой. Температура жала паяльника постоянно высокая. Если АКБ длительное время продержать при таком термическом воздействии, она быстро испортится. Поэтому нагрев паяльника должен быть минимальным.

Чтобы такое произошло, необходимо обычную канифоль заменить паяльной кислотой. Ее можно приобрести в магазине радиодеталей. Для такого процесса придется также приобрести паяльник с мощностью, достаточной для плавки припоя в минимально короткие сроки. Наиболее подходящим будет бытовой паяльник с мощностью 65 ватт. При 100 ваттах АКБ все время будет перегреваться.

Паяльные работы требуют большого опыта. Например, 40 ватный паяльник будет долго нагреваться, можно просто «переборщить». Чтобы начать переделывать ion аккумуляторы, необходимо приобрести следующие детали:

  • Батарея 18650.
  • BMS плата CF-4S30A-A/
  • Провода, сечением 2,5 кв. мм.
  • Паяльник.
  • Корпус старой батареи.

Несколько слов о BMS плате

Она предназначена для осуществления контроля над зарядом или разрядом батареи. CF-4S30A-A рассчитана на четыре банки из аккумуляторных батарей 18650, дающих разрядный ток 30А. Плата оборудована специальным «балансиром». Он выполняет функции контроля заряда каждого элемента отдельно. Это позволяет полностью исключить возможность неравномерной зарядки. Чтобы плата правильно функционировала, батареи для сборки должны иметь одинаковую емкость. Желательно чтобы они были взяты из одного и то же блока.

Промышленность выпускает большое количество плат BMS, отличающихся своими технологическими характеристиками. Для переделки аккумулятора шуруповерта, плата, работающая на токе, значение которого менее 30А, не очень подходит. Она будет постоянно включать режим защиты.

Чтобы восстановить работу, некоторым платам требуется кратковременная подача зарядного тока. Чтобы такое сделать, придется удалить аккумулятор из корпуса, снова подключить к нему зарядное устройство. Плата CF-4S30A-A такого недостатка не имеет. Достаточно отпустить курок включения шуруповерта, если отсутствует ток вызывающий короткое замыкание, плата включится автоматически.

Переделанный аккумулятор на этой плате можно заряжать универсальной зарядкой. Последние модели, компания «Интерскол» комплектует многофункциональными зарядками.

Монтаж литий-ионной батареи

Безусловно, любой монтаж требует предварительно подготовки. Она включает в себя несколько очень важных моментов. Прежде чем, начать паять детали, необходимо определить, как будет устроен отсек крепления аккумулятора. Все нужные элементы должны без труда в нем умещаться.
Затем новые литиевые батарейки скрепляют скотчем. Так как контакты со временем окисляются, перед пайкой их зачищают мелкозернистой шкуркой.

Нюансы паяльного процесса

Сначала контактную часть аккумулятора тщательно обезжиривают. Затем проводят лужение, нагревая приложенный припой. Для лужения больше всего подходит припой ПОС-40.

Прикосновение паяльника с контактом АКБ не должно превышать 2 секунды. Требует особого внимания процесс пайки плюса батареи. Самыми подходящими считаются перемычки из медных проводов, сечением более 2,5 мм. кв. На все провода одевают кембрик, играющий роль хорошего изолятора.

Соединение мини-аккумуляторов должно проводиться специальными перемычками согласно разработанной схеме. Перемычками могут стать металлические полоски или тонкие провода.

На заключительном этапе выполняется подсоединение проводов к сделанным выводам отсека, предназначенным для батареи. Если монтаж сборного блока затруднен, необходимо удалить ребра жесткости. Так как они сделаны из пластмассы, их легко перекусить обыкновенными бокорезами.

Схема распайки контактов

Чтобы подключиться к ЗУ требуется подобрать разъемы, которые соответствуют конкретной модели. Припайка соединительных кабелей выполняется по электрической схеме:

Разъемы для подключения к зарядному устройству выбираются в зависимости от его модели. Оба соединительных кабеля припаиваются по схеме.

  • «+» – 5 и 9.
  • «–» – 1 и 6.
  • Балансировочные контакты (по возрастающей) – 2, 7, 3, 8 и 4.

Безусловно, установка литий-ионных аккумуляторов имеет большое число положительных качеств:

  • Отсутствие «памяти».
  • Минимальный самозаряд.
  • Можно эксплуатировать инструмент при минусовой температуре.
  • Большой срок эксплуатации (8лет).

Однако эти аккумуляторы отличаются высокой чувствительностью к технологическому процессу зарядки. Напряжение должно всегда иметь минимальные значения, в противном случае АКБ Li-ion быстро придет в негодность. Для выполнения таких условий, необходимо другое ЗУ, стоимость которого на порядок выше. Родное ЗУ шуруповерта не сможет зарядить литий-ионную батарею.

Сказать однозначно, какой аккумулятор для шуруповерта лучше, невозможно. Срок их эксплуатации зависит от аккуратного обращения, от точного соблюдений инструкции, прилагаемой производителем.

Популярные модели

Сегодня АКБ выпускают многие производители. Среди такого большого ассортимента литий-ионных систем, самым востребованным считаются:«Bosh» 10,8, с техническими характеристиками:

  • Емкость – 1,3 А/час.
  • Напряжение – 10,8 В.
  • Габариты -110 х 54 х 52мм.
  • Гарантия -1 год.
  • Мощность – средняя.

Если говорить о никель-кадмиевой батареи, наиболее востребованными остаются марки:

Российские аккумуляторы рассчитаны на небольшое напряжение, отличаются от импортных моделей только ценой. Они намного дешевле, но при этом не уступают своими техническим показателям. Самыми известными считаются модели:

  • «Кратон».
  • «ЗАКБ».

Заключение

Литиевые аккумуляторы всегда считались самыми технологичными устройствами. Но инструмент с такими батареями стоит намного дороже. Можно, конечно, переделать свой аппарат и избавиться от кадмиевых батарей. Однако это вызовет другие проблемы. Поэтому, решение о переделке шуруповерта на литий каждый принимает сам, в зависимости от обстоятельств.

Интересные видео про переделку аккумулятора шуруповерта

Большинство аккумуляторов, используемых в медицинском оборудовании, электроинструменте, электровелосипедах и даже электромобилях, используют элементы типоразмера 18650. Казалось бы, использование этого цилиндрического элемента не особо практично из-за большого занимаемого им объема, но его сильные стороны, такие как развитая и массовая технология производства, а также низкая стоимость ватт-часа утверждают обратное.

Как уже говорилось выше, цилиндрическая форма элемента не является идеальной, поскольку она приводит к образованию пустого пространства в многоэлементных системах. Но если рассматривать вопрос с точки зрения необходимости охлаждения, то этот недостаток превращается в преимущество. К примеру, элементы типоразмера 18650 используются в электромобиле Tesla S85, где их суммарное количество достигает 7000 штук. Эти 7000 элементов формируют сложную аккумуляторную систему, где используется и последовательное соединение для увеличения напряжения, и параллельное – для увеличения силы тока. В случае выхода из строя одного элемента в последовательном соединении потеря мощности будет минимальна, а в параллельном такой элемент отключится системой защиты. Соответственно, нет зависимости всего аккумулятора от единичных элементов, что позволяет более стабильную эксплуатацию.

У производителей электромобилей нет единого мнения по поводу использования типоразмеров, но существует тенденция к использованию более крупных форматов, так как это уменьшает общее количество элементов в аккумуляторе и соответственно снижает стоимость системы защиты. Экономия может достигать 20-25 процентов. Но с другой стороны, использование больших элементов приводит к удорожанию суммарной стоимости кВт*ч. По данным за 2015 год, именно Tesla S85 с элементами типоразмера 18650 имеет более низкую стоимость ватт-часа в сравнении с электромобилями, использующими большие призматические аккумуляторы. В таблице 1 сравнивается стоимость кВт*ч различных электромобилей.

Таблица 1: Сравнение стоимости ватт-часа различных моделей электромобилей. Массовое производство элементов типоразмера 18650 удешевляет использующие их аккумуляторы.

* В 2015-2016 году в Tesla S85 увеличилась мощность аккумулятора с 85 кВт*ч до 90 кВт*ч. В Nissan Leaf также произошло увеличение — с 25 кВт*ч до 30 кВт*ч.

Разрабатываемый аккумулятор должен соответствовать нормам безопасности не только при стандартной работе, но и в случае выхода из строя. Все источники энергии, и электрические батареи не исключение, в конечном итоге вырабатывают свой ресурс и приходят в негодность. Бывают и случаи преждевременного, непрогнозируемого выхода из строя. Например, после некоторых инциндентов, бортовой литий-ионный аккумулятор лайнера Боинг 787 помещен в специальный металлический контейнер с вентилированием наружу. В электромобилях Tesla аккумуляторный отсек дополнительно защищается стальной пластиной во избежание проникающих повреждений.

Большие аккумуляторные системы для высоконагруженных систем имеют принудительное охлаждение. Оно может быть реализовано в виде отвода тепла радиатором, а может включать в себя вентилятор для подачи холодного воздуха. Также существуют системы с жидкостным охлаждением, но они довольно дорогие, и используются, как правило, в электромобилях.

1. Аспекты безопасности

Уважающие себя производители электрических элементов не поставляют литий-ионные элементы несертифицированным компаниям-производителям аккумуляторов. Эта мера предосторожности вполне оправдана, так как схема защиты в конструируемом аккумуляторе может быть некорректно настроена ради завышения показателей, и элементы будут заряжаться и разряжаться не в безопасном интервале напряжений.

Стоимость сертифицированной аккумуляторной системы для воздушного транспорта или для иного коммерческого использования может составлять от $ 10000 до $ 20000. Столь высокая цена вызывает беспокойство, особенно зная о том, что производители периодически меняют используемые в таких системах электрические элементы. Аккумуляторная система с такими новыми элементами хоть и будет указана в качестве прямой замены более старой, снова будет требовать новых сертификатов.

Часто задают вопрос: ”Зачем нужна сертификация аккумулятора, если элементы, из которых он состоит, уже одобрены?”. Ответ довольно прост — конечное устройство, аккумулятор, также должно быть проверено на соответствие стандартам безопасности и правильность сборки. К примеру, неисправность той же схемы защиты может привести к возгоранию или даже взрыву, а ее тестирование возможно только в готовом аккумуляторе.

Согласно правилам, установленным ООН, аккумулятор должен пройти механические и электрические тесты, чтобы соответствовать требованиям, регламентирующим возможность воздушной транспортировки. Эти правила (UN/DOT 38.3) работают совместно с рекомендациями Федерального Управления Гражданской Авиации (FAA), Департамента Транспорта США (US DOT) и Международной Ассоциации Воздушного Транспорта (IATA)*. Сертификация распространяется на первичные и вторичные литиевые батареи.

Правила ООН 38.3 включают в себя такие тесты:

    Т1 — Имитация работы на высоте (первичные и вторичные батареи)

    Т2 — Температурные испытания (первичные и вторичные батареи)

    Т3 — Вибрация (первичные и вторичные батареи)

    Т4 — Удар (первичные и вторичные батареи)

    Т5 — Внешнее короткое замыкание (первичные и вторичные батареи)

    Т6 — Механическое воздействие (первичные и вторичные батареи)

    Т7 — Перезарядка (вторичные батареи)

    Т8 — Принудительный разряд (первичные и вторичные батареи)

Испытуемые электрические батареи должны пройти испытания, не причинив вреда окружающему пространству, сохранение ими работоспособности после тестов не играет никакой роли. Эти испытания предназначены исключительно для тестирования безопасности, а не потребительских качеств. Уполномоченная лаборатория, проводящая эти тесты, нуждается в 24 образцах батарей, 12 новых и 12 прошедших 50 циклов заряда/разряда. Присутствие уже используемых аккумуляторов гарантирует более реалистичное качество выборки.

Высокая стоимость сертификации является неподъемной для небольших производителей литий-ионных батарей, поэтому конечная цена сертифицированных моделей довольно высока. Но у потребителей есть выбор — вместо сертифицированного литий-ионного вполне можно приобрести аккумулятор на основе никеля, транспортировка которого не регламентируется так строго. (Смотрите BU-704: Транспортировка электрических батарей .)

    Соблюдайте осторожность при работе и тестировании аккумуляторов.

    Не допускайте короткого замыкания, перезарядки, сдавливания, падения, проникновения посторонних предметов, применения обратной полярности, воздействия высокой температуры на аккумулятор.

    Не разбирайте аккумулятор.

    Используйте только оригинальные литий-ионные аккумуляторы и зарядные устройства.

Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650 , на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно — собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?

Теория

Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

Литий-ионные батареи просто подключить к БП нельзя — нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием «лишнего» электричества.

Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd — это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры — так что лишняя энергия сразу превращается в тепло.

У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.

Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.

Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое «балансиром». Простейший тип балансира — это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.

Упрощённая схема балансира для АКБ

Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A — все они ведут себя одинаково.

Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  • R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2…D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания — смотрите далее.

Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора — надо использовать изоляцию корпусов транзисторов друг от друга.

Испытания

Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.

Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения — зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.

Обсудить статью ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

Собираем Power Bank своими руками.

Сегодня устройства типа Power bank (автономное зарядное устройство) прочно вошли в нашу повседневную жизнь. Они значительно облегчают использование всевозможных современных энергоемких гаджетов, таких как планшеты и смартфоны, так как позволяют быстро подзарядиться практически в любых условиях, когда вы находитесь вдали от розетки.

У самых простых Power bank имеется только один тип выхода- USB, который является наиболее популярным. В более продвинутых зарядных устройствах можно найти выходы с напряжением, ставшим стандартным напряжением питания для низковольтных устройств,- 12В. Это значительно расширяет область применения таких Power bank`ов, так как от 12В работает практически любая автомобильная электроника и множество других электрических потребителей. А при использовании инвертора можно получить и 220В при желании.

Краеугольным камнем в таких Power bank`ах становится вопрос емкости. Применение современных высокоёмких Li-ion аккумуляторов позволяет создать в компактном размере источник питания достаточной емкости для того, чтобы запитать какое-либо 12 вольтовое устройство в течении нескольких часов.

К сожалению, производители зачастую экономят именно на качестве встраиваемых литиевых элементов питания для уменьшения общей стоимости зарядного устройства, что негативно сказывается на времени работы Power bank. Поэтому мы хотим рассказать вам как самому изготовить Power Bank используя комплект, состоящий из многофункционального DC-DC преобразователя, платы защиты и корпуса и высококачественные литиевые аккумуляторы распространенного типоразмера 18650.

Нам понадобятся:
Комплект для сборки Power Bank модели HCX-284 состоящий из непосредственно многофункционального DC-DC преобразователя, платы защиты (PCM) для Li-ion аккумуляторов и металлического корпуса для 4ех Li-Ion аккумуляторов 18650. В качестве литиевых элементов возьмем 4 Li-ion аккумулятора Panasonic модели NCR18650B 3,6В емкостью 3400мАч


Преобразователь HCX-284 имеет стабилизированный 12В выход с максимальным током нагрузки 4А и 5ти вольтовый USB разъем с максимальным током 1А. В качестве зарядки для нашего Power Bank можно использовать любой 12В блок питания с штыревым разъемом размера 5,5 х 2,5 мм и максимальным током не менее 1,5А. Можно, конечно, использовать и менее мощный блок питания, но процесс заряда в этом случае может занять достаточно продолжительное время.

Принцип работы нашего Power Bank следующий:
С аккумуляторной сборки из 4ех последовательно-соединенных (4S) Li-Ion аккумуляторов мы получаем номинальное напряжение 14,8В. Точнее, это напряжение, в процессе работы, будет меняться от 16,8В (полностью заряженная батарея) до 12В (полностью разряженная). Непосредственно к аккумуляторам подключается плата защиты PCM. Она будет контролировать эти верхние и нижние напряжения, не позволяя им выйти за крайние значения и оберегая литиевые ячейки от перезаряда и переразряда.
С платы защиты напряжение подается на вход понижающего DC-DC преобразователя, который и превращает наши 16,8 — 12В с аккумуляторов в стабилизированные 12В и 5В на соответствующих разъемах.

При зарядке аккумуляторов 12 вольт с входа «DC In» стабилизатора преобразуются в 16,8В необходимые для заряда 4S Li-Ion аккумуляторной батареи. Максимальный ток, подающийся на аккумуляторы, составляет 1А и не зависит от мощности вашего блока питания. Это позволяет использовать в комплекте с HCX-284 литиевые аккумуляторы с минимальной емкостью около 2000мач, у которых ток заряда не должен превышать половины значения от емкости, т.е. примерно 1А.

Процесс сборки:

1. Склеиваем при помощи термоклея батарею из четырех Li-Ion аккумуляторов Panasonic модели NCR18650B.


Термоклей лучше использовать с низкой температурой плавления для исключения локального перегрева аккумуляторов. Обращаем внимание на качество клеевых швов- они не должны выступать за габариты батареи иначе она просто не влезет в корпус.


2. Мы используем специальные электрические изоляторы для исключения контакта никелевой сварочной ленты и корпуса аккумуляторов.


3. Свариваем Li-Ion ячейки в 4S батарею при помощи никелевой ленты 5х0,127мм и сварочного станка для контактной сварки. Паять Li-Ion аккумуляторы не рекомендуется из-за того, что они боятся перегрева, что может сильно уменьшить их ресурс. Так как токи в нашей батареи будут в пределах 3-4 ампер такой толщины ленты будет более чем достаточно.


Сразу формируем выводы всех напряжений для последующей пайки проводами к контрольным контактам на плате PCM.



4. Устанавливаем PCM на батарею. Силовые контакты формируем используя только ленту. Это более надежно и компактнее. Контрольные напряжения подключаем к плате проводами самого минимального сечения. Мы применили МГШВ 0,2мм, но можно использовать провод и, к примеру, МГТФ 0,14мм.



Подключать контакты контроллера надо в последовательности от «минимального» к «максимальному», т.е сначала «B-«, затем +3,7В, 7,4В, 11,1В и последним «В+»

5. Выводы с PCM делаем проводом ПУГВ 0,5мм. Длина выводов должна быть не более 2 см. Закрываем торцы батареи изоляционным картоном и упаковываем аккумуляторы в тонкую термоусадочную пленку.


На этом этапе у нас получилась защищенная батарея, которую можно использовать без опаски перезарядить или переразрядить. Но на выходах, пока, мы имеем нестабилизированное напряжение, которое будет меняться в процессе разряда от 16,8В до 12В.

6. Подключаем батарею к плате стабилизатора. Для этого подсоединяем черный «минусовой» провод к контакту «P-«, а красный «плюсовой» провод к контакту «P+» При этом, стабилизатор однократно моргнёт всеми тремя светодиодами.




7. Устанавливаем батарею с припаянным стабилизатором в корпус. Начинаем установку именно с батареи, затем стабилизатор. Плата стабилизатора устанавливается в специальные пазы корпуса.

8. Закрываем торцы корпуса специальными заглушками, идущими в комплекте и наклеиваем декоративные наклейки.



Все. Наш собственноручно изготовленный PowerBank готов. Проверяем работу, нажимая на единственную кнопочку, которая, при неподключенных разъемах, включает индикацию уровня заряда, которая показывает, что сейчас наши аккумуляторы полностью заряжены.

При использовании Power Bank HCX-284 надо учитывать один нюанс: выход 12В осуществлен при помощи розетки для штыревого разъема питания размером 4х1,7мм. Надо отметить, что такой типоразмер является малораспространенным и в свободной продаже его найти проблематично. Именно поэтому мы прилагаем провод с припаянным штыревым разъемом в комплект к набору HCX-284.


Давайте посчитаем итоговую емкость нашего Power Bank`а:
Мы использовали 4 аккумулятора Panasonic модели NCR18650B 3,6В емкостью 3400мач. Итого мы получаем 3,4А/ч при напряжении 14,8В.
Но у нас на выходе 2 напряжения 5В и 12В. Также надо учитывать, что КПД преобразователя составляет около 90%.

Соответственно, при 5В емкость нашего 

аккумулятора составит ((14,8*3,4)*0,9)/5 = 9,05Ач Это означает, что при пяти-вольтовой нагрузке током 1А наш Power Bank проработает около 9 часов!
При 12В емкость составит: ((14,8*3,4)*0,9)/12 = 3,77Ач

Вот, в принципе, и весь процесс. По времени, при наличии опыта и инструмента, он занимает около 1 часа.

Удачи.

Как переделать кислотно-свинцовый аккумулятор 12 В в литий-ионный

Кислотно-свинцовые батареи не столь емки и долговечны как этого бы хотелось. Один из плюсов их применения в мототехнике это работа при низких температурах. Но обычно скутеры и мопеды, где применяются подобные АКБ в зимнее время и не эксплуатируются. Поэтому, при выходе из строя вашего кислотного АКБ его запросто можно переделать на литий-ионный повышенной емкости.

Понадобится

  • 4 Аккумулятора 3,7 В серии 26650 — http://ali.pub/4j01k6
  • Балансный контроллер заряда 4S — http://alii.pub/5mubpk
  • Медный многожильный провод сечением 6-10 кв. мм.
  • Припой трубчатый с канифолью.

Переделка кислотного аккумулятора в литий-ионный своими руками

Вскрываем верхнюю крышку аккумулятора при помощи отвертки.

Убираем все газоотводные колпачки. Корпус обычно сварен из двух пластиковых половин. По шву распиливаем АКБ ножовкой.

Длаее, очень аккуратно, не прикасаясь руками и работая в защитных очках, удаляем все содержимое из секций.

Утилизируем их соответствующим образом. Корпус вымоем с моющим средством. Срежем все перегородки кроме последней. В ней будет располагаться контроллер зарядки. Это очень удобно, что батареи будут отделены перегородкой от электроники.

Размещаем 4 батареи, проверяя как они встанут на месте.

Чтобы все вошло пришлось вырезать в крышке паз. Он все равно будет закрываться заглушкой.

Берем контроллер зарядки на 30А для 4 аккумуляторов.

Он полностью будет контролировать не только зарядку каждого АКБ, но и разрядку. Схема включения такова:

Батареи соединяем последовательно.

Общий вывод на толстых проводах.

Делаем отводы от каждого соединения батарей и припаиваем к контроллеру.

От контроллера припаиваем выводы.

Устанавливаем батареи в корпус. Контроллер помещаем в отдельный отсек. Припаиваем провода к клеммам АКБ.

Закрываем крышку, фиксируем суперклеем.

Ставим заглушку наместо.

Проверяем выходное напряжение — 12,8 В.

Заряжаем до полной емкости.

Устанавливаем на скутер.

Все отлично работает.

Двигатель запускается, вся электроника в порядке.

Емкость АКБ до переделки была 4 А/ч. Сейчас же при использовании литиевых аккумуляторов емкость возросла до 5 А/ч.

Смотрите видео

Делаем мощнейший Power Bank на 40000 мА/ч — https://sdelaysam-svoimirukami.ru/6087-delaem-moschnejshij-power-bank-na-40000-ma-ch.html

Как построить литий-ионную аккумуляторную батарею менее чем за 400 долларов за кВтч | Джо О’Коннор | Off Grid Solar

Модули Nissan Leaf, перестроенные в пакет
  1. Купить Подержанные аккумуляторные модули для электромобилей, такие как Nissan Leaf .
  2. Соберите модули в пакет и прикрепите медных шин .
  3. Купите BMS и коммутатор стека для защиты модулей.
  4. Подберите инвертор, подходящий для работы.

Вы можете приобрести все компоненты в Off Grid Solar Store.

Я видел много людей в Интернете, перепрофилирующих старые аккумуляторы для ноутбуков и аккумуляторы от электромобилей. Это отличный способ приобрести недорогие высококачественные батареи, но для их разборки, тестирования и сортировки требуется много работы. Я думаю, что это станет обычным методом в будущем, потому что аккумулятор, который плохо работает для электромобиля, может по-прежнему хорошо подходить для системы накопления энергии аккумулятора (BESS), поскольку скорость заряда и разряда намного ниже. в BESS по сравнению с электромобилем.Обычно BESS потребляет гораздо меньшую мощность по сравнению с электромобилем, которому нужно быстро разгоняться.

Сборка литиевой аккумуляторной батареи из использованных элементов — отличный способ сэкономить деньги и продлить срок службы того, от чего в противном случае отказались бы. Не стоит недооценивать, насколько полезной может быть BMS для мониторинга и защиты вас от небезопасных условий, особенно при использовании использованных ячеек. Обратите внимание, что, поскольку неправильно настроенная BMS не защитит вашу батарею от теплового разгона, вам необходимо связаться со специалистом, чтобы убедиться, что BMS правильно настроена для защиты конкретных ячеек, которые вы используете.

Каждый элемент батареи уникален, как снежинка, с микроскопическими вариациями материала катода и анода, которые приводят к незначительным функциональным вариациям. Когда производители создают новые упаковки, они сортируют и сортируют ячейки, чтобы упаковки имели почти идентичные характеристики. Они учитывают энергоемкость, внутреннее сопротивление и дату изготовления. Когда вы собираете свой рюкзак из использованных ячеек, я рекомендую вам сделать то же самое. Если вы хотите собрать батарею из 16 ячеек, вам следует купить более 16 ячеек и выбрать наиболее подходящий вариант.Если вы используете высококачественную BMS, вы можете управлять вариациями и повторно балансировать пакет после каждого цикла.

Когда батареи стареют, их доступная емкость в ампер-часах уменьшается. Иногда внутреннее сопротивление также увеличивается, что означает, что напряжение падает пропорционально току. Если напряжение падает слишком низко, система теряет питание. Вы можете представить это как забитую трубу, в которой сужающийся трубопровод пропускает меньший поток, чем раньше.

Для создания батареи из использованных элементов требуется прочный фундамент в области аккумуляторов и электротехники, и я рекомендую это только экспертам.

Я продаю комплект шин 4P для Nissan LEAF для этой конфигурации, подробности см. По ссылке выше или в Off Grid Solar Store . Руководство по проектированию

для сборки пакета Nissan LEAF для хранения энергии.

Nissan Leaf предлагает очень необычный (а иногда и разочаровывающий) способ штабелирования всех модулей вместе. Есть отверстия, в которые вы проталкиваете длинный стержень и закрепляете его на торцевой пластине. Если вам достанется один кусок задом наперед, вам придется начинать все заново, отсюда и разочарование.

Сгруппируйте P-группу модулей вместе, как правило, 2–6 модулей, используя модуль типа «A» с положительными клеммами на одной стороне, затем чередуйте с модулем типа «B». Это упрощает присоединение шин к последовательным соединениям.

Почему система управления батареями (BMS) так важна? Литий-ионным батареям всегда требуется какая-то электроника для защиты элементов от экстремального напряжения, тока или температуры. Во многих случаях запатентованная система управления батареями (BMS) поставляется с батарейным блоком для выравнивания и защиты отдельных элементов батареи.Но вы также можете собрать аккумулятор, собирая элементы и добавляя BMS. Большинство батарей, кроме литий-ионных, не требуют BMS для безопасного использования. Литиевые батареи уникальны в этом отношении, потому что они могут легко загореться, если напряжение, пиковый ток или температура отдельной ячейки не контролируются.

BMS контролирует каждую ячейку и гарантирует, что каждая ячейка остается в безопасном диапазоне напряжения. Некоторые ошибочно думают, что могут обеспечить безопасность, просто поддерживая общее напряжение блока ниже безопасного предела, игнорируя напряжение отдельных ячеек.Проблема с этим подходом заключается в том, что он предполагает, что все ячейки находятся в точном балансе. На самом деле все аккумуляторные элементы имеют уникальные вариации, и они редко имеют одинаковое напряжение и внутреннее сопротивление. Это заставляет каждую ячейку дрейфовать в зависимости от состояния заряда и определенного напряжения. Поскольку аккумуляторная батарея заряжается и разряжается много раз, элементы могут выйти из равновесия.

Например, если напряжение блока измеряется на уровне 28,8 В для 8 ячеек, соединенных последовательно, можно подумать, что все ячейки имеют 3.6 В, взяв среднее значение напряжения батареи на ячейку.

28,8 В / 8 ячеек = среднее 3,6 В на ячейку

ПРИМЕР ДВУХ РАЗЛИЧНЫХ ПАКЕТОВ С ОДИНАКОВЫМ НАПРЯЖЕНИЕМ ПАКЕТА

Если ячейки находятся в идеальном балансе, то каждая ячейка будет иметь напряжение 3,6 В. Но не все клетки работают одинаково. Каждый элемент аккумулятора (литиевый, свинцово-кислотный и т. Д.) Представляет собой уникальную снежинку. Его емкость, характеристики сопротивления и характер старения немного отличаются.

Магия BMS в том, что она может помочь вам с этими различиями между ячейками.Он может активно перебалансировать или разряжать самые высокие ячейки, чтобы среднее напряжение ячейки и напряжения каждой отдельной ячейки были близки. Он также может отсоединить батарею, если какая-либо одна ячейка перейдет в небезопасное состояние.

В приведенном выше примере с напряжением блока 28,8 В без BMS невозможно определить, достигла ли какая-либо одна ячейка своего максимального предела напряжения. Ниже приведен пример двух блоков с одинаковым напряжением блока, но с очень разными напряжениями ячеек. Без BMS невозможно предотвратить перезарядку ячейки №5.

Некоторые люди в Интернете рекомендуют управлять пиковым напряжением на ячейке, «балансируя» каждую ячейку перед сборкой блока. Это относится к ручной зарядке всех ячеек до пикового напряжения, чтобы все они совпадали. После того, как они «уравновесили» элементы, они контролируют только напряжение батареи. Что они не принимают во внимание, так это то, что со временем все ячейки будут естественным образом дрейфовать друг от друга, и в конечном итоге напряжения в ячейках не будут совпадать в верхней части заряда. Как я описал выше, измерение исключительно напряжения батареи является опасной практикой, поскольку только верхняя балансировка уменьшает , но не устраняет вероятность теплового разгона.

Инверторы преобразуют постоянный ток (DC) в переменный (AC), чтобы преобразовать солнечную энергию или энергию батарей в энергию, используемую для вашего дома. Но в некоторых случаях также полезно иметь возможность преобразовывать переменный ток в постоянный (например, использовать генератор для зарядки аккумуляторов в пасмурные зимние дни). Преобразование переменного тока в постоянное называется выпрямительным; выпрямитель меняет переменный ток на постоянный.

A Двунаправленный инвертор , также называемый гибридным или аккумуляторным инвертором, преобразует как постоянный, так и переменный ток.Он может выпрямлять (преобразовывать из переменного тока в постоянный) и инвертировать мощность (преобразовывать из постоянного в переменный). Все это означает, что инвертор также имеет встроенное зарядное устройство. Некоторые из этих инверторов солнечных батарей также могут преобразовывать постоянный ток высокого напряжения от солнечной батареи в более низкое напряжение для батареи. В данном случае это просто инвертор с зарядным устройством и контроллером заряда в одной коробке. Было бы выгоднее покупать все эти компоненты в одной коробке, а не иметь три отдельных компонента.

Как собрать литиевую батарею для электровелосипеда своими руками из ячеек 18650

Литиевая батарея — это сердце любого электрического велосипеда. Ваш двигатель бесполезен без всей этой энергии, хранящейся в вашей батарее. К сожалению, хороший аккумулятор для электровелосипеда часто бывает труднее всего достать — и самым дорогим. При ограниченном количестве поставщиков аккумуляторов для электрических велосипедов и множестве различных факторов, включая размер, вес, емкость, напряжение и скорость разряда, поиск именно той батареи, которую вы ищете, может быть сложной задачей и привести к нежелательным компромиссам.

Но что, если бы вам не пришлось идти на компромисс? Что, если бы вы могли собрать свой собственный аккумулятор для электровелосипеда в точном соответствии с вашими спецификациями? Что, если бы вы могли собрать аккумулятор идеального размера для вашего велосипеда со всеми необходимыми функциями и сделать это дешевле, чем в розницу? Это проще, чем вы думаете, и ниже я покажу вам, как это сделать.

Теперь пристегнитесь, возьмите напиток и приготовьтесь к серьезному чтению, потому что это не короткая статья. Но в конце концов, когда вы путешествуете на своем собственном аккумуляторе для электровелосипеда, оно того стоит!

Заявление об отказе от ответственности: Прежде чем мы начнем, важно отметить, что литиевые батареи по своей природе содержат большое количество энергии, и поэтому крайне важно обращаться с ними с максимальной осторожностью.Изготовление литиевой батареи своими руками требует базового понимания принципов работы с батареями и не должно предприниматься кем-либо, кто не уверен в своих электрических и технических навыках. Пожалуйста, прочтите эту статью полностью, прежде чем пытаться собрать свой собственный аккумулятор для электровелосипеда. При необходимости всегда обращайтесь за профессиональной помощью.

Примечание. В нескольких местах этой статьи я вставлял сделанные мною видеоролики, демонстрирующие этапы сборки батареи. Батарея, используемая в видео, имеет такое же напряжение, но немного большей емкости.Все те же методы все еще применяются. Если вы чего-то не понимаете в тексте, попробуйте посмотреть это в видео.

Необходимые инструменты и материалы:

18650 варианты литиевых элементов

Ячейки

и 18650, которые используются во многих различных устройствах бытовой электроники, от ноутбуков до электроинструментов, являются одними из наиболее распространенных аккумуляторных элементов, используемых в аккумуляторных батареях для электрических велосипедов. В течение многих лет были доступны только посредственные ячейки 18650, но спрос со стороны производителей электроинструментов и даже некоторых производителей электромобилей на сильные, высококачественные элементы привел к разработке ряда отличных вариантов 18650 за последние несколько лет.

Эти клетки отличаются своей цилиндрической формой и размером примерно с палец. В зависимости от размера батареи, которую вы планируете построить, вам понадобится от нескольких десятков до нескольких сотен.

Существует , множество, различных типов ячеек 18650 на выбор. Я предпочитаю использовать ячейки известных брендов таких компаний, как Panasonic, Samsung, Sony и LG. Эти элементы имеют хорошо задокументированные рабочие характеристики и производятся на уважаемых заводах с превосходными стандартами контроля качества.Фирменные марки 18650 стоят немного дороже, но, поверьте, они того стоят. Отличной ячейкой начального уровня является ячейка Samsung ICR18650-26F. Эти элементы на 2600 мАч должны стоить где-то от 3 до 4 долларов в любом приличном количестве и могут выдерживать непрерывный разряд до 2 ° C (5,2 А на элемент). Я беру свои элементы Samsung 26F на Aliexpress, обычно у этого продавца, но иногда я видел здесь более выгодную цену.

Название торговой марки аккумуляторов Samsung (18650-29E рупий)

Многие люди склонны использовать более дешевые модели 18650, продаваемые под такими названиями, как Ultrafire, Surefire и Trustfire.Не будь одним из таких людей. Эти клетки часто продаются с емкостью до 5000 мАч, но с трудом могут получить более 2000 мАч. На самом деле, эти элементы — всего лишь заводские браки, приобретенные такими компаниями, как Ultrafire, и переупакованные в термоусадочную пленку под собственной торговой маркой. Эти элементы B-качества затем перепродаются для использования в устройствах с низким энергопотреблением, таких как фонарики, где их более низкая производительность не является проблемой. Если ячейка стоит менее 2 долларов, она того не стоит. Придерживайтесь аккумуляторов известных производителей, например, моих любимых аккумуляторов Samsung, если вы хотите создать безопасный и качественный аккумулятор для электровелосипеда.

Ячейки Samsung ICR18650-26F прямо с завода

Когда дело доходит до покупки аккумуляторов, вы можете найти их в местном магазине или заказать их прямо из Азии. Я предпочитаю второй вариант, так как вы обычно получаете гораздо более выгодную цену прямо к источнику, даже при оплате международной доставки. Одно предостережение: сделайте все возможное, чтобы ваш источник продавал подлинные клетки, а не подделки. Для этого проверьте отзывы и используйте способ оплаты, который гарантирует, что вы сможете вернуть деньги, если продукт не соответствует описанию.По этой причине мне нравится покупать свои ячейки на Alibaba.com и AliExpress.com.

В этом уроке я буду использовать зеленые ячейки Panasonic 18650PF, показанные выше. Однако в последнее время я использую такие элементы 18650GA, которые немного более энергоемкие, что означает большую батарею в меньшем пространстве.

Обязательно используйте только полосу из чистого никеля

Что касается никелевой полосы, которую вы будете использовать для соединения батарей 18650, у вас будет два варианта: стальные полосы с никелевым покрытием и полосы из чистого никеля.Выбирайте чистый никель. Он стоит немного дороже никелированной стали, но имеет гораздо меньшее сопротивление. Это приведет к меньшим потерям тепла, большему радиусу действия вашей батареи и более длительному сроку службы батареи из-за меньшего теплового повреждения элементов.

Будьте осторожны: некоторые нечестные продавцы пытаются выдать никелированную сталь за чистую продукцию. Им часто это сходит с рук, потому что их практически невозможно отличить невооруженным глазом. Я написал целую статью о некоторых методах, которые я разработал для тестирования никелевой ленты, чтобы убедиться, что вы получаете то, за что заплатили.Посмотрите здесь.

Что касается никелевой ленты, то я тоже люблю Алиэкспресс. Вы также можете найти его на ebay или даже в местном магазине, если вам повезет. Как только я начал делать много батарей, я начал покупать здесь чистую никелевую ленту килограммами, но вначале я рекомендую вам покупать меньшую сумму. Вы можете получить полоску из чистого никеля по хорошей цене в меньших количествах у продавца, подобного этому, но вы все равно получите лучшую цену, покупая ее в килограммах или полкилограммах.

Что касается размеров, я предпочитаю использовать никель толщиной 0,1 или 0,15 мм и обычно использую полосу шириной 7 или 8 мм. Более сильный сварщик может сделать и более толстую полосу, но это будет стоить намного дороже. Если ваш сварщик может сделать никелевую ленту толщиной 0,15 мм, то дерзайте; толще всегда лучше. Если у вас более тонкие полоски, это тоже нормально, просто при необходимости положите пару слоев друг на друга, чтобы создать соединения, которые могут пропускать больше тока.

Примечание автора: Привет, ребята, Мика. Я запустил этот сайт и написал эту статью.Я просто хотел, чтобы вы как можно быстрее узнали о моей новой книге «Литиевые батареи своими руками: как собрать собственные аккумуляторные блоки», которая доступна на Amazon как в электронной, так и в мягкой обложке и доступна в большинстве стран. Она содержит гораздо более глубокие детали, чем эта статья, и содержит десятки рисунков и иллюстраций, показывающих вам каждый этап проектирования и изготовления батареи. Если вы найдете этот бесплатный сайт полезным, то просмотр моей книги поможет поддержать мою работу на благо всех. Спасибо! Хорошо, теперь вернемся к статье.

ОБЯЗАН ли я использовать точечный сварочный аппарат?

Да.

Ну, позвольте мне сказать по-другому: да, если вы не хотите повредить свои клетки.

Первое, что нужно знать о элементах литиевых батарей, это то, что их убивает тепло. Причина, по которой мы свариваем их точечной сваркой, заключается в том, чтобы надежно соединить ячейки вместе, не добавляя большого количества тепла.

Конечно, можно припаять непосредственно к ячейкам (хотя это может быть сложно без подходящих инструментов). Проблема с пайкой заключается в том, что вы добавляете много тепла к ячейке, и оно не рассеивается очень быстро.Это ускоряет химическую реакцию в ячейке, которая лишает ее работоспособности. В результате получается ячейка, которая имеет меньшую емкость и умирает раньше.

Аппараты для точечной сварки аккумуляторов отличаются от большинства аппаратов для точечной сварки в домашних условиях. В отличие от больших аппаратов точечной сварки для домашних мастерских, у аппаратов точечной сварки электроды электроды находятся на одной стороне. Я никогда не видел их в продаже в США, но их довольно легко найти на eBay и других международных торговых сайтах. Мой сварщик, работающий полный рабочий день, — это довольно простая модель, которую я получил здесь.Здесь можно найти настоятельно рекомендуемый источник для немного более красивой конструкции аппарата для точечной сварки (на фото ниже) с установленными и переносными электродами.

Достаточно распространенный китайский точечный сварщик для хобби

В настоящее время доступны два основных уровня сварщиков: любительский и профессиональный. Хорошая модель для хобби должна стоить около 200 долларов, а хорошая профессиональная модель легко может быть в десять раз дороже. У меня никогда не было профессионального сварщика, потому что я просто не могу оправдать затраты, но у меня есть три разные модели для хобби, и я экспериментировал со многими другими.Их качество очень хорошее, даже на идентичных моделях от одного и того же продавца. К сожалению, доля лимона довольно высока, а это означает, что вы можете выложить более пары сотен долларов за аппарат, который просто не будет работать должным образом (например, мой первый сварщик!). Опять же, это хорошая причина использовать сайт с защитой покупателя, такой как Aliexpress.com.

Сварщик для точечной сварки профессионального уровня

Я использую свои сварочные аппараты на 220 В, хотя доступны версии на 110 В. Если у вас есть доступ к 220 В в вашем доме (во многих странах с 110 В есть линии 220 В для сушилок для одежды и других мощных приборов), я бы рекомендовал придерживаться 220 В.По моему опыту, модели на 110 В имеют больше проблем, чем их братья на 220 В. Ваш пробег может отличаться.

Цена покупки часто отпугивает многих, но на самом деле 200 долларов за хорошего точечного сварщика — это неплохо. В целом, расходные материалы для моей первой батареи, включая стоимость таких инструментов, как точечная сварка, в конечном итоге обошлись мне примерно так же, как если бы я купил розничную батарею такой же производительности. Это означало, что в конце концов у меня был новый аккумулятор, и я считал все инструменты бесплатными.С тех пор я использовал их для создания бесчисленного количества батарей и очень сильно сэкономил!

Прежде чем начать

Несколько советов перед началом работы:

Работайте в чистой зоне, где нет беспорядка. Когда вы обнажили контакты многих элементов батареи, соединенных вместе, последнее, что вам нужно, — это случайно положить батарею на отвертку или другой металлический предмет. Однажды я чуть не пролил коробку со скрепками на открытую батарею, пытаясь убрать ее с дороги.Я могу только представить себе фейерверк, который мог бы вызвать.

Надеть перчатки. Рабочие перчатки, механические перчатки, сварочные перчатки, даже латексные перчатки — просто наденьте что-нибудь. На поверхности вашей кожи может проводиться достаточно высокое напряжение, особенно если у вас даже слегка вспотели ладони. Я достаточно раз чувствовал покалывание, чтобы всегда носить перчатки. Фактически, моя пара для работы с батареями — это старые розовые перчатки для посуды. Они тонкие и обеспечивают большую маневренность, защищая меня от коротких замыканий и искр.

Мои перчатки выбора

Удалите все металлические украшения. Это еще один совет, который я могу дать на собственном опыте. Вы не хотите, чтобы контакты аккумулятора искрились дугой, особенно если это касается вашей голой кожи. У меня такое случалось на моем обручальном кольце, а однажды даже в течение недели на запястье оставался ожог в виде застежки часов. Сейчас все снимаю.

Надевайте защитные очки. Серьезно. Не пропустите это. В процессе точечной сварки нередки разлетаются искры.Не пользуйтесь защитными очками и возьмите очки в стиле химической лаборатории, если они у вас есть — вам понадобится защитный чехол, когда искры начнут отскакивать. У тебя только два глаза; Защити их. Я предпочитаю потерять руку, чем глаз. О, если говорить об оружии, я бы порекомендовал длинные рукава. Эти искры причиняют боль, когда попадают на ваши запястья и предплечья.

Хорошо, давайте сделаем аккумулятор для электровелосипеда!

Вероятно, вы с нетерпением ждете начала сварки, но первым делом нужно спланировать конфигурацию аккумулятора.

Большинство аккумуляторов электрических велосипедов имеют диапазон от 24 до 48 В, обычно с шагом 12 В. Некоторые люди используют батареи с напряжением до 100 вольт, но сегодня мы будем придерживаться батареи среднего размера на 36 В. Конечно, те же принципы применимы к любой батарее напряжения, так что вы можете просто увеличить батарею, которую я показываю вам сегодня, и построить свою собственную батарею 48 В, 60 В или даже более высокого напряжения.

Чтобы достичь запланированного напряжения 36 В, мы должны последовательно соединить несколько 18650 ячеек.Литий-ионные аккумуляторные элементы номинально рассчитаны на 3,6 или 3,7 В, что означает, что для достижения номинального напряжения 36 В нам потребуется 10 последовательно подключенных элементов. Промышленное сокращение для серии — «s», поэтому этот блок будет известен как «блок 10S» или 10 ячеек, соединенных последовательно, для конечного напряжения блока 36 В.

Затем нам нужно будет подключить несколько ячеек 18650 параллельно, чтобы достичь желаемой емкости блока. Каждая из ячеек, которые я использую, рассчитана на 2 900 мАч. Я планирую подключить 3 ячейки параллельно, чтобы получить общую емкость 2,9 Ач x 3 ячейки = 8.7 Ач. Промышленное сокращение для параллельных ячеек — «p», что означает, что моя окончательная конфигурация блока считается «блоком 10S3P» с окончательной спецификацией 36 В, 8,7 Ач.

Большинство имеющихся в продаже пакетов на 36 В имеют емкость около 10 Ач, что означает, что наш пакет будет немного меньше. Мы также могли бы использовать конфигурацию 4p, дающую нам 11,6 Ач, что было бы немного больше и дороже. Конечная емкость полностью определяется вашими потребностями. Больше — не всегда лучше, особенно если вы устанавливаете аккумулятор в ограниченном пространстве.

Затем спланируйте конфигурацию ячейки на компьютере или даже с помощью карандаша и бумаги. Это поможет убедиться, что вы правильно раскладываете свой рюкзак, и покажет окончательные размеры упаковки. На моем нисходящем рисунке ниже я обозначил положительный конец ячеек красным, а отрицательный конец ячеек — белым.

Это очень простой макет, в котором каждый столбец из 3 ячеек подключается параллельно, а затем 10 столбцов подключаются последовательно слева направо.Плата BMS показана в дальнем правом конце упаковки. Вскоре вы увидите, как упаковка, изображенная на рисунке, соберется в реальной жизни.

Ниже я сделал видео, показывающее, как спроектировать расположение ячеек батареи.

Подготовьте свои клетки

Теперь, когда у нас есть все это надоедливое планирование, давайте приступим к самой батарее. Наше рабочее пространство чистое, все наши инструменты под рукой, у нас есть защитное снаряжение, и мы готовы к работе.Мы начнем с подготовки наших отдельных аккумуляторных элементов 18650.

Проверьте напряжение каждой ячейки, чтобы убедиться, что все они идентичны. Если ваши ячейки поступили прямо с завода, они не должны отличаться более чем на несколько процентных пунктов от одного к другому. Они, вероятно, будут находиться в диапазоне 3,6–3,8 вольт на элемент, поскольку большинство заводов отправляют свои элементы частично разряженными, чтобы продлить срок их хранения.

Если какой-либо один элемент батареи значительно отличается от других, НЕ подключайте его к другим элементам.Параллельное соединение двух или более ячеек с разным напряжением вызовет мгновенный и массивный ток, протекающий в направлении ячейки (ячеек) с более низким напряжением. Это может повредить клетки и даже в редких случаях привести к возгоранию. Заряжайте или разряжайте элемент по отдельности, чтобы он соответствовал другим, или, что более вероятно, просто не используйте его в своей батарее. Причина разницы в напряжении может быть связана с проблемой в ячейке, а вы не хотите, чтобы в вашей батарее была плохая ячейка.

Вот почему я сейчас всегда использую ячейки известных брендов.Единственный раз, когда я получал заводские ячейки прямого действия с несогласованными напряжениями, — это когда я покупал элементы других производителей.

После того, как я проверил все необходимые элементы и убедился, что они имеют соответствующее напряжение, мне нравится размещать их на своей рабочей поверхности в той ориентации, которая соответствует предполагаемой упаковке. Это дает мне еще одну последнюю проверку, чтобы убедиться, что ориентация будет работать так, как планировалось, и шанс увидеть реальный размер упаковки без небольшой прокладки и термоусадочной пленки.

Примерно так должна выглядеть пачка, когда батарея разрядится

Подготовьте никель

Мне нравится отрезать большую часть своей никелевой ленты заранее, чтобы я мог просто сваривать, не прерывая поток, чтобы остановить и отрезать больше никеля.Я измерил ширину трех ячеек и отрезал достаточно никелевой полосы, чтобы сварить верхнюю и нижнюю части 10 комплектов по 3 ячейки, то есть 20 полосок никеля шириной по 3 ячейки каждая, плюс пара запасных частей на случай, если я что-нибудь испортил.

Никелевые полосы нарезанные из рулона

Никель на удивление мягкий, поэтому его можно разрезать обычными ножницами. Однако постарайтесь не сгибать его слишком сильно, так как вы хотите, чтобы он оставался как можно более плоским. Если вы все-таки загните уголки ножницами, вы легко сможете снова загнуть их пальцем.

Подготовьте параллельные группы к сварке

Вам нужно будет каким-то образом удерживать клетки на прямой линии во время сварки, так как делать это сложнее, чем кажется. У меня есть хорошее приспособление (которое я получил в качестве бесплатного «подарка» при покупке одного из моих сварщиков), чтобы удерживать мои ячейки на прямой линии во время сварки. Однако, прежде чем я его получил, я использовал простую деревянную оправку, которую я сделал, чтобы удерживать клетки, пока я горячим склеил их в прямую линию.

Мой «настоящий» 18650 приспособление для точечной сварки

Мой старый деревянный 18650 шаблон для горячего склеивания

Любой способ работает, но мой оранжевый джиг экономит мне один шаг горячего клея, который просто делает упаковку более чистой.Конечно, все будет так же после того, как упаковка будет покрыта термоусадочной пленкой, поэтому вы можете использовать любой метод, который вам нравится. Я даже обнаружил, что некоторые из этих цилиндрических лотков для кубиков льда идеально подходят для хранения 18650 ячеек. Если отрезать верхнюю часть, она останется чистой для сварки. Я бы добавил несколько сильных неодимовых магнитов на заднюю часть, чтобы удерживать ячейки на месте, как у моего апельсинового джига, но в остальном это идеальный джиг почти как есть.

Поднос для кубиков льда, из которого можно изготовить 18650 приспособление для точечной сварки

Пора начинать сварку!

Хорошо, вот момент, которого все так ждали.Давайте сварим наши клетки.

Теперь план игры состоит в том, чтобы сварить параллельные группы из 3 ячеек (или больше или меньше для вашего пакета, в зависимости от того, какую общую емкость вы хотите). Чтобы сварить ячейки параллельно, нам нужно сварить верхнюю и нижнюю части ячеек вместе, чтобы все 3 ячейки имели общие положительные и отрицательные выводы.

Существуют разные модели сварочных аппаратов, но большинство из них работают одинаково. У вас должны быть два медных электрода, расположенных на расстоянии нескольких миллиметров друг от друга на двух плечах, или у вас могут быть портативные датчики.У моей машины есть сварочные рычаги.

Положите никелевую ленту на верхнюю часть ячеек и приподнимите ее напротив сварочных щупов, чтобы начать сварку.

Положите никелевую полосу поверх трех ячеек, убедившись, что она закрывает все три клеммы. Включите сварочный аппарат и установите достаточно низкий ток (если вы используете сварочный аппарат впервые). Выполните пробную сварку, поместив элементы батареи и медную полоску под зонды и поднимая их до тех пор, пока сварочные рычаги не поднимутся достаточно высоко, чтобы начать сварку.

Вы увидите две точки в месте выполнения сварного шва. Проверьте сварной шов, потянув за никелевую полосу (если вы впервые пользуетесь сварочным аппаратом). Если сварка не снимается под давлением руки или требует большой силы, значит, это хороший сварной шов. Если легко отклеить, включите ток. Если поверхность выглядит обгоревшей или слишком горячей на ощупь, уменьшите силу тока. Полезно иметь запасную ячейку или две для набора мощности вашей машины.

Так должны выглядеть ваши ячейки после первого набора сварных швов

Продолжайте движение вниз по ряду ячеек, нанося сварной шов на каждую ячейку.Затем вернитесь и сделайте еще один набор сварных швов на каждой ячейке. Мне нравится делать 2-3 сварных шва (4-6 точек) на ячейку. Если меньше, сварной шов станет менее надежным; больше, и вы просто нагреваете камеру без надобности. Все больше и больше сварных швов не сильно увеличит токопроводящую способность никелевой ленты. Фактическая точка сварки — не единственное место, где ток течет от ячейки к полосе. Плоский кусок никеля будет касаться всей поверхности крышки ячейки, а не только в точках сварного шва. Так что 6 точек сварки — это достаточно для обеспечения хорошего контакта и соединения.

Вот ячейки с еще парочкой сварных швов

Когда у вас будет 2-3 сварных шва на верхней части каждой ячейки, переверните 3 ячейки и проделайте то же самое с нижней частью 3 ячеек с новым куском никеля. После того, как вы завершите нижние сварные швы, у вас будет одна полная параллельная группа, готовая к работе. Технически это уже батарея 1S3P (1 элемент последовательно, 3 элемента параллельно). Это означает, что я только что создал батарею 3,6 В 8,7 Ач. Их осталось всего девять, и мне хватит, чтобы собрать весь рюкзак.

Теперь приварите таким же образом на противоположной стороне ячеек.

Затем возьмите еще 3 ячейки (или сколько бы их ни было в параллельных группах) и выполните ту же операцию, чтобы создать еще одну параллельную группу, аналогичную первой. Тогда продолжай. Я делаю еще восемь параллельных групп, всего 10 параллельных групп.

Ниже я сделал видео, в котором показано, как выполнять точечную сварку аккумулятора.

Сборка параллельных групп в серии

Теперь у меня есть 10 отдельных параллельных групп, и я собираюсь соединить их последовательно, чтобы сделать один аккумулятор для электровелосипеда.

10 параллельных групп, сваренных, некуда деваться…

Что касается компоновки, есть два способа собрать ячейки в прямые пакеты (прямоугольные блоки, как я собираю). Я не знаю, есть ли для этого отраслевые термины, но я называю эти два метода «офсетной упаковкой» и «линейной упаковкой».

Смещение упаковки приводит к более короткой упаковке, поскольку параллельные группы смещены на половину ячейки, занимая часть пространства между ячейками предыдущей параллельной группы.Однако это приводит к несколько более широкой упаковке, поскольку смещенные параллельные группы простираются в каждую сторону на четверть ячейки больше, чем они имели бы при линейной упаковке. Офсетная упаковка удобна в тех случаях, когда вам нужно разместить упаковку в более короткой области (например, в треугольнике рамы) и не заботиться о штрафе за ширину.

Линейная упаковка, с другой стороны, дает более узкую упаковку, которая в конечном итоге оказывается немного длиннее, чем офсетная упаковка. Некоторые люди говорят, что офсетная упаковка более эффективна, потому что вы можете разместить больше ячеек на меньшей площади, используя пространство между ячейками.Однако офсетная упаковка создает бесполезное пространство на концах параллельных групповых рядов, где между краем упаковки и «более короткими» рядами образуются зазоры. Чем больше аккумуляторный блок, тем меньше занимаемое пространство занимает по сравнению с общим размером блока, но для большинства блоков разница незначительна. Для своей батареи я решил использовать офсетную упаковку, чтобы сделать батарею короче и легче помещаться в небольшую сумку с треугольником.

Когда дело доходит до последовательной сварки параллельных групп, вам необходимо спланировать сварные швы с учетом физических возможностей вашего сварщика.Короткие рукава на моем сварочном аппарате могут достигать глубины только двух рядов ячеек, что означает, что мне нужно будет добавлять по одной параллельной группе за раз, сваривать ее, а затем добавлять еще одну. Если у вас есть ручные сварочные зонды, теоретически вы можете сварить всю батарею за один раз.

И теоретически я бы тебе завидовал.

Поскольку у большинства сварщиков есть такие же руки, как у меня, я покажу вам, как я это сделал. Я начал с горячего склеивания двух параллельных групп вместе со смещением, убедившись, что концы противоположны (по одному положительному и по одному отрицательному на каждом конце, как показано на рисунке).Затем я отрезал кучу никелевых полосок, достаточно длинных, чтобы перемыть два элемента.

Обратите внимание, что параллельные группы выровнены с противоположными полюсами

Я поместил первую параллельную группу положительной стороной вверх, а вторую параллельную группу отрицательной стороной вверх. Я положил никелевые полоски поверх каждого из трех наборов ячеек, соединив положительные клеммы первой параллельной группы с отрицательной клеммой второй параллельной группы, как показано на рисунке.

Затем я наложил по одному набору сварных швов на каждый конец ячейки первой параллельной группы, эффективно прихватив три никелевые полоски на месте.Затем я добавил еще один набор сварных швов на каждый из отрицательных выводов второй параллельной группы. Это дало мне 6 сварочных комплектов или по одному сварочному комплекту для каждой ячейки. Наконец, я дополнил эти комплекты одиночных сварных швов еще парой сварных швов на ячейку, чтобы обеспечить хороший контакт и соединение.

Затем я добавил третью параллельную группу после второй, приклеив ее горячим способом в той же ориентации, что и первая, так что верх упаковки чередуется от положительных клемм к отрицательным клеммам и обратно к положительным клеммам вдоль первых трех параллельных групп. .

Теперь этот шаг очень важен: Я переверну пакет вверх дном и выполню этот набор сварных швов между положительными крышками на второй параллельной группе и отрицательными клеммами на третьей параллельной группе. По сути, я свариваю на противоположной стороне блока, как и при подключении первых двух параллельных групп. Пропустите несколько изображений, чтобы увидеть полностью сваренный пакет, чтобы понять, как работает система чередующихся сторон.

Почему мы меняем стороны упаковки во время сварки? Мы делаем это, потому что таким образом мы подключаем положительный вывод каждой параллельной группы к отрицательному выводу следующей группы в линии.Вот как работают последовательные соединения: всегда от положительного к отрицательному, от положительного к отрицательному, чередуя их.

Когда мы добавляем четвертую параллельную группу, мы снова приклеиваем ее горячим клеем в противоположной ориентации третьей параллельной группы (и той же ориентации второй параллельной группы), а затем привариваем ее к противоположной стороне, пока мы сваривали между вторая и третья группы (и та же сторона, что мы сварили между первой и второй группами).

Этот шаблон продолжается до тех пор, пока мы не подключим все 10 параллельных групп.В моем случае вы можете видеть, что первая и последняя параллельные группы не приварены к верхней стороне пакета. Это потому, что они являются «концами» блока или основными положительными и отрицательными выводами всего блока 36 В.

Каждая из групп ячеек, не подключенных вверху, подключена снизу

Добавление BMS (системы управления батареями)

Элементы батареи теперь собраны в большую батарею на 36 В, но мне все еще нужно добавить BMS для управления зарядкой и разрядкой батареи.BMS контролирует все параллельные группы в батарее, чтобы безопасно отключить питание в конце зарядки, одинаково сбалансировать все ячейки и предотвратить чрезмерную разрядку батареи.

BMS не обязательно строго требуется — пакет можно использовать как есть, без BMS. Но это требует очень тщательного контроля за элементами батареи, чтобы избежать их повреждения или создания опасного сценария во время зарядки или разрядки. Это также требует покупки более сложного и дорогого зарядного устройства, которое может сбалансировать все элементы по отдельности.Гораздо лучше использовать BMS, если у вас нет особых причин, по которым вы хотите самостоятельно контролировать свои клетки.

Я выбрал BMS с максимальным током постоянного разряда 30A, чего мне больше не нужно. Хорошо быть консервативным и, если возможно, завышать спецификации вашей BMS, чтобы вы не использовали ее до предела. Моя BMS также имеет функцию баланса, которая поддерживает баланс всех моих ячеек при каждой зарядке. Не все BMS делают это, хотя большинство из них. Будьте осторожны с очень дешевыми BMS, потому что именно тогда вы можете столкнуться с несбалансированной BMS.

Чтобы подключить BMS, нам сначала нужно определить, какой из сенсорных проводов (множество тонких проводов) является первым (предназначенным для первой параллельной группы). Найдите провода, которые должны быть пронумерованы на одной стороне платы. Моя находится на обратной стороне платы, и я забыл сфотографировать ее перед установкой, но поверьте мне, я заметил, с какого конца начинаются провода датчиков. Вы же не хотите ошибиться и подключить сенсорные провода в неправильном направлении.

Обязательно ознакомьтесь со схемой подключения вашей BMS, потому что у некоторых BMS на один сенсорный провод больше, чем ячеек (например, 11 сенсорных проводов для блока 10S).В этих блоках первый провод идет к отрицательному выводу первой параллельной группы, а все остальные провода идут к положительному выводу каждой последующей параллельной группы. Моя BMS имеет только 10 сенсорных проводов, поэтому каждый будет подключаться к положительной клемме параллельных групп.

Схема подключения, поставляемая с моей BMS

Перед тем, как на самом деле подключать BMS к батарее, я приклеил ее горячим клеем к куску поролона, чтобы изолировать контакты в нижней части платы, а затем приклеил эту пену к концу батареи.

Затем я взял измерительный провод, обозначенный B1, и припаял его к положительному выводу первой параллельной группы (который также совпадает с отрицательным выводом второй параллельной группы, поскольку они соединены вместе никелевой полосой).

При пайке этих проводов к никелевой полосе старайтесь паять между двумя ячейками, а не непосредственно поверх ячейки. Это удерживает источник тепла дальше от фактических концов элементов и вызывает меньший нагрев элементов батареи.

Затем я взял свой второй сенсорный провод (или ваш третий сенсорный провод, если у вас на один сенсорный провод больше, чем параллельных групп) и припаял его к положительной клемме второй параллельной группы. Опять же, обратите внимание, что я припаиваю этот провод к никелю между ячейками, чтобы избежать прямого нагрева любой ячейки.

Я продолжил со всеми 10 проводами считывания, поместив последний на положительный вывод 10-й параллельной группы. Если вы не уверены, какие группы к каким группам относятся, или запутались, используйте цифровой вольтметр, чтобы дважды проверить напряжения каждой группы, чтобы вы знали, что подключаете каждый провод к правильной группе.

Последним этапом подключения BMS является добавление проводов заряда и разряда. И положительный, и разрядный провод батареи будут припаяны непосредственно к положительной клемме 10-й параллельной группы. Провод отрицательного заряда будет припаян к C-контактной площадке BMS, а отрицательный разрядный провод будет припаян к P-контактной площадке BMS. Мне также нужно добавить один провод от отрицательной клеммы первой параллельной группы к клемме B на BMS.

Вы заметите, что для своих зарядных проводов я использовал провода большего диаметра, чем сенсорные провода, поставляемые с BMS.Это потому, что зарядка будет давать больше тока, чем эти сенсорные провода. Кроме того, вы заметите, что разрядные провода (включая контактную площадку B до отрицательной клеммы аккумулятора) являются самыми толстыми проводами из всех, так как они будут нести всю мощность всего аккумулятора во время разрядки. Я использовал 16 AWG для зарядных проводов и 12 AWG для разрядных проводов.

На следующих фотографиях вы также заметите, что мои провода заряда и разряда обмотаны на концах изолентой.Это необходимо для предотвращения случайного контакта друг с другом и короткого замыкания батареи. Мой друг недавно посоветовал мне другой (и, вероятно, лучший) вариант предотвращения коротких замыканий: сначала добавьте разъемы к проводам, а затем припаяйте их к блоку и BMS. Дох!

Ниже я сделал видео, показывающее, как добавить BMS к литиевой батарее.

Уплотнение аккумулятора электровелосипеда своими руками с помощью термоусадки

Этот шаг не обязателен.Вам следует как-то герметизировать батарею, чтобы предотвратить короткое замыкание на весь этот незащищенный никель, но не обязательно, чтобы содержал с термоусадочной пленкой. Некоторые люди используют клейкую ленту, полиэтиленовую пленку, ткань и т. Д. Однако, на мой взгляд, термоусадочная пленка — лучший метод, потому что она не только обеспечивает в значительной степени водостойкое (хотя и не водонепроницаемое) уплотнение, но также обеспечивает постоянное и равномерное давление на все ваши соединения и провода, что снижает риск повреждения из-за вибрации.

Перед тем, как запечатать батареи в термоусадочной пленке, я предпочитаю обернуть их тонким слоем поролона для дополнительной защиты.Это помогает предохранить концы ваших элементов от осколков, если аккумулятор подвергнется грубому обращению, что может произойти случайно в виде упавшего аккумулятора или аварии электровелосипеда. Пена также помогает гасить вибрации, которые аккумулятор испытывает на велосипеде.

Обрезка поролона по размеру перед упаковкой

Я использую белую крафтовую пену толщиной 2 мм и вырезаю фигуру немного больше, чем моя упаковка. Заворачиваю и заклеиваю изолентой. Он не должен быть красивым, он просто должен покрывать всю стаю.Ваш следующий шаг скроет пену из поля зрения.

Далее идет термоусадочная трубка. Трудно найти термоусадочную трубку большого диаметра, и мне повезло с большим количеством разных размеров от китайского поставщика, прежде чем у него закончились поставки. Лучше всего проверить такие сайты, как eBay, на наличие коротких термоусадочных материалов нужного вам размера.

Небольшое примечание: когда вы переходите к термоусадке больших размеров, метод обозначения размера часто меняется от ссылки на диаметр трубки на ссылку на плоскую ширину (или половину окружности в круге).Это связано с тем, что при таких больших размерах это больше не трубка, а два плоских листа, соединенных вместе, вроде конверта. Помните об этом и знайте, какой размер указан, когда вы покупаете термоусадочную трубку большого диаметра.

Существуют формулы для расчета точного размера необходимой термоусадки, но я часто нахожу их слишком сложными. Вот как я определяю, какой размер мне нужен: беру высоту и ширину упаковки, складываю их и запоминаю это число.Размер термоусадки, который вам нужен, при измерении по ширине плоскости (половина окружности) находится между тем числом, которое вы нашли, и удвоенным значением (или, в идеале, между немного большим, чем это число, до чуть меньше, чем вдвое больше).

Почему эта формула работает? Подумайте об этом: термоусадка (если не указано иное) обычно имеет коэффициент усадки 2: 1, поэтому, если мне нужно что-то с длиной окружности (или, точнее, периметра, меньше чем вдвое) моей упаковки. Поскольку термоусадка большого диаметра указывается для размеров половинной окружности (плоской ширины), и я хочу, чтобы термоусадка имела окружность немного больше, чем периметр моей упаковки, то я знаю, что мне нужно, чтобы размер половины окружности был немного больше, чем половина периметра моего рюкзака, равная высоте плюс ширина моего рюкзака.

Это может показаться запутанным, поэтому давайте говорить в реальных числах. Мой рюкзак примерно 70 мм в высоту и примерно 65 мм в ширину. Это означает, что половина периметра моего рюкзака составляет 70+ 65 = 135 мм. Поэтому мне нужна термоусадочная трубка с плоской шириной (или половиной окружности) от 135 до 270 мм, или, чтобы быть безопаснее, от 150 до 250 мм. И если возможно, я хочу быть на меньшем конце этого диапазона, чтобы термоусадка была более плотной и удерживалась более прочной. К счастью, у меня есть термоусадочная трубка 170 мм, которая отлично подойдет.

Еще одно замечание о термоусадке большого диаметра: если не указано иное, этот материал обычно дает усадку примерно на 10% в продольном направлении, поэтому вам нужно немного прибавить к длине, чтобы учесть как перекрытие, так и продольную усадку.

Но есть еще одна проблема: теперь, если я просто засуну свой рюкзак в какую-нибудь термоусадочную трубку, у меня останутся открытые концы. Конструктивно это более или менее нормально, хотя не будет водонепроницаемым и будет выглядеть немного менее профессионально.

Итак, я собираюсь сначала использовать более широкий (285 мм, если быть точным), но более короткий кусок термоусадочной пленки, чтобы обернуть упаковку в длинном направлении. Это сначала закроет концы, а затем я смогу вернуться с моим длинным и тонким кусочком термоусадки, чтобы покрыть всю длину упаковки.

Если у вас нет настоящего теплового пистолета, воспользуйтесь сильным феном. Не все фены подойдут, но модель моей жены на 2000 ватт великолепна. У меня есть настоящая тепловая пушка, но на самом деле я предпочитаю использовать ее фен, потому что у него более тонкие элементы управления и более широкая мощность.Только не испачкай фен своей жены!

Надевание и усадка второго слоя

Теперь вся моя упаковка запаяна в термоусадочную пленку, а провода выходят из шва между двумя слоями термоусадочной пленки. Я мог бы остановиться здесь, но с чисто эстетической точки зрения мне не особенно понравилось, как там упала усадка на выход провода. Поэтому я взял третий кусок термоусадочной пленки того же размера (285 мм), что и первый кусок, и еще раз прошел вокруг длинной оси упаковки, чтобы плотно прижать провода к концу упаковки.

В результате получилось три слоя термоусадочной пленки, что составляет одну очень защищенную батарею!

Ниже я сделал видео, показывающее, как термоусадку литиевой батареи.

Последние штрихи

Единственное, что осталось сделать на этом этапе, — это добавить разъемы, если вы не сделали это до того, как припаяли провода, что я действительно рекомендую сделать. Но, конечно, я этого не сделал, поэтому добавил их на этом этапе, стараясь не закоротить их, подключая только один провод за раз.

долларов за весы

Можно использовать любые коннекторы, какие захотите. Я большой поклонник разъемов Anderson PowerPole для разрядных проводов. Я использовал этот другой разъем, который был у меня в контейнере для запчастей, для разрядных проводов. Я не знаю, как называется этот тип коннектора, но если кто-то хочет сообщить мне об этом в разделе комментариев, это будет здорово!

Вы также можете добавить этикетку или другую информацию на внешнюю сторону рюкзака, чтобы придать ему профессиональный вид. По крайней мере, неплохо было бы хотя бы написать на упаковке напряжение и емкость.Особенно, если вы сделаете несколько нестандартных аккумуляторов, это гарантирует, что вы никогда не забудете правильное напряжение заряда для батареи.

Вначале вы также захотите протестировать аккумулятор с довольно небольшой нагрузкой. Попробуйте совершить легкую поездку на первых нескольких зарядках или, что еще лучше, используйте разрядник, если он у вас есть. Я построил нестандартный разрядник из галогенных лампочек. Это позволяет мне полностью разряжать батареи на разных уровнях мощности и измерять выходную мощность. Эта конкретная батарея дала 8.54 Ач в первом цикле разряда при скорости разряда 0,5 с, или около 4,4 А. Этот результат на самом деле довольно хороший и соответствует средней емкости отдельного элемента около 2,85 Ач, или 98% от номинальной емкости.

Производители обычно оценивают емкость своих элементов при очень низкой скорости разряда, иногда всего 0,1 с, когда элементы работают с максимальной производительностью. Так что не удивляйтесь, если вы используете только 95% или около того от заявленной емкости ваших ячеек во время реальных разрядов. Этого следовало ожидать.Кроме того, ваша емкость, вероятно, немного вырастет после первых нескольких циклов зарядки и разрядки, поскольку элементы сломаются и уравновесятся друг с другом.

Я не стал включать в эту статью раздел о зарядке, поскольку речь шла только о том, как собрать литиевую батарею. Но вот видео, которое я сделал, показывает, как выбрать подходящее зарядное устройство для литиевой батареи.

Теперь ваша очередь!

Теперь у вас есть вся информация, которая может вам понадобиться, чтобы сделать собственный литиевый аккумулятор для электровелосипеда.Возможно, вам все еще понадобится несколько инструментов, но, по крайней мере, у вас есть знания. Не забывайте делать это медленно, все распланируйте заранее и наслаждайтесь проектом. И не забывайте свое защитное снаряжение!

Видеоверсия моего практического руководства:

Если вы похожи на меня, то вам нравится слышать и видеть, как что-то делается, а не просто читать о них. Вот почему я также снял видео, показывающее все шаги, которые я сделал здесь, в одном видео. Батарея, которую я собираю в этом видео, не такая же, но похожая.Это аккумулятор на 24 В и 5,8 Ач для небольшого маломощного электровелосипеда. Но вы можете просто добавить больше ячеек, чтобы получить блок с более высоким напряжением или большей емкостью в соответствии с вашими потребностями. Посмотрите видео ниже:

Я оставлю вам немного больше вдохновения

Теперь я уверен, что вы все в восторге от создания собственного аккумуляторного блока. Но на всякий случай я собираюсь оставить вам потрясающее видео, в котором производитель аккумуляторов Дамиан Рене из Мадрида, Испания, строит очень большой, очень профессионально сконструированный аккумуляторный блок 48 В 42 Ач из 18650 ячеек.О том, как он построил эту батарею, можно прочитать здесь. (Также обратите внимание на видео, как он хорошо использует средства защиты!)

кредит изображения 1, 2, 3,

VRUZEND Комплект батарей для самостоятельного изготовления

VRUZEND — Строительство аккумуляторов стало проще!

Никакой точечной сварки… и никакой пайки!

Просто соедините блоки VRUZEND, а затем скрепите соединения болтами. Это действительно так просто!

Литиевые аккумуляторные батареи

для всего, от электрических велосипедов и скейтбордов до домашних аккумуляторов энергии и электромобилей, безумно дороги, не так ли ?!

Почему? Это связано с тем, что для изготовления литиевых аккумуляторных батарей требовались специальные инструменты и высококвалифицированный персонал для их использования.Но не больше!

Строительные комплекты литиевых батарей

VRUZEND были разработаны для решения этой проблемы. Пластиковые заглушки плотно прилегают к краю самого распространенного формата литиевых батарей — 18650. Их можно соединить вместе, как кубики Lego ™, чтобы получить батарею любого размера.

Затем просто скрепите элементы вместе с помощью прилагаемых разъемов, и вы получите собственный блок литиевых батарей за небольшую часть цены покупки готового блока литиевых батарей.

Точечные сварочные аппараты дорогие. Хорошие стоят дороже, чем большинство литиевых батарей! Дешевые опасны и ломаются тогда, когда они вам больше всего нужны. Кроме того, пакеты, сваренные точечной сваркой, не могут быть открыты для замены отдельной ячейки, если она когда-либо выйдет из строя. Комплекты ВРУЗЕНД можно!

С инновационными наборами аккумуляторов «сделай сам» VRUZEND вы просто работаете руками! Соедините крышки клемм, добавьте соединительные стержни и затем затяните гайки (хорошо, значит, вам понадобится отвертка для гаек, вы нас получили … Но в основном это без инструментов!)

Комплекты батарей

VRUZEND спроектированы таким образом, что их можно открывать, когда вам нужно, если вы когда-нибудь захотите расширить свою батарею или заменить элемент.Просто разложите комплект, и батареи станут легко доступны.

Пластиковые торцевые крышки работают как пружинные шайбы или найлок-гайки, сжимаясь под действием гаек с обоих концов. Это обеспечивает противодействие гайке и помогает предотвратить ослабление гаек даже при транспортировке, подверженной вибрациям.

Если вас все еще беспокоит ослабление гаек из-за вибрации, есть и другие варианты. В гайки можно добавить Loctite или другой состав для фиксации резьбы, или просто нанесите на гайку старомодную каплю горячего клея, чтобы она не сдвинулась с места, пока вы не будете готовы ее снять.

Комплекты для сборки аккумуляторов VRUZEND поставляются с предохранительными стойками на концах каждой крышки, чтобы удерживать клеммы аккумулятора и токопроводящие стержни над рабочей поверхностью во время сборки аккумулятора. Это помогает предотвратить случайное короткое замыкание во время сборки батареи.

Комплекты

VRUZEND могут использоваться для сборки батарей практически любого размера и формы. Вы больше не ограничены небольшим набором размеров батарей. Вы можете создать точное напряжение аккумулятора и емкость в ампер-часах, которые вам нужны.А если вам нужна максимальная емкость, вы можете собрать несколько аккумуляторных блоков и соединить их параллельно, бок о бок, чтобы создать аккумуляторы сверхвысокой емкости, которые отлично подходят для домашнего хранения энергии.

Комплект для сборки батарей VRUZEND — действительно лучший способ собрать кастомную литиевую батарею из 18650 ячеек. Но не верьте нам на слово, попробуйте прямо сегодня!

Набор литиевых батарей для самостоятельного изготовления — необходимость, метод и срок службы-знания о батареях

Литиевые батареи

— одни из самых надежных аккумуляторов.Тем не менее, они становятся все дороже, чем больше батарея, которую вы ищете, и не каждый может себе это позволить.

К счастью для нас, мы можем собрать литиевый аккумулятор прямо у себя дома. Вот все, что вам нужно знать о самодельных литиевых батареях, их потребностях, методах создания и общем жизненном цикле:

Когда вы хотите сделать самодельную литиевую батарею?

Литий-ионные аккумуляторы — одни из лучших на рынке. Их не только проще изготавливать, но и они служат дольше, чем большинство других батарей, а их перезаряжаемые варианты служат дольше при большем заряде, чем большинство других версий батарей.?

Литиевая аккумуляторная батарея, сделанная своими руками, — как следует из названия — это самодельная версия литиевой аккумуляторной батареи, которая может помочь вам запустить электронику или зарядить ее без необходимости покупать дорогие литий-ионные продукты.?

Когда это сделать своими руками?

Поскольку ионно-литиевый аккумулятор обычно служит дольше, чем любой другой аккумулятор, он пользуется большим спросом у компаний и обычно используется в большинстве электронных устройств. Все смартфоны, которые вы используете в настоящее время, ноутбуки и даже небольшая бытовая электроника, такая как электробритвы, используют литиевые аккумуляторные батареи.?

Низкая температура, большой ток Источник питания аварийного пуска 24 В Характеристики батареи: 25,2 В 28 Ач (литиевая батарея), 27 В 300 Ф (блок суперконденсаторов) Температура зарядки : -40 ℃ ~ + 50 ℃ Температура нагнетания: -40 ℃ ~ + 50 ℃ Пусковой ток: 3000A

Причина для самостоятельной сборки литиевой аккумуляторной батареи может зависеть от того, что вы хотите сделать. Например, если у вас мало средств и вы не можете позволить себе роскошь потратить деньги на бренд, вы можете сделать свой собственный литиевый аккумулятор. В других случаях, как правило, создание собственного блока литиевых батарей своими руками расширит ваши знания об этих вещах, что является ценным опытом.?

Как сделать самодельный литиевый аккумулятор?

Существуют различные методы изготовления литиевых аккумуляторных батарей своими руками в зависимости от размера и характера изготавливаемой вами батареи. Например, если вы делаете простой блок питания, вы можете просто объединить несколько ячеек в сочетании с небольшим контроллером и упаковать батарею, чтобы сделать блок литиевой батареи.

В других случаях, когда вам нужна обычно более сложная батарея — например, батарея 18650 — вам понадобится больше материалов, а также выносливость, необходимая для инвестирования времени, необходимого для изготовления такой батареи.?

Как сделать литиевый аккумулятор 18650

Аккумулятор 18650 используется в различных областях, но, что наиболее важно, питает большую часть маленькой электроники или одну большую электронику. Аккумуляторные элементы 18650 обычно имеют диаметр 18 мм и длину 65 мм — что является стандартом для большинства устройств.

Тем не менее, чтобы создать такую ​​сложную батарею, вот некоторые ингредиенты, которые вам понадобятся:

Полное руководство по изготовлению аккумуляторной батареи:

Теперь, чтобы сделать батарею 18650, соберите учитывая ингредиенты и выбирайте батарейные полоски, которые подходят для вашей батареи.Некоторые люди предпочитают никелевые полоски железным, потому что они менее склонны к нагреву или искру. Искрение очень опасно для клетки, так как может привести к пожару и взрывам.

Низкая температура Высокая плотность энергии Прочный полимерный аккумулятор для ноутбука Спецификация аккумулятора: 11,1 В 7800 мАч -40 ℃ 0,2C емкость разряда ≥80% Пыленепроницаемость, устойчивость к падению, защита от коррозии и электромагнитных помех.

Приварите или припаяйте железные полоски к элементам батареи, чтобы убедиться, что все они соединены в некую цепь.По нашему мнению, расположение батарей в форме куба помогает сохранить их форму и, как правило, облегчает их переноску.

Как соединить ячейки:

Подключите несколько ячеек в параллельную комбинацию, чтобы вы могли получить минимальное сопротивление при прохождении тока через эти ячейки. Затем соедините эту параллельную комбинацию последовательно с другой параллельной комбинацией. Промойте и повторяйте, пока все ваши клетки не станут частью вашего нового продукта.

Очень важным шагом здесь является то, что все подключенные аккумуляторные элементы относятся к одной и той же торговой марке и имеют одинаковый выход.Выбор аккумуляторов другой марки может привести к разрушительным результатам — то, с чем вы, возможно, не захотите возиться.

После сварки и объединения батарей в форме куба настала очередь добавить систему управления батареями (BMS). BMS контролирует и гарантирует, что аккумулятор, который вы сделали, работает должным образом, и предупредит или прекратит зарядку, если что-то не так с какой-либо из ячеек. Обязательно правильно припаяйте различные контактные площадки BMS к различным клеммам вашего нового продукта.?

Ваш литиевый блок DIY более или менее готов, и все, что вам нужно, это подходящий футляр, чтобы вы могли безопасно вставить батареи и защитить их от внешних повреждений и влаги.?

Можно ли продлить срок службы литиевой батареи?

Короче говоря, вы можете продлить срок службы литиевого аккумулятора, восстановив элементы и используя зарядные устройства, которые могут быстро запустить и полностью зарядить литиево-ионный элемент.

Срок службы литиевых аккумуляторных батарей, изготовленных своими руками, зависит от элементов, используемых для изготовления таких аккумуляторных блоков.Вот список жизненных циклов различных перезаряжаемых элементов, которые вы можете использовать для изготовления литиевых аккумуляторных батарей своими руками:

Жизненный цикл ячеек 18650

Ячейки 18650 со временем сильно деградируют, но их ухудшение зависит от напряжения, которое подается на их. Обычно батарея 18650 — если она разряжена до 15 А — разряжается более чем на 25% за 300 циклов. Это означает, что, если вы заряжаете аккумулятор примерно раз в день, не считая выходных, вы можете проработать аккумулятор в течение 4 лет.?

Это значительный срок службы для нормального элемента.?

Щелочная батарея AA

Щелочные батареи AA обычно служат меньше, чем обычные батареи 18650, и их производство дороже. Однако щелочные батареи AA имеют более продолжительный жизненный цикл с перезаряжаемыми вариантами, поскольку они могут работать в течение нескольких лет без большой потери эффективности. Из-за общей стоимости и общей эффективности в наши дни мы определенно не рекомендовали бы вам строить литиевый аккумулятор своими руками из этого материала.

Последние мысли:

Мы надеемся, что мы рассмотрели все, что вам нужно знать о литий-ионных аккумуляторных батареях, которые вы можете собрать дома. Несмотря на то, что в первый раз создание этого типа батареи может стоить дороже, в конечном итоге сборка станет дешевле, и вы начнете экономить больше.

Как собрать собственную литиевую батарею (часть 1 из 2)

Не забудьте также ознакомиться с частью 2 этого руководства, ссылка здесь

В этом руководстве я пошагово рассмотрю как я создаю 48-элементный литиевый аккумулятор из 18650 элементов.Я расскажу о механической конструкции, о том, как я сварил элементы вместе, о настройке системы управления батареями и кнопочном переключателе. Следите за обновлениями и посмотрите следующее видео, в котором я подробно расскажу об инженерном дизайне этой батареи.

1. Вот и батарейки! Я выбрал элементы Samsung 30Q 18650

2. Выложите батареи в лоток и измерьте напряжение каждой из них, чтобы убедиться, что ни одна из них не разряжена. Напряжение должно быть от 3 до 4 В

3.Отметьте острием положительную и отрицательную стороны батарей для облегчения идентификации в дальнейшем.

4. Используйте удобные держатели для ячеек 18650, чтобы удерживать все ячейки вместе. Просто запрессуйте каждую ячейку в правильное положение.

5. Сдвиньте пластиковые держатели ячеек на противоположную сторону, чтобы полностью закрепить ячейки вместе.

6. Используя держатель ячейки в качестве направляющей, отрежьте полосы никелевых шин до нужной длины. Отрежьте полоски на волосок короче пластикового держателя.Никель режет обычными ножницами

7. Ячейки соединяются с помощью точечной сварки. Сделайте несколько пробных сварных швов, чтобы убедиться, что никелевые полосы надежно прикреплены к крышкам ячеек. Хороший сварной шов должен выдержать буксир средней силы

8. Вот готовая часть аккумуляторной батареи. Ячейки сначала соединяются параллельно. Каждая ячейка должна иметь по 2 точечной сварки (на каждой точечной сварке делается 2 отметки). Сделайте 1 сварку на каждой ячейке и подождите около минуты, прежде чем приваривать вторую точку на ячейках, чтобы минимизировать тепловыделение.

9. Затем добавьте никелевые шины, последовательно соединяющие ячейки. Используйте тот же подход: 1 сварной шов на ячейку, подождите минуту и ​​вернитесь, чтобы сделать второй шов. При необходимости добавьте вторичную никелевую полосу к последовательному соединению, чтобы увеличить пропускную способность по току.

10. Если аппарат для точечной сварки начинает плохо сваривать швы или выглядит очень черным (окисленным), то быстро протрите его. Наконечники сварных швов сделаны из меди, поэтому они легко очистятся.

11.Завершите сварку остальных ячеек аналогичным образом. Легче собрать группу меньшими частями и присоединяться к ним только в самом конце.

12. Положите никелевые полоски на последнюю параллельную группу ячеек батареи (это необходимо сделать как для плюсового, так и для минусового выходов). Используя малярную ленту, снимите сборную шину.

13. Припаяйте выходные провода к этим шинам. Мы использовали ленточный метод, так как при пайке выделяется много тепла, а нагрев плохо влияет на элементы.Выполняя этот шаг в автономном режиме, мы не рискуем повредить клетки.

14. Приварите точечной сваркой на этом конце разъема аккумулятора.

15. Проверьте напряжение аккумулятора на этом этапе от конца до конца, чтобы убедиться, что оно соответствует ожидаемому. Если это неправильное напряжение, проверьте все соединения и убедитесь, что ничего не было упущено.

16. Подпаяйте выходной разъем аккумулятора к системе управления аккумулятором (BMS). BMS следит за тем, чтобы элементы заряжались и разряжались, не повреждая батарею.

17. Подключите все балансные линии BMS к последовательным соединениям батареи

18. Они должны быть припаяны, поэтому убедитесь, что провод соединен далеко от концов элемента, чтобы свести к минимуму поглощение тепла батареей. 18650 ячеек.

19. Начинает выглядеть аккумулятор! К этому моменту электронный переключатель был подключен последовательно к выходным линиям, чтобы можно было включать и выключать всю батарею. Вы заметите, что у меня есть малярная лента на концах батарей, это сделано для уменьшения короткого замыкания ячеек, если я случайно уроню инструмент или что-нибудь проводящее на концах ячеек.

20. Чтобы скрепить вещи вместе, свяжите молнию в нескольких местах. Это удерживает все провода плотно и обеспечивает дополнительную механическую поддержку.

21. На конечных выходных линиях припаяйте разъем, который будет использоваться. Убедитесь, что в соединение поступает достаточное количество припоя. Паяльнику потребуется некоторое время, чтобы нагреть разъем и кабель, поскольку они оба довольно большие.

22. Наденьте термоусадочную пленку на концы, чтобы уменьшить риск короткого замыкания, а также обеспечить некоторое ослабление натяжения при пайке.Цветная термоусадка также поможет определить положительный и отрицательный выходы.

23. Используйте большую термоусадочную пленку по всей упаковке в качестве последнего слоя защиты. Это гарантирует, что концы ячеек не закоротятся на посторонние предметы, и обеспечит дополнительную механическую поддержку.

24. Установите новый аккумулятор!

Часть 2:

Хотите узнать подробности и инженерные решения, стоящие за сборкой? Ознакомьтесь со второй частью этой статьи, в которой я подробно расскажу о дизайне.

Ссылки

(Amazon — это партнерские ссылки, которые вам ничего не будут стоить, но помогут мне создать новый контент):

Точечная сварка (для сборки использовалась именно эта ссылка!): https: // amzn.to/2QvoyAL

Никелевые полоски малой упаковки (этот размер идеально подходит для держателей кювет): https://amzn.to/2Qpcl0o

Никелевые полоски большой упаковки (этот размер идеально подходит для держателей кювет): https://amzn.to/2EBN1zz

Держатели для ячеек: https: // amzn.to / 2EBNG3Y

Разъем XT90 (используется в этой сборке): https://amzn.to/2KiQneq

Отображение срока службы батареи: https://amzn.to/2VWeEJM

Зарядный порт: https: //amzn.to/2YX6EKl

16AWG провод: https://amzn.to/2W2tsGw

14AWG провод: https://amzn.to/2MgYhIc

12AWG провод: https: // amzn.to/2YUFC6b

10AWG провод: https://amzn.to/30RJgzF

8AWG провод: https: // amzn.to / 2MiThCH

22AWG для сигнальных линий: https://amzn.to/2W2tsGw

Электронный переключатель: https://amzn.to/2VWAufS

18650 Батарейные элементы: https: / /www.imrbatteries.com/samsung-30q-18650-3000mah-15a-flat-top-battery/

Awesome DIY battery book: https://amzn.to/2MoFEC1

Не забудьте проверить из части 2 этого руководства, ссылка здесь

Сделай сам: обновите свой фургон с помощью литиевой батареи

Электричество настолько тесно связано с нашей повседневной жизнью, что мы воспринимаем это как должное — то есть до тех пор, пока следующая ледяная буря не отключит вашу электроэнергию, или вы не сможете присутствовать на встрече Zoom, потому что у вашего ноутбука нет заряда.

Я часто беру свою работу в дорогу, и ровно 4 года назад я обнаружил, что ищу способ дольше работать с электроэнергией. Мое решение состояло в том, чтобы собрать портативный вторичный литиевый аккумулятор — и это решение, которое сейчас более доступно, чем когда-либо. Вот как я это сделал.

Почему выбирают литий?

Литий

поможет вам сэкономить деньги в долгосрочной перспективе. Литиевая батарея Dakota на 100 Ач будет стоить около 900 долларов, тогда как свинцовая батарея начального уровня на 100 Ач стоит всего 250 долларов.Однако вы можете разрядить свинцовую батарею только до 50%, иначе она преждевременно разрядится. Это означает, что вам нужны две свинцовые батареи по 100 Ач для получения одинаковой полезной энергии.

Затем вам нужно посмотреть на продолжительность жизни. Типичного свинцового аккумулятора хватит на 500 циклов, а у литиевого — не менее 2000. Свинцовый аккумулятор нужно менять в четыре раза чаще. Эквивалентная полезность, которую вы получаете от лития, будет стоить 2 x 250 долларов x 4 замены = 2000 долларов США в свинцовых элементах! Посчитайте — в долгосрочной перспективе литий дешевле свинца вдвое.

Существуют также свинцовые аккумуляторы AGM, рассчитанные на 1000 циклов, но вы соответственно заплатите больше.

(Фото / Amazon )

Кроме того, литий меньше и легче. В автофургоне важен каждый кубический дюйм. Литий на 60% легче сопоставимых свинцовых аккумуляторов и на 20% меньше.

Литий

можно заряжать быстрее, и он намного надежнее при хранении — вам не нужно держать его в тендере. Литий также лучше работает в теплую погоду, чем свинец.

Почему бы не перейти на литий?

Низкие температуры могут снизить полезную емкость литиевых элементов, и они не могут быть изменены ниже 32 градусов. По этой причине большинство литиевых элементов следует размещать внутри транспортного средства, в то время как свинцовые батареи могут размещаться в любом месте шасси транспортного средства.

Обратите внимание, что если у вас залиты свинцовые элементы, вам следует , а не устанавливать их в свой автомобиль, так как они могут выделять опасный водородный газ при перезарядке.

При использовании лития в автомобиле вам понадобится специальное зарядное устройство, в котором используется изолированный преобразователь постоянного тока в постоянный.Они могут быть немного дороже, чем изоляторы, используемые с элементами AGM, но они будут лучше поддерживать заряд и хранить больше энергии даже на аккумуляторе AGM. Изолятор Victron 18A , который мы использовали, стоит около 117 долларов.

Литиевые элементы

известны своей темпераментностью и требуют специальной схемы зарядки и разрядки. Ярким примером этого является разгром аккумуляторной батареи Chevy Bolt . В этих пакетах используются литий-ионные элементы производства LG.

Для вторичной энергосистемы вы можете выбрать более безопасные литий-железо-фосфатные (LiFePO4) элементы, которые, хотя и немного тяжелее, имеют гораздо меньшую вероятность возгорания.Литий-железные элементы по-прежнему нуждаются в схемах безопасности и защите от заряда, поэтому важно приобретать их у надежного производителя.

Правильный партнер в области энергетики

Я наткнулся на Dakota Lithium на выставке Outdoor Retailer еще в 2017 году. Компания Dakota была основана в Тихоокеанском Северо-западе в 2008 году и теперь предлагает лучшую в отрасли 11-летнюю гарантию. Как инженер-системотехник, я сам собрал множество рюкзаков. Это не ракетостроение, но есть множество способов сделать это неправильно.

Итак, я с радостью отдал 600 долларов за 60 Ач литиевых элементов (с тех пор цены резко упали). Я изготовил прочный футляр для своих клеток и с тех пор брал свой рюкзак Dakota во многие длительные походы и посещения клиентов. И я даже включил свой холодильник во время ледяной бури. Это была рабочая лошадка стаи и пока не видно признаков деградации.

В авторской нестандартной конструкции размещен литиевый аккумулятор Dakota емкостью 60 Ач.

Обновление Van Life Power

Приключения этим летом включали владение и аренду #vanlife — читайте все об этом .Электрическая система фургона была неправильно подключена, и ее необходимо было отремонтировать. Компания Dakota Lithium пришла на помощь со своей новейшей и самой большой на сегодняшний день батареей — литиевой батареей емкостью 200 Ач, которая заменила стареющий AGM емкостью 75 Ач, который поставлялся в фургоне. Это в пять раз больше энергии!

Мой энергетический аппетит мог быть больше, чем желудок моего фургона. Несмотря на то, что он более плотный, батарея Dakota Lithium 200Ah мега! Он ни за что не поместился бы в том же месте, что и старый свинцовый аккумулятор емкостью 75 Ач.

Пакет Dakota в автофургоне Mercedes Metris, рядом со свинцовым аккумулятором емкостью 75 Ач.

Еще один недостаток лития, о котором не замечают, заключается в том, что его можно устанавливать в любом положении. Даже герметичные свинцовые аккумуляторы необходимо устанавливать плоскими клеммами вверх. Благодаря этой особенности лития я смог вставить батарею на 200 Ач в задний шкаф.

Хотя я отказываюсь от места для хранения, это действительно здорово очистило проводку. Мне больше не нужно прокладывать длинные провода аккумулятора через корпус. В моем фургоне это освобождает место для хранения за сиденьями, и теперь я могу установить крепления для вилки велосипеда в старый аккумуляторный отсек для перевозки велосипеда в салоне.

Управление батареями

Dakota Lithium: Setup and Dashboard

Компания Dakota сотрудничает с Victron в области разработки аксессуаров для DC-DC, солнечных батарей и дисплеев. Я знал, что мне нужен умный дисплей, чтобы не беспокоить арендаторов моего фургона.

Интеллектуальный монитор батареи Victron BMV-712 был легким выбором, поскольку я использовал его ранее в проекте солнечной лодки. При цене чуть более 200 долларов он не из дешевых, но предлагает отличный набор функций, в том числе приложение с подключением по Bluetooth. Когда я включаю холодильник или подключаю компьютер для зарядки, я могу в режиме реального времени наблюдать за оставшимися часами заряда батареи.

Преобразователь постоянного тока очень легко подключить и заменил мое изолирующее реле. Я также подключил зарядное устройство на 120 В, которое будет заряжать батарею, когда я подключу фургон в лагере. В то время как мое существующее свинцовое зарядное устройство на 12 В будет работать, прилагаемое литиевое зарядное устройство может безопасно заряжаться до более высокого напряжения, что означает больше энергии.

Для большинства сборок литий может быть незаменимой заменой. Dakota, Battle Born и другие поставщики продумали размер своих батарей, чтобы они соответствовали существующим форм-факторам свинцовых батарей.

Результат

Я немного переборщил — даже со всеми лампами, вентиляторами, холодильником и зарядкой ноутбука я могу припарковаться почти неделю без подзарядки. Хотя я мог бы использовать меньшую батарею, я могу полностью отказаться от солнечной энергии. Мне не нужно беспокоиться о том, чтобы получить достаточно солнечного света, и мне не нужно загромождать крышу силиконовыми ячейками (что означает больше места для игрушек).

Если бы я сделал это снова, я бы начал с одной 100Ач батареи и добавил бы больше по мере необходимости.

Имея такое количество энергии, я пересматриваю, сколько источников топлива мне нужно для моей установки. Мой фургон оборудован пропановой печью, и немного суетливо наполнять крошечный бак каждый месяц и бороться с открытым огнем в автомобиле. Можно запустить инвертор мощности и индукционную плиту и больше никогда не беспокоиться о газе.

Этой зимой у меня есть планы установить зимних шин и разбить лагерь на горе Худ для лыжных прогулок. Я подумывал установить систему обогрева на пропане, но недавно я обнаружил, насколько комфортно вы можете быть с простым наматрасником 12 В с подогревом и одеялом с подогревом .Кондуктивное тепло намного более эффективно, чем конвективное (нагревает воздух), и я могу запускать их всю ночь.

Чем больше у вас энергии, тем больше у вас возможностей и тем дальше вы можете перемещаться. Хотя первоначальная стоимость все еще высока, недавнее падение цен почти сделало литий легкой задачей. Какой бы бренд вы ни выбрали, убедитесь, что у него есть надежный послужной список и гарантия на свою продукцию.

Проверьте цену литиевой батареи Dakota на Amazon

Как создать более безопасную и энергоемкую литий-ионную батарею

Эта опасность является результатом конструкторских и производственных решений, принятых четверть века назад, когда этот тип батарей был первоначально коммерциализирован.В то время эти решения имели смысл, но сегодня мы можем добиться большего, прежде всего за счет использования технологий производства, отточенных индустрией производства микросхем. Наша компания Enovix Corp. из Фремонта, штат Калифорния, сделала именно это, и мы продемонстрировали, что можем производить литий-ионные батареи меньшего размера, менее дорогие и принципиально более безопасные, чем все, что есть сейчас на рынке.

В начале этого года мы начали пилотное производство нашей батареи на нашем дочернем предприятии Enovix на Филиппинах. Мы считаем, что сможем увеличить объем производства и что с массовым производством себестоимость единицы продукции будет снижаться темпами, аналогичными тем, которые достигаются в индустрии солнечных батарей.

Две ключевые проблемы столкнулась с Sony Corp., когда она решила коммерциализировать литий-ионную батарею еще в 1991 году. Для ее портативной видеокамеры — предвестника многих будущих энергоемких портативных устройств — требовалась батарея очень большой емкости в компактном корпусе. . Аудиокассеты быстро уступили место компакт-дискам.

Последнее актуально, потому что магнитная записывающая лента для аудиокассет производилась на производственных линиях, которые покрывали пластиковую пленку магнитной суспензией, сушили ее, разрезали на длинные полосы и скручивали их.Поскольку для изготовления компакт-дисков использовался совершенно другой процесс производства, Sony внезапно обнаружила, что у нее не хватает оборудования для производства магнитной записывающей ленты и технических специалистов для эксплуатации этих машин. Менеджеры подразделения аккумуляторов Sony поняли, что они могут решить проблему одним махом, используя то же производственное оборудование и персонал для нанесения химических суспензий на металлическую фольгу, ее сушки и разрезания на электродные листы. Затем, чтобы сформировать сердечник батареи, два листа были прослоены полимерным сепаратором, который позволяет ионам, но не электронам, течь между электродами, и весь пакет был намотан вместе, как рулон желе.Эта же производственная модель, построенная на основе токосъемников из металлической фольги с покрытием, с тех пор используется производителями литий-ионных аккумуляторов.

Эта конструкция была продуманной, но она усложнила задачу улучшения этих батарей в долгосрочной перспективе. Во-первых, это тратит впустую пространство.

В собранной батарее единственными материалами, которые хранят энергию, являются частицы, составляющие анод (отрицательный электрод) и катод (положительный электрод). Токосъемники, сепараторы и упаковочные материалы из металлической фольги, а также пустое пространство обычно составляют не менее 40 процентов от общего объема.Наличие такого большого пространства, предназначенного для чего-то другого, кроме хранения энергии, снижает удельную энергию батареи, которая обычно измеряется в ватт-часах на литр (Втч / л).

Например, обычная конструкция литий-ионного элемента для мобильных устройств обычно включает наматывание электродных листов и разделителя вместе, а затем сплющивание полученной спирали, чтобы она поместилась в тонкий металлический корпус или пластиковый пакет. Для этого процесса требуется заготовка определенной длины, то есть без покрытия, токосъемник и разделитель в начале и в конце, которые занимают объем, но не накапливают энергию.Также можно оставить пустое пространство в центре ячейки и по обеим сторонам ячейки, где оно закруглено из-за свернутой конструкции.

Полимерный разделитель является неактивным материалом и должен быть физически длиннее и шире, чем электроды, чтобы края электродов не касались друг друга. Один из способов увеличить плотность энергии — уменьшить размер сепаратора. Однако если он станет слишком тонким, аккумулятор склонен к короткому замыканию.

Другой проблемой является присутствие микроскопических металлических частиц, неизбежно появляющихся во время сборки, которые могут накапливаться в электрически активном месте, создавая большое короткое замыкание, которое шунтирует ток между электродами, чтобы резко повысить температуру.Это тепло, в свою очередь, может повлиять на соседние районы, вызывая так называемый тепловой выброс, который может вызвать взрыв и пожар. Уничтожить металлические частицы практически невозможно, потому что они образуются станками для резки, прокатки и намотки в процессе производства и сборки.

Дополнительные проблемы могут возникнуть во время зарядки, когда ионы лития текут от катода из оксида металлического лития к графитовому аноду (стандартный анодный материал практически во всех литий-ионных аккумуляторах, используемых в мобильных устройствах).Обычно ионы лития входят в зазоры в структуре кристаллической решетки графита — процесс, известный как интеркаляция. Но высокий ток заряда, локальная нехватка активного анодного материала или низкая температура окружающей среды могут привести к тому, что ионы лития вместо этого окажутся на поверхности анода. Металлический литий затем может накапливаться в виде нитевидных структур, известных как дендриты, которые растут по мере заряда и разряда ячейки, в конечном итоге пробивая сепаратор и создавая короткое замыкание, что может привести к тепловому выходу из строя.Наконец, обычные литий-ионные батареи могут стать нестабильными, если они станут слишком теплыми, что также может привести к тепловому разгоне.

Эти проблемы были компенсированы большим преимуществом по плотности энергии литий-ионных аккумуляторов по сравнению с никель-кадмиевыми — предыдущим стандартом для аккумуляторных батарей в бытовой электронике. Но с тех пор, как была представлена ​​литий-ионная батарея, ее удельная энергия улучшилась всего примерно на 5 процентов в год. Это связано с производственными ограничениями и медленными темпами разработки новых материалов для электродов и электролита.Между тем, потребности мобильных устройств — особенно смартфонов, планшетов и носимых устройств — в электроэнергии растут во много раз быстрее.

К счастью, другие методы, заимствованные из полупроводниковой промышленности, могут работать намного лучше.

Микроэлектромеханические системы (MEMS), изготовленные в трех измерениях с помощью фотолитографии, послужили моделью для исследования, которое один из нас (Лахири) и двое других соучредителей нашей компании начали в 2007 году. У нас уже был опыт разработки таких конструкций MEMS — первоначально для использования в головках чтения-записи дисководов высокой плотности, а затем для тестирования полупроводниковых пластин.

Это сотрудничество привело к основанию Enovix Corp. (первоначально называвшейся microAzure Corp.) и первоначальному финансированию компании несколькими фирмами венчурного капитала Кремниевой долины. Первой целью компании было провести экспериментальное исследование литий-ионной перезаряжаемой батареи, в которой вместо обычного графита в качестве анода использовался кремний. К 2012 году компания производила элементы с гораздо более высокой плотностью энергии, чем обычные литий-ионные элементы сопоставимого размера. Затем Enovix приступила к разработке недорогой крупносерийной производственной системы с помощью стратегических инвесторов Cypress Semiconductor, Intel Capital и Qualcomm Ventures.

Cypress Semiconductor ранее помогала своей дочерней компании SunPower производить высокопроизводительные солнечные элементы с гораздо меньшими затратами и в больших объемах, чем могли бы сделать другие компании с их сложными многоступенчатыми процессами. С 2014 года Enovix разрабатывает и совершенствует методы построения своей батареи, основанные на производственных технологиях SunPower.

В батарее Enovix используется трехмерная архитектура ячеек, в которой электроды вытравлены на кремниевой пластине и покрыты металлическими токоприемниками, которые намного тоньше фольги, используемой в обычных элементах.За счет чередования катода, анода и разделителя на пластине толщиной 1 миллиметр он значительно сокращает занимаемое пространство. В нашей батарее полные 75 процентов объема предназначены для хранения энергии. Одно это увеличивает емкость примерно на 25 процентов по сравнению с обычными ячейками. Точно так же вес уменьшается пропорционально для батареи заданной емкости, хотя обычно объем является более важным ограничением для мобильных устройств.

Наша архитектура с плоскими элементами позволяет в полной мере использовать преимущества ряда достижений в области химии электродов.Чтобы понять, почему это так, вам нужно немного больше узнать о том, как работает обычный литий-ионный аккумулятор, в частности о том, как графитовый анод поглощает ионы лития, когда аккумулятор заряжается, и выбрасывает их обратно в электролит, когда аккумулятор разряжается. . На аноде один атом лития соединяется с шестью атомами углерода в графите с образованием LiC 6 . Это дает графиту теоретическую удельную емкость около 372 миллиампер-часов на грамм. Поскольку соотношение атомов лития к углероду составляет 1: 6, происходит лишь небольшое набухание.

Вместо графита в качестве материала анода используется кремний. Кремний привлекателен, поскольку он образует сплав Li 22 Si 5 . Это очень высокое соотношение лития и кремния позволяет кремнию накапливать около 4200 мАч / г, невероятное количество. Но повышенное поглощение кремнием ионов лития может вызвать его набухание до 400 процентов.

Конечно, любая конструкция, которая использует увеличенную емкость кремниевого анода, должна соответствовать ей на другом конце, увеличивая толщину катода или используя более качественный материал.Обычно используемые катоды, такие как оксид лития-кобальта (LCO), оксид литий-никель-марганца-кобальта (NMC) и оксид лития-никель-кобальт-алюминий (NCA), имеют полезную емкость 140 мАч / г, 170 мАч / г и 185 мАч / г. соответственно. Прямо сейчас мы используем катод NCA, размер которого соответствует емкости кремниевого анода. Однако мы можем использовать любой из обычных литий-ионных катодных материалов, и эта гибкость должна позволить нам соответствовать требованиям конкретных приложений.

Хотя можно добавить кремний в аноды аккумуляторов, производимых традиционным способом, вы не можете добавить слишком много.Это связано с тем, что по мере того, как кремний поглощает литий и расширяется, он в конечном итоге отделяет анод от токосъемника из металлической фольги. Это объясняет, почему коммерческие литий-ионные аккумуляторы до сих пор ограничиваются смесью кремния и графита от 5 до 10 процентов.

Enovix решает эту проблему, делая свой кремний пористым, так что расширение сжимает его крошечные внутренние полости, а не разбухает весь анод. Эта особенность поддерживает структурную целостность соединения между анодом и его токосъемником во время повторяющихся циклов заряда-разряда.Эта способность контролировать расширение анода — одно из ключевых преимуществ нашей системы по сравнению с традиционной литий-ионной аккумуляторной батареей, которая впервые была разработана Sony.

В зависимости от размера и толщины наши элементы упаковывают в заданный объем от 1,5 до 3 раз больше энергии, чем обычные литий-ионные элементы. Поскольку наша аккумуляторная архитектура позволяет использовать более широкий спектр электродных материалов, мы рассчитываем воспользоваться преимуществами продолжающихся исследований в области материалов, которые до сих пор улучшали производительность обычных аккумуляторов примерно на 5 процентов в год.Но поскольку мы также можем использовать будущее повышение эффективности в рамках нашей структурной конструкции, мы ожидаем, что удельная энергия наших батарей улучшится в два-три раза быстрее, чем у обычных батарей.

Еще одно большое преимущество нашей конструкции — повышенная безопасность. Как нам этого добиться? Во-первых, мы используем лучший разделитель.

В обычном литий-ионном элементе сепаратор обычно изготавливается из пластика или полимера, поскольку он должен быть достаточно гибким, чтобы его можно было сворачивать.В результате обычные сепараторы с большей вероятностью выйдут из строя при высоких температурах. В нашей плоской конструкции можно разместить керамический сепаратор , который гораздо более устойчив к нагреванию.

Кроме того, большая способность нашего кремниевого анода поглощать литий без разбухания делает его гораздо менее восприимчивым к литиевому покрытию даже при высоком токе заряда. Если в любом случае произойдет короткое замыкание, мы используем множество распределенных электродов — в отличие от длинных пластин — ограничит ток, который может протекать между любой отдельной парой анод / катод, что значительно снижает риск теплового разгона.

Производство Fab: стандартное оборудование для производства солнечных элементов производит трехмерные кремниевые пластины на экспериментальном предприятии Enovix во Фремонте, Калифорния. Фото: Enovix Corporation

Наша катодная конструкция также более безопасна. Обычно, когда материал катода достигает критической температуры (что может случиться при коротком замыкании), он самопроизвольно разрушается, выделяя кислород, который может разжечь огонь. Этот пробой может переходить от катодной частицы к катодной частице, когда следующая частица достигает критической температуры, вызывая тепловой разгон.Наша архитектура разбивает катод на сотни или тысячи крошечных сегментов, разделенных кремнием, который проводит тепло почти так же хорошо, как алюминий, что затрудняет начало безудержной реакции. В отличие от этого, катод обычной батареи с обмоткой представляет собой один длинный лист, позволяющий неуправляемым реакциям быстро распространяться по устройству.

Все эти особенности, вместе взятые, по существу исключают опасность взрыва и пожара.

Мы недавно сравнили наш прототип элемента носимого устройства с сопоставимым коммерческим литий-ионным элементом, намеренно создав опасный сценарий.Мы перезарядили обычный литий-ионный аккумулятор емкостью 130 мАч и кремниевый литий-ионный аккумулятор емкостью 100 мАч до 250 процентов емкости и одновременно проткнули упаковку каждого из них (с помощью стандартного теста на проникновение гвоздя). Обычный литий-ионный элемент загорелся, а наш кремниевый литий-ионный элемент — нет.

Чтобы изготовить батарею Enovix , мы начнем с кремниевой пластины толщиной 1 миллиметр. Это не обязательно должен быть материал для микросхем — это может быть тот же недорогой материал, который используется для производства солнечных элементов.На пластину мы наносим фотолитографическую маску и травим требуемый рисунок с помощью типичных кремниевых травителей, заимствованных из солнечной промышленности. Поскольку узор может различаться по форме — квадратной, прямоугольной, круглой, овальной, шестиугольной, а также по длине и ширине, у нас есть возможность формировать самые разные конструкции ячеек. Силикон, оставшийся там, где была помещена маска, формирует аноды и «основу» структуры переплетенных ячеек.

Затем мы выборочно наносим тонкий слой металлической пленки на аноды и основные цепи для формирования токоприемников, а затем наносим керамический сепаратор вокруг коллектора на аноды.Поскольку аноды и магистрали электрически не соединены на пластине, мы можем выборочно гальванизировать различные покрытия на каждом из них. Чтобы создать катоды, мы вводим обычную катодную суспензию, заполняя оставшиеся пустоты в пластине. Затем лазер срезает с пластины одну матрицу толщиной 1 мм за другой, при этом поперечные размеры каждой матрицы приблизительно соответствуют размерам окончательной батареи. Затем к каждой матрице прикрепляются положительные и отрицательные язычки, которые запекаются для удаления влаги и укладываются друг на друга, чтобы сформировать батарею нужной высоты.Все язычки соединяются, образуя один положительный и отрицательный язычки для ячейки, и полученная в результате пакетная ячейка затем складывается или вставляется в металлическую банку, которая заполняется электролитом, герметизируется и тестируется.

Архитектура, фотолитография кремниевых пластин и процесс травления, которые мы используем, сравнимы с тем, что используется в трехмерной МЭМС. Поэтому мы назвали наше устройство кремниевой литий-ионной батареей 3D. Мы сравнили прототип с обычной литий-ионной батареей того же форм-фактора, разработанной для использования в умных часах (размер батареи 18 на 27 на 4 мм).Наши внутренние тесты показали, что наша батарея имеет гораздо более высокую емкость и соответствующее увеличение плотности энергии — 695 Втч / л по сравнению с 460 у обычных элементов.

Большая часть этой производственной технологии, конечно же, исходит из бизнеса солнечных батарей. Прогресс в этой области, вызванный огромными инвестициями в НИОКР по всему миру, сразу объясняет низкую стоимость нашего производственного подхода и вероятность того, что его эффективность и масштабы будут продолжать повышаться.

Потребители жаждут более эффективных и мощных аккумуляторов для своих мобильных устройств, как показывают опросы за опросами.Наиболее требовательными являются носимые устройства и микросенсоры, которые создаются для Интернета вещей. В таких устройствах Интернета вещей даже меньше места для батарей, чем в планшетах и ​​смартфонах.

Это не первый случай, когда фотолитография и производство пластин внезапно изменили целые отрасли промышленности. Впервые это произошло, когда в компьютерах стали использоваться интегральные схемы. Эти методы производства также были применены к освещению, которое перешло от люминесцентных трубок к светодиодам и к видеодисплеям, которое перешло от электронно-лучевых трубок к жидкокристаллическим дисплеям.

Мы считаем, что применяемый нами подход приведет к аналогичной трансформации на рынке литий-ионных аккумуляторов. Изменения сначала появятся в носимых устройствах, затем в IoT и телефонах и, в конечном итоге, в электромобилях и хранилищах сетей по мере увеличения объемов и снижения производственных затрат. Это изменение уже произошло в солнечной отрасли.

С более безопасными, тонкими и энергоемкими батареями дизайнеры получат больше возможностей для создания революционных продуктов.Ожидайте, что мобильные устройства станут меньше, будут дольше работать без подзарядки и будут продолжать предоставлять удивительные новые возможности для улучшения нашей жизни.

Эта статья была обновлена ​​16 февраля 2018 г. В печатном журнале за март 2018 г. она опубликована как «Создание более безопасной и плотной литий-ионной батареи».

Об авторах

Ашок Лахири, Нирав Шах и Кэмерон Дейлз работают в Enovix Corp., базирующейся во Фремонте, Калифорния. Лахири, технический директор, стал соучредителем компании в 2007 году.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *